
HAL Id: inria-00515395
https://hal.inria.fr/inria-00515395

Submitted on 7 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Infinite families of finite string rewriting systems and
their confluence

Jean-Pierre Jouannaud, Benjamin Monate

To cite this version:
Jean-Pierre Jouannaud, Benjamin Monate. Infinite families of finite string rewriting systems and
their confluence. Fermüller and Voronkov. Proc. LPAR 2010, Oct 2010, Yogyakarta, Indonesia.
SPRINGER, 2010, 17th International Conference on Logic for Programming, Artificial Intelligence
and Reasoning. <inria-00515395>

https://hal.inria.fr/inria-00515395
https://hal.archives-ouvertes.fr

Infinite families of finite string rewriting systems and

their confluence

Jean-Pierre Jouannaud Benjamin Monate

INRIA-LIAMA and Tsinghua University CEA, LIST

Abstract. We introduce parameterized rewrite systems for describing infinite

families of finite string rewrite systems depending upon non-negative integer pa-

rameters, as well as ways to reason uniformly over these families. Unlike previous

work, the vocabulary on which a rewrite system in the family is built depends it-

self on the integer parameters. Rewriting makes use of a toolkit for parameterized

words which allows to describe a rewrite step made independently by all systems

in an infinite family by a single, effective parameterized rewrite step. The main

result is a confluence test for all systems in a family at once, based on a critical

pair lemma classically based on computing finitely many overlaps between left-

hand sides of parameterized rules and then checking for their joinability (which

decidability is not garanteed).

1 Introduction

Consider a family of groups {SN}N∈N with generators a1, . . . , aN satisfying:

a2i = ǫ | 1 ≤ i ≤ N, aiaj = ajai | i > j + 1 ∧ 1 ≤ i, j ≤ N

This axiomatization depends upon the parameter N ∈ N in four essential ways: there is

one finite set of axioms for each value of the parameterN ; and in each set, the number of

equations depends on N ; the vocabulary depends on N ; words in the equations depend

on N via integer variables i, j satisfying arithmetic constraints in which N occurs.

The methodology for proving properties of SN for a given N by machine is well-

known: it requires the computation of a complete (confluent and terminating) string

rewriting system for SN . This can be achieved for each given N ∈ N by using Knuth-

Bendix completion or one of its variants. The study by machine of various finite groups

has been carried out in the non-parameterized case, in particular by Le Chenadec [7, 8].

Much apparatus has later been developed to describe and reason about infinite lan-

guages of terms by using tailored unification algorithms [2, 10, 5, 9]. Such languages

arise for example in Knuth-Bendix completion when the process diverges.

However, all formalisms we know of, whether mentioned or not, allow one to repre-

sent terms on a given fixed vocabulary and specify and reason about a single algebraic

structure, which does not fit at all our purpose here.

In this paper we show how to deal at once with the infinite family {SN }N∈N, with-

out instantiating the parameter N . To achieve this goal, we define an extension of the

notions of (families of) words, equations and rewrite rules in case the alphabet itself

depends on the parameter N . We then show how to mechanize termination proofs and

reduce local confluence of such systems to the joinability of finitely many critical pairs.

As a result, the above infinite family SN can be directly presented as the complete

parameterized string rewriting system:

a2i → ǫ | 1 ≤ i ≤ N, aiaj → ajai | i > j + 1 ∧ 1 ≤ i, j ≤ N
We stress that our ultimate goal is not the study of parameterized groups, which should

be seen as an example illustrating techniques which we believe to be of general interest.

In this respect, the framework we develop, and the methodology used to lift results

from plain rewriting to parameterized rewriting is more important to us than the actual

technical results, whatever difficult they indeed are.

We define parameterized words in Section 3, show how to decide equality and factor

out parameterized words in Section 4, and introduce parameterized rewriting in Sec-

tion 5 before we investigate termination and confluence in this setting. An application

to dihedral groups is carried out in Section 5 with the rewriting toolkit CiME2 [3], im-

plemented in part by the second author for his PhD thesis, which results are generalized

in the present work.

2 Preliminaries

We assume given an infinite alphabet of constant symbols A = {ai}i∈N called gener-

ators or letters.

Our formalism relies heavily on the existential fragment of Presburger Arithmetic (PrA)

using 0, s,+ as operations for defining terms, =, >,<,≥,≤ as predicates for defining

formulas, and two disjoint sets of arithmetic variables: a setP of parameters denoted by

capital letters, and a set I of dependent variables denoted by lower-case letters. Values

of variables in I depend upon values of parameters via a Presburger constraint, hence

their name. We call solution of ϕ an assignment which satisfies ϕ. We use ψ |=PrA ϕ for

entailment in PrA, meaning that any solution of ψ is a solution of ϕ. We use ⊤,⊥ for

the logical constants true and false respectively, Var(e) for the set of free variables

of an expression e of any kind, VarI(e) for Var(e) ∩ I and VarP(e) for Var(e) ∩ P .

We refer to [4, 1, 6] for missing notations and definitions.

3 Parameterized words

3.1 Syntax

Definition 1. Parameterized words are pairs written w | ψ made of:

– a word-expression w defined by the following grammar of axiom W :

W := ǫ | afW | (F)eW
F := af | afF

{
where e, f denote arithmetic

variables or constants in N.

– a quantifier-free formula ψ of PrA s.t. VarP(ψ) = {Ni}i∈[1..n], Var(w)⊆Var(ψ),
and ∀k1 . . . kn ∈ N

n, the formula ψ ∧
∧

i∈[1..n]Ni = ki has finitely many solutions.

A word-expression is: reduced if all exponents are variables; constant if Var(w) = ∅;
flat if it has no exponent; a word if it is constant and flat. In (w)e, w is a non-empty flat

word-expression with exponent e. In af , f is the index of the letter a.

2

Limitations: the grammar forbids nesting of exponents: ai
j

is not a parameterized

word. This restriction is also compulsory for terms with integer exponents as defined in

[2]: nesting allows for easy encodings of Peano arithmetic. All variables are arithmetic:

variables standing for words are out of scope of this paper. There is no theoretical reason

for restricting PrA to its existential fragment, apart from its lower complexity. All other

syntactic restrictions are for convenience.

Lexicography: we use ϕ, ψ, θ for Presburger constraints, s, t, u, v, w for arbitrary

word-expressions, x, y, z for flat ones, a for the letter a1 and b for a2 in examples,

and write n for sn(0) and n+ u for sn(u).
We use bold letters p,q to stress constant exponents in word-expressions like (x)p.

Conventions: we sometimes write ai instead of (a)i and , xp instead of (x)p; word-

expressions can be easily expanded into reduced ones; we also identify constant word-

expressions with words; for convenience, we allow us to write p∗n for the sum p-times

of n when p is a constant in N.

3.2 Semantics

Terms with integer exponents [2], or of a primal grammar [5] denote sets of terms. Be-

cause we distinguish local dependent variables constrained by a formula of PrA from

global parameters which can take arbitrary values in N, a parameterized word w | ϕ
denotes an N

|P|-indexed family of sets of words, and words in each set are obtained by

replacing in w the variables in I by the natural numbers satisfying the constraint ϕ for

the considered value of the parameters in P . An arithmetic valuation is an application

from P ∪ I to N
|P∪I| which we split into two, ν for the parameters, and µ for the de-

pendent variables. Given an expression e, we write ν(e) (resp. µ(e)) for the expression

obtained by replacing the variables in P (resp. I) by their value and possibly eliminat-

ing constant exponents. Note that µ(ν(w)) is a constant word-expression if w | ϕ is a

parameterized word, and that µ(ν(ϕ)) is a formula without arithmetic variable, hence

evaluates to ⊤ or ⊥ in PrA. We call instance of w | ϕ a word µ(ν(w)) such that µν

satisfies ϕ. We use a bracketed notation for the semantics of expressions of any kind.

Definition 2. We define successively the interpretation of a parameterized word u | ψ
and of a constant word-expression:

[[u | ψ]] = {[[u | ψ]]ν}ν∈P7→N|P|

[[u | ψ]]ν = {[[µ(ν(u))]] | µ ∈ I 7→ N
|I| such that µ |=PrA ν(ψ)}

[[ǫ]] = ǫ [[anx]] = an [[x]] [[(x)ny]] = x · · ·x
︸ ︷︷ ︸

n times

[[y]]

Consider for example the parameterized word (aNi | 0 < i < N). Then,

-
[[
aNi | 0 < i < N

]]

N=0
= ∅ since the formula 0 < i < 0 is unsatisfiable;

-
[[
aNi | 0 < i < N

]]

N=1
= ∅ since the formula 0 < i < 1 is unsatisfiable;

-
[[
aNi | 0 < i < N

]]

N=2
= {a1a1}, since 0 < i < 2 implies i = 1;

-
[[
aNi | 0 < i < N

]]

N=3
= {a1a1a1, a2a2a2}, since 0 < i < 3 implies i ∈ {1, 2}.

Therefore,
[[
(aNi | 0 < i < N)

]]
= {{}, {}, {a1a1}, {a1a1a1, a2a2a2}, . . .}. We see

that separating arithmetic variables in two sets is used in the semantics to stratify the

interpretation of a parameterized word into an infinite family of finite sets of words.

3

It is convenient to consider conjunctive parameterized words (u | ϕ) ∧ (v | ψ) and

disjunctive parameterized words (u | ϕ)∨(v | ψ), interpreting conjunction and disjunc-

tion as set intersection and set union at the set level of interpretation. Conjunctive and

disjunctive words do not allow for any more expressivity: we shall give an algorithm

replacing conjunctive words by disjunctive ones (Intersection, page 8), and can always

move disjunctions from words to PrA formulas by systematizing the following trick:

{aib | i ≤ N} ∨ {bia | i ≤ N} = {aibj | i ≤ N ∧ j = 1} ∨ {bkal | k ≤ N ∧ l =
1} = {aibjbkal | (i ≤ N ∧ j = 1 ∧ k = l = 0) ∨ (k ≤ N ∧ l = 1 ∧ i = j = 0)}.

4 The rewriting toolkit for parameterized words

To rewrite a parameterized word, we need to factor it out via a lefthand side of rule.

To test for confluence, we need to check equality of parameterized words, which shall

require computing their intersection. To compute critical pairs, we need to compute

overlaps of parameterized words. Verifying equality, computing factors and overlaps are

the main algorithmic difficulties of this framework. We choose to present the rewriting

toolkit first, before to introduce parameterized rewriting itself. For lack of space, we

treat in details factorization, and then sketch how intersection, equality and overlaps

can be derived. Examples are shown for factorization and equality. These algorithms

have a non-polynomial complexity, but in our practice rules have usually a small size.

4.1 Auxiliary algorithms

All our algorithms, factorization, equality checking and computing overlaps, use as

basic building blocks two auxiliary algorithms, for computing common divisors and

non-empty common repeated prefixes of two terms. We start with these two algorithms,

taking advantage of their relative simplicity to sketch their description.

gcd takes two non-empty flat word-expressions x, y and returns a possibly empty finite

set of solutions {(zi,ki, li | θi)}i with zi ∈ A
+;ki, li ∈ N

+; θi 6|=PrA ⊥ satisfying:

(i) soundness: ∀µν such that µν |=PrA θi, µν(x) = µν(zki

i) and µν(y) = µν(zlii) ;

(ii) completeness: ∀µν such that µν(x) = µν(zk) and µν(y) = µν(zl) for some triple

(z,k, l), there exists (zi,ki, li | θi) such that µν |=PrA θi.

Consider for example x = akal, y = aiajaiaj . Then {(akal, 1, 2 | k = i ∧ l = j)} is

a solution of gcd(x, y). The solution (ak, 2, 4 | i = j = k = l) is indeed an instance of

the previous one, since i = j = k = l |=PrA k = i ∧ l = j.

Let now x = aiajakalaman and y = aiajakalamanaiajakalaman. There are two

incomparable solutions, (aiaj , 3, 6 | i = k = m ∧ j = l = n) and (aiajak, 2, 4 | i =
l ∧ j = m ∧ k = n) which must both be returned by gcd for sake of completeness.

An initial constraint ϕ can be accomodated by returning {(zi 6= ǫ,ki, li | ϕ ∧ θi)}i.

There is an easy guess and check algorithm for gcd, in which the only needed guesses

are the triples of natural numbers p, k, l such that |x| = p × k and |y| = p × l. The

constraint θ under which x = zk and y = zl is then obtained by equating the respective

indices of all flat word-expressions to be equated. An initial constraint ϕ is accomodated

by returning {(zi 6= ǫ,ki, li | ϕ ∧ θi)}i. One may of course be willing to pay the price

for filtering out redundant guesses. The answer set is empty iff factoring is impossible.

4

gpref takes two non-empty flat word-expressions x, y with |x| < |y| and returns a

(possibly empty) finite complete set of triples written {(pi 6= 0, ti 6= ǫ | θi)}i such that:

(i) soundness: ∀µν.µν |=PrA θi, µν(y) = µν((x)piti) and µν(x) is not prefix of µν(ti);
(ii) completeness: ∀µν such that µν(y) = (µν(x))pµν(t) for some pair (p, t), there

exists (pi, ti | θi) such that µν |=PrA θi.

Let for example x = aiaj and y = aiajakalajai. Then gpref(x, y) =
{(aiaj , 1, 1, akalajai | i 6= k ∨ j 6= l), (aiaj , 1, 2, ajai | i = k ∧ j = l ∧ i 6= j)},
which can be obtained by a guess and check algorithm as before.

4.2 Factoring

We address now the problem of factoring a parameterized word into one or several

quadruples made of a prefix, a given non-empty factor, a suffix and a constraint char-

acterizing under which additional condition this decomposition holds. Traditionally,

factors are associated with positions. Here, the notion of position is not at all clear: in

aNbaN the position N + 1 of b depends on the parameter, but the first position of a to

the right of b is N + 2 if N > 0 and is not defined if N = 0. This makes it difficult to

reduce factoring to equality by first non-deterministically guessing a prefix and a suffix

position and then checking the delimited factor for equality.

Let us first look whether the word aba is a factor of the parameterized word aNbaN |
N > 0. There is a unique possibility to decompose aNbaN so as to obtain the fac-

tor aba, namely : aNbaN = aN−1ababN−1. We can therefore write informally that

(aNbaN | N > 0) = (aN−1, aba, bN−1 | N > 0).
Consider now whether (ba)jb | j < N is a factor of (ab)i | i ≤ N . This time, we can

write (ab)i | i ≤ N = ((ab)la, (ba)jb, ǫ | i ≤ N ∧ j < N ∧ i = l+j+k+1)∨((ab)i |
i ≤ N ∧ j < N ∧ i 6= l + j + k + 1). Factoring here is partial, the constraint of the

factorized term being strengthened.

Let us finally check if aNbaN is a factor in aba, obtaining this time a disjunction of two

possible decompositions: aba = (ǫ, aNbaN , ǫ | N = 1) ∨ (a, aNbaN , a | N = 0), that

do not cover all possible values of N : factoring is again partial, the constraint of the

factoring term being strengthened this time.

Factoring requires searching where a given factor starts in a given parameterized word.

To answer this need, our algorithm is organized in two steps. First, the search for a

prefix, from which point on an equality check can start. This search is exhaustive, we

then need to check equality of the factor with a prefix of the other parameterized word

in the second phase. The suffix is of course obtained at the end of this second phase

when successful.

Consider the factorization of the parameterized word w0 | ϕ by the parameterized word

s0 | ψ. We aim at a representation of all solutions as a parameterized factorization. To

this end, our rules operate on quintuples (u, v, w, s, ϕ), written as (u, v, w, s | ϕ), by

maintaining two invariants: uvw = w0 and vs = s0. The word-expression v is therefore

both a factor ofw0 and a prefix of s0. To control the enumeration of all potential prefixes

u, we use a special symbol ” ” to block the rules checking for a factor until it is replaced

by ǫ from which point on the prefix u is frozen. A factorization is obtained when s = ǫ

and v = s0, the word-expression w being then the suffix of that factorization.

5

[Factorization.] Input: two parameterized words w0 6= ǫ | ϕ and s0 | ψ;

Output: a factorization ∨i(ui, vi, wi | ψi) such that ψi 6|=PrA ⊥

(Start)
w0 | ϕ, s0 | ψ

ǫ, , w0, s0 | ϕ ∧ ψ
(Elim)

(u, v, w, s | ϕ) ∨ P

P
(Out)

∨

i(ui, vi, wi, ǫ | ϕi)∨

i(ui, vi, wi | ϕi)

if ϕ |=PrA ⊥

FindPref: (1)
u, , ǫ, s | ϕ

u, ǫ, ǫ, s | ϕ
(2)

u, , aiw, s | ϕ

(u, ǫ, aiw, s | ϕ) ∨ (uai, , w, s | ϕ)

(3)
u, , (x)nw, s | ϕ

(
∨

x=yz u(x)
iy, ǫ, z(x)jw, s | ϕ ∧ n = i+ j + 1) ∨ (u(x)n, , w, s)

Finish: (1)
u, ǫ, ǫ, ais | ϕ

⊥
(2)

u, ǫ, ǫ, (x)ns | ϕ

u, ǫ, ǫ, s | ϕ ∧ n = 0

CheckFactor: (1)
u, v, aiw, ajs | ϕ

u, vai, w, s | ϕ ∧ i = j

(2)
u, v, aiw, (ajy)

ns | ϕ

(u, v, aiw, s | ϕ ∧ n = 0) ∨ (u, vai, w, (yaj)kys | ϕ ∧ n = k + 1 ∧ i = j)

(3)
u, v, (aix)

mw, ajs | ϕ

(u, v, w, ajs | ϕ ∧ m = 0) ∨ (u, vai, (xaj)kxw, s | ϕ ∧ m = k + 1 ∧ i = j)

(4)
u, v, (x)mw, (y)ns | ϕ

[u, v, (x)mw, s | ϕ ∧ n = 0] ∨ [u, v, w, (y)ns | ϕ ∧ m = 0]
∨

∨

(z,p,q|θ)∈gcd(x,y)

[u, v(z)j , (z)iw, s | ϕ ∧ θ ∧ j = q ∗ n ∧ i+ j = p ∗m ∧ i ≥ 0 ∧ n 6= 0]∨
[u, v(z)i, w, (z)js | ϕ ∧ θ ∧ i = p ∗m ∧ j + i = q ∗ n ∧ j > 0 ∧ m 6= 0]
∨

∨

(p,z|θ)∈gpref(x,y)
∨

q∈[1..p][u, vx
q, w, xp−qz(y)ls | ϕ ∧ θ ∧ n = l + 1]

∨
∨

(p,z|θ)∈gpref(y,x)
∨

q∈[1..p][u, vx
q, xp−qz(x)lw, s | ϕ ∧ θ ∧ m = l + 1]

FindPref (3) is slightly redundant to maintain a one line formulation. In CheckFactor

(4), the word-expressions w, s are maintained in reduced form: xq and xp−q stand for

(expanded) words. Note that j = q∗n ∧ i+j = p∗m ∧ i ≥ 0 ∧ n 6= 0 impliesm 6= 0.

Fresh dependent variables appear in conclusions, making termination non-trivial.

We now illustrate Factoring with the simple example of the word-expression w =
aNbaN with the word s = aba. We describe the transformations in a rewriting style,

starting with the search for a prefix. The arrow rewriting symbol may use a shortened

rule name in index and a disjunct number in exponent to ease the reading. Non-modified

disjuncts are replaced by dots:

(aNbaN , aba)⇒Start (ǫ, , a
NbaN , aba)⇒FP (3)

(ai, ǫ, aajbaN , aba | N = i+ j + 1) ∨ (aia, ǫ, ajbaN , aba | N = i+ j + 1)∨
(aN , , baN , aba)⇒3

FP (2)

. . . (aN , ǫ, baN , aba) ∨ (aNb, , aN , aba)⇒4
FP (3)

6

. . . (aNbai, ǫ, aaj , aba | N = i+ j + 1) ∨ (aNbaia, ǫ, aj , aba | N = i+ j + 1)∨
(aNbaN , , ǫ, aba)⇒6

FP (1)

. . . (aNbaN , ǫ, ǫ, aba)⇒6
Finish(1)

(ai, ǫ, aajbaN , aba | N = i+ j + 1) ∨ (aia, ǫ, ajbaN , aba | N = i+ j + 1)∨
(aN , ǫ, baN , aba)∨
(aNbai, ǫ, aaj , aba | N = i+ j + 1) ∨ (aNbaia, ǫ, aj , aba | N = i+ j + 1)⇒3

CF (1)

(ai, ǫ, aajbaN , aba | N = i+ j + 1) ∨ (aia, ǫ, ajbaN , aba | N = i+ j + 1)∨
(aNbai, ǫ, aaj , aba | N = i+ j + 1) ∨ (aNbaia, ǫ, aj , aba | N = i+ j + 1)

The last two disjuncts fail quickly. We proceed with the successful first two. Disjuncts

resulting in immediate failure are abbreviated by dots and eliminated on the fly:

(ai, ǫ, aajbaN , aba | N = i+ j + 1)⇒CF (1) (a
i, a, ajbaN , ba, | N = i+ j + 1)

⇒CF (3) (a
i, a, baN , ba | N = i+ j + 1 ∧ j = 0) ∨ (... | ⊥)⇒2

Elim⇒CF (1)

(ai, ab, aN , a | N = i+ j + 1 ∧ j = 0)⇒CF (3)

(ai, aba, ǫ, a | ⊥) ∨ (ai, aba, ai, ǫ | N = i+ j + 1 ∧ j = 0 ∧ N = i+ 1)
⇒1
Elim⇒O (ai, aba, ai | N = i+ 1)

(aia, ǫ, ajbaN , aba | N = i+ j + 1)⇒CF (3)

(aia, ǫ, baN , aba | N = i+ j + 1 ∧ j = 0)∨
(aia, a, akbaN , ba | N = i+ j + 1 ∧ j = k + 1)⇒1

CF (1)⇒
1
Elim

(aia, a, akbaN , ba | N = i+ j + 1 ∧ j = k + 1)⇒CF (3)

(... | ⊥) ∨ (aia, a, baN , ba | N = i+ j + 1 ∧ j = k + 1 ∧ k = 0)⇒1
Elim⇒CF (1)

(aia, ab, aN , a | N = i+ j + 1 ∧ j = k + 1 ∧ k = 0)⇒CF (3)

(... | ⊥) ∨ (aia, aba, al, ǫ | N = i+ j + 1 ∧ j = k + 1 ∧ k = 0 ∧ N = l + 1)
⇒1
Elim⇒O (aia, aba, al | N = i+ 2 ∧ N = l + 1)

The final result is therefore the redundant factorization

(ai, aba, ai | N = i+ 1) ∨ (aia, aba, al | N = i+ 2 ∧ N = l + 1)
This redundancy originates in our formulation of FindPref (3), which can be fixed.

We are left indeed showing that our algorithm factors out parameterized words.

Definition 3. A triple of words (u, v, w) is a solution of the factorization problem of

a parameterized word s | ψ by a parameterized word t | ϕ such that VarI(ϕ) ∩
VarI(ψ) = ∅, if there exist a valuation µν of the arithmetic variables such that

µν |=PrA ϕ ∧ ψ, µν(v) = µν(t) and µν(uvw) = µν(s).

Definition 4. Given two parameterized words s | ϕ and v | ψ such that VarI(ϕ) ∩
VarI(ψ) = ∅,

∨

i(ui, vi, wi | θi) is a complete factorization of s | ϕ by v | ψ (each

disjunct being one particular factorization) iff

(i)[soundness] for each valuation µν such that µν |=PrA θi, the triple (µν(ui, vi, wi))
is a solution of the factorization problem of s | ϕ by v | ψ ;

(ii)[completeness] For each valuation µν such that µν |=PrA (ϕ ∧ ψ), either ∃i such

that µν |=PrA θi, or µν(v) is not a factor of µν(s).

Theorem 1. Given two parameterized words v | ψ and s | ϕ in this order, Factorization

returns a finite (possibly empty), complete factorization of s | ϕ by v | ψ.

7

Proof. (sketch) Termination; we interpret a disjunction of factorization formulas by

the multiset of the interpretations of its disjuncts. The interpretation of a disjunct

(u, v, w, s | ϕ), where w, s are assumed w.l.o.g. to be reduced word-expressions, is

defined as the pair (k + l,m + n) of natural numbers, compared lexicographically, in

which: k, l are the number of factors of the form (x)i, with i a dependent variable, in

w, s respectively, while m,n are the lengths of the longuest flat word prefix of w, s

respectively. It is easy to see that Finish and CheckFactor (4,5) decrease k+ l, Check-

Factor (1,2,3) maintain k+ l and decrease m+n, while other rules can be easily taken

care of separately. This shows termination, hence finiteness of the set of answers.

Soundness: it is implied by the two invariants maintained by the rules.

Completeness: first, there is one rule for each possible kind of word-expression for w

and s. We justify CheckFactor (4), which is the most difficult rule. The first disjunct

assumes m = 0 or n = 0, so we can then assume both m 6= 0 and n 6= 0. We reason of

course (implicitely) on the instances of (u, v, (x)mw, (y)ns | ϕ), since the algorithms

gcd and grpef will compute them for us. By assumption, |x| ≤ |y|, hence x is a prefix

of y. There are then two cases: either x and y share a common “divisor” z (yielding two

possibilities for eliminating one of them), or x “divides” y (p times with a non-empty

reminder t), in which case it is only possible to eliminate x. ⊓⊔

Note that the factorizations rules do not treat parameters differently from dependent

variables. So far, the difference between both is only in the semantics. This suggests

that the framework should scale to trees using existing toolboxes or variants.

4.3 Intersection, equality and left-overlaps

All these operations can be derived from the previous algorithm.

Intersection. Intersection is a stepping stone for deciding equality. The problem is to

compute a description of the words which are common instances of two given param-

eterized words u | ϕ and v | ψ. The difference with factorization is that the prefix

and the suffix must be both empty. It therefore suffices to modify the Start rule, which

conclusion should be (ǫ, ǫ, w0, s0 | ϕ ∧ ψ) (therefore eliminating the need for the

FindPref rules, the Finish (2) rule which should output ⊥ as Finish (1), and the Out

rule in which ui and vi should be ǫ, and the conclusion the disjunction
∨

i ϕi. It is then

immediate to see that we can simplify the format of formulas in this case, keeping only

a triple (w, s | ϕ), which we can of course write as (w = s | ϕ).

Equality. We need to decide whether two disjunctive parameterized words

u0 | ϕ0 ∨ . . . um | ϕm and v0 | ϕ0 ∨ . . . vn | ϕn have exactly the same set of instances.

We assume wlog that for all pairs (i, j), ui | ϕi and vi | ϕj have different sets of de-

pendent variables. In the case of two parameterized words, we can apply Intersection

to (u0 | ϕ0) and (v0 | ψ0), and check the equivalence in PrA of the obtained formula

with the starting one ϕ0 ∧ ψ0. In the case of a disjunction of parameterized words, we

can apply Intersection to the (n + 1) × (m + 1) equality problems ui | ϕi, vj | ψj ,
resulting in (m + 1) × (n + 1) constraints θi,j , and then check that

∧

i,j ϕi ∧ ψj is

equivalent in PrA to
∧

i(
∨

j θ(i,j)) ∧
∧

j(
∨

i θ(i,j)).

8

Consider the two words a(ba)i | i ≤ N and (ab)ja | j ≤ N . We explain the use of the

rules in words, and in cases of disjunctions, treat the disjuncts in turn.

– Initial formula: a(ba)i = (ab)ja | i ≤ N ∧ j ≤ N ;

– We split on j = 0, using CheckFactor (2); in the branch j > 0, we simplify the

head occurrence of a and permute the word under exponent, yielding the result:

(a(ba)i = a | j = 0 ∧ i ≤ N ∧ j ≤ N) ∨ ((ba)i = (ba)j−1ba | j > 0 ∧ . . .);
– Second, we simplify a in the obtained first disjunct, and get:

((ba)i = ǫ | j = 0 ∧ i ≤ N ∧ j ≤ N) ∨ ((ba)i = (ba)j−1ba | j > 0 ∧ . . .;

– Applied to the first disjunct, the rule Finish (2) forces the value i = 0, yielding:

(ǫ = ǫ | i = 0 ∧ j = 0 ∧ i ≤ N ∧ j ≤ N)
∨ ((ba)i = (ba)j−1ba | j > 0 ∧ i ≤ N ∧ j ≤ N ;

– We now apply the rule CheckFactor (4) to the second disjunct (using gcd):

(ǫ = ǫ | i = 0 ∧ j = 0 ∧ i ≤ N ∧ j ≤ N)
∨ ǫ = (ba)j−1−iba | j − 1− i ≥ 0 ∧ j > 0 ∧ i ≤ N ∧ j ≤ N
∨ (ba)i−j+1 = ba | i− j + 1 ≥ 0 ∧ j > 0 ∧ i ≤ N ∧ j ≤ N ;

– The second disjunct now simplifies away by using Finish (1), then Elim, yielding:

(ǫ = ǫ | i = 0 ∧ j = 0 ∧ i ≤ N ∧ j ≤ N)
∨ (ba)i−j+1 = ba | i− j + 1 ≥ 0 ∧ j > 0 ∧ i ≤ N ∧ j ≤ N ;

– CheckFactor (3) now applies, hence we get:

(ǫ = ǫ | i = 0 ∧ j = 0 ∧ i ≤ N ∧ j ≤ N)
∨ ǫ = ba | i− j + 1 = 0 ∧ i− j + 1 ≥ 0 ∧ j > 0 ∧ i ≤ N ∧ j ≤ N
∨ (ab)i−ja = a | i− j ≥ 0 ∧ i− j + 1 ≥ 0 ∧ j > 0 ∧ i ≤ N ∧ j ≤ N ;

– Using now Finish (2), this simplifies to:

(ǫ = ǫ | i = 0 ∧ j = 0 ∧ i ≤ N ∧ j ≤ N)
∨ (ab)i−ja = a | i− j ≥ 0 ∧ i− j + 1 ≥ 0 ∧ j > 0 ∧ i ≤ N ∧ j ≤ N ;

– CheckFactor (3) now applies again resulting in:

(ǫ = ǫ | i = 0 ∧ j = 0 ∧ i ≤ N ∧ j ≤ N)
∨ a = a | i = j ∧ i− j ≥ 0 ∧ i− j + 1 ≥ 0 ∧ j > 0 ∧ i ≤ N ∧ j ≤ N
∨ (ba)i−j−1ba = ǫ | i− j ≥ 0 ∧ i− j + 1 ≥ 0 ∧ j > 0 ∧ i ≤ N ∧ j ≤ N ;

– The third disjunct now simplifies away by using Finish (1), then Elim, yielding:

(ǫ = ǫ | i = 0 ∧ j = 0 ∧ i ≤ N ∧ j ≤ N)
∨ a = a | i = j ∧ i− j ≥ 0 ∧ i− j + 1 ≥ 0 ∧ j > 0 ∧ i ≤ N ∧ j ≤ N ;

– Using CheckFactor (1), we finally get:

(ǫ = ǫ | i = 0 ∧ j = 0 ∧ i ≤ N ∧ j ≤ N)
∨ ǫ = ǫ | i = j ∧ i− j ≥ 0 ∧ i− j + 1 ≥ 0 ∧ j > 0 ∧ i ≤ N ∧ j ≤ N ;

– which yields the result by using Output:

(i = 0 ∧ j = 0 ∧ i ≤ N ∧ j ≤ N)
∨ i = j ∧ i− j ≥ 0 ∧ i− j + 1 ≥ 0 ∧ j > 0 ∧ i ≤ N ∧ j ≤ N .

The above formula is equivalent to i = j ∧ j ≤ N ∧ i ≤ N in PrA, which expresses

the precise relationship between the instances of the equal parameterized words.

Left-overlaps. A left-overlap of the word s over the word t is any triple (u, v, w) such

that s = uv and t = vw. Complete sets of overlaps are then disjunctions of quadruples

(ui, vi, wi | θi) satisfying an induced soundness and completeness condition as before.

9

The algorithm for computing a complete set of left-overlaps ofw0 | ϕ over s0 | ψ is very

similar to the one for computing a complete factorization, using the same quadruples

(u, v, w, s), the same initialization phase, the same search for a prefix u of w0 before

to start the comparison between the obtained suffix w of w0 and s0, the same rules

for computing the common part v, and maintaining the same invariants s0 = uvw and

vs = w0. The only difference is that the ”suffix” w must be empty in the end. The

corresponding modifications of the Finish rules is left to the reader.

5 Parameterized rewriting

We are now ready for investigating properties of parameterized rewrite systems.

Definition 1 A parameterized rewrite rule is a triple l → r | ϕ made of a lefthand side

word-expression l, a righthand side word-expression r and a constraint ϕ such that

l | ϕ and r | ϕ are parameterized words and Var(l, r) ⊆ Var(ϕ).
A parameterized rewrite system is a set of parameterized rewrite rules {li → ri | ϕi}i.
We shall assume w.l.o.g. that for all i ∈ [1..n], VarP(ϕi) = P .

A parameterized rewrite system R denotes an infinite family of finite word rewrite

systems {[[Rν]]}ν∈P→N|P| defined as follows:

[[R]] = {[[Rν]] | ν ∈ P → N
|P|}

Rν = {(ν(l)→ ν(r) | ν(ϕ)) | l→ r | ϕ ∈ R}
[[Rν]] = {µ(ν(l))→ µ(ν(r)) | l→ r | ϕ ∈ R, and µ ∈ I → N

|I| s.t. µ |=PrA ν(ϕ)}

The rewrite system [[Rν]] is called an instance of R.

Consider the parameterized rewrite systems R = {aii → aj | 0 ≤ i < j ≤ N} and

R′ = {(uiuj)
N → ujui | i− j ≥ 2 ∧ i, j < N}. We have:

RN=2 = {aii → aj | 0 ≤ i < j ≤ 2} [[RN=2]] = {ǫ→ a1; ǫ→ a2; a1 → a2}

R′
N=5 = {(uiuj)

5 → ujui | i− j ≥ 2 ∧ i, j < 5}

[[R′
N=5]] =

u3u1u3u1u3u1u3u1u3u1 → u1u3,

u4u1u4u1u4u1u4u1u4u1 → u1u4,

u4u2u4u2u4u2u4u2u4u2 → u2u4

There are three ways to understand R: as a set of parameterized rewrite rules operating

on parameterized words ; and for each value ν of the parameters, either as a set of

parameterized rules Rν with dependent variables only depending on integer values,

or as a set [[Rν]] of rules on words. Rewriting can then be defined at several levels:

on words with rules (both having possibly exponents), on parameterized words with

rules, on words with parameterized rules, etc. These definitions need be consistent at all

levels, that is, be related by commutation lemmas in order to capture families of critical

pairs in [[Rν]] and their joinability by critical pairs in Rν and their joinability, and the

latter by critical pairs in R and their joinability. This requires a careful definition of

parameterized rewriting, as shown by the coming example.

10

Consider the parameterized rewrite system R = {aibai → aibi | i ≤ N, aba → ǫ}.
The parameterized word aibai | i ≤ N can be seen as the disjunction (b | i = 0) ∨
(ai−1abaai−1 | i > 0 ∧ i ≤ N), and therefore aba is a factor of aibai | i ≤ N

subjected to the additional constraint i > 0: we can rewrite the word aibai with the rule

aba → ǫ if i > 0, but we cannot if i = 0. The parameterized word aibai | i ≤ N can

therefore be rewritten with the rule aba → ǫ into the disjunctive parameterized word

(aibai | i ≤ N ∧ i = 0) ∨ (ai−1ai−1 | i ≤ N ∧ i > 0), that is (b | i = 0) ∨ (aiai |
0 < i ≤ N), hence capturing both cases at once.

Definition 5. Given a parameterized word s | ϕ and a parameterized rewrite rule

l→ r | ψ such that (i) VarP(ψ) ⊆ VarP(ϕ) and (ii) ∨i(ui, vi, wi | θi) is a complete,

non-empty factorization of s | ϕ by l | ψ, then s | ϕ rewrites with l → r | ψ to

the parameterized disjunctive word
∨

i(uirwi | θi) ∨ (s | ϕ ∧
∧

i(¬θi)), written

s | ϕ−→
l→r|ψ(

∨

i(uirwi | θi) ∨ (s | ϕ ∧
∧

i(¬θi)).

The formulas
∨

i(uirwi | θi) and
∧

i(¬θi) characterize respectively the positive and

negative parts of the rewrite.

A rewriting step is called uniform if the righthand side is a (single) parameterized word,

i.e., the factorization of s | ϕ by l | ψ has the form (u, l, w | θ) with ϕ |=PrA θ.

Rewriting by a set of parameterized rules is defined as expected.

Note that we do not allow rewriting with an empty factorization, which would result in

a trivial rewrite step. In general, the result of rewriting a parameterized word by a pa-

rameterized rule is a disjunction of parameterized words by definition of factorization:

first, l does not appear exponentiated in the factorization of s | ϕ by l | ψ; second, the

finite number of possible interpretations for the dependent variables, given a value of

the parameter variables, is of course maintained as a result of the factorization process.

Further, by definition of a factorization, θi 6|=PrA ⊥ and therefore the word uirwi | θi
has a non-empty interpretation. On the other hand, it is quite possible that θ and ϕ are

equivalent in Presburger arithmetic in case of a uniform rewrite step, in which case the

rewriting result is the single parameterized word urw | θ.

We now relate parameterized rewriting withR operating on a parameterized word u | ϕ
with rewriting the corresponding instances of u | ϕ with [[Rν]]. We therefore skip the

intermediate level of rewriting with Rν . This relationship is expressed by the following

key lemma, which will be a main tool in our study of parameterized rewriting:

Lemma 1 (Lifting). Let s | ϕ be a parameterized word. Then, µ(ν(s))−→[[Rν]] t for

some rule instance µ(ν(l)) → µ(ν(r)) of l → r | ψ ∈ R iff (
∨

i ui, l, wi | θi) is a

complete factorization of s | ϕ by l | ψ, µν |=PrA θi for some i, and t = µ(ν(uirwi)).

Proof. Follows easily from Definitions 4 and 5: ⊓⊔

Lifting takes care of positive rewrites. A negative rewrite is nothing but an artefact

which reduces the set of instances of a parameterized word without changing the word

itself. Negative rewrites play a central role for derivations, since they allow us to capture

at once all possible derivations on words by derivations on parameterized words.

We write t | ϕ−→∗
R s | ψ for the reflexive, transitive closure of −→R, called a deriva-

tion, and t | ϕ←→∗
R s | ψ for its reflexive, symmetric transitive closure, called a con-

version, for which R is as usual interpreted as a set of equations.

11

5.1 Termination of parameterized rewriting

Unfortunately, termination of parameterized rewriting does not characterize termination

of its instances, as shown by the coming example of a (plain) rewrite system which

terminates trivially on words, but does not on parameterized words. LetR = {ab→ ǫ}.
We have:

(ab)i | i ≤ N −→ab→ǫ(ab)
k(ab)l | i > 0 ∧ i = k + l + 1 ∧ i ≤ N = (ab)j | i >

0 ∧ i = j+1 ∧ i ≤ N −→ab→ǫ(ab)
m(ab)n | i > 0 ∧ j > 0 ∧ j = m+n+1 ∧ i >

0 ∧ i = j + 1 ∧ i ≤ N −→ab→ǫ . . .

We cannot therefore expect a parameterized system to be terminating on parameter-

ized words in general (actually in most cases), but we are indeed only interested in

the termination of its instances on words. In the above case, we can trivially show that

ab → ǫ terminates on words. Yet, it may be difficult for parameterized rules. A simple

remark shows however that automation is at reach. Consider the two rewrite systems

R = {ai → ǫ | i ≤ n} and S = {ai → ǫ | 1 ≤ i ≤ n} which describe the same

set of instances on words except for the non-terminating instance ǫ → ǫ of R which

is not an instance of S. As long as the parameterized rule ai → ǫ does not degenerate

(here, into the rule ǫ → ǫ), it can be seen as a terminating rule over word-expressions

built from the alphabet, concatenation, and exponentiation. The degenerated cases can

easily be computed by solving equations of the form (x)i = ǫ for x a non-empty word,

therefore adding i = 0 to the constraint of the considered rule. In the previous two

examples, we get the parameterized rule instances {ǫ → ǫ | i ≤ n ∧ i = 0} and

{ǫ→ ǫ | 1 ≤ i ≤ n ∧ i = 0}, but the second disappears. More generally,

Theorem 2. LetR a parameterized rewriting system andC(R) be obtained as follows:

C(R ∪ {l→ r | θ}) = C(R) ∪ C(l→ r | θ)
C(l = x1(y1)

i1 . . . (yn)
inxn+1 → r | θ) = {(l↓→ r | θ ∧

∧

j∈J ij 6= 0 | J ⊆ [1 : n]}

where l↓ is obtained from l by replacing ik by 0 in l for k ∈ [1..n] \ J , then (yk)
0 by ǫ

and finally eliminating superflous ǫ’s.

Then, all instances of R terminate on words if there exists a well-founded rewrite or-

dering ≻ on word-expressions such that:

(i) s ≻ t implies µν(usv) ≻ µν(utv) for all word-expressions u, v and valuations µν ;

(ii) x ≻ y implies µν((x)i) ≻ µν((y)i) for all valuations µν such that µν |=PrA i 6= 0 ;

(iii) l ≻ r for all rules (l→ r | θ) ∈ C(R) for which θ 6|=PrA ⊥.

Proof. (sketch). First, an arbitrary derivation on words with some rewrite system [[Rν]]
is also a derivation with [[C(R)ν]], which can be seen as a parameterized derivation with

C(R) by using the Lifting Lemma. Condition (iii) then allows us to make it an ordered

sequence on parameterized-words. Conditions (i,ii) allow finally to move the ordering

on parameterized-words back to the original sequence of words. ⊓⊔

Existing techniques apply directly provided they satisfy conditions (i,ii), which is nor-

mally the case since exponents cannot be instantiated by 0 in a rule of C(R). The use

of exponential interpretations would be a natural choice by allowing to interpret expo-

nentiation on words by arithmetic exponentiation. Polynomial interpretations also do.

In the previous two examples, we ended up checking the pairs ai ≻ ǫ, ǫ ≻ ǫ which fails

for any interpretation, and ai ≻ ǫ which succeeds, using for example as interpretation

the number of letters in a parameterized-word.

12

5.2 Confluence of parameterized rewriting

Confluence raises other difficulties. For an example, let R = {ac → ǫ, def → ǫ}. R
is confluent on words, since it is terminating and has no critical pairs. But positive

rewriting (stressed by using =⇒) with R is not confluent on parameterized-words:

abicdeif | i ≤ N =⇒ac→ǫ df | i = 0 ∧ i ≤ N and

abicdeif | i ≤ N =⇒def→ǫ abc | i = 1 ∧ i ≤ N , two words which cannot be joined.

Observe however that the factorization constraints i = 0 and i = 1 are incompatible:

the word abicdeif does not have instances rewritable by both rules. And indeed, the

problem disappears when positive and negative rewriting are carried along together:

abicdeif | i ≤ N −→ac→ǫ(df | i = 0 ∧ i ≤ N) ∨ (abicdeif | i 6= 0 ∧ i ≤ N), and

abicdeif | i ≤ N −→def→ǫ(abc | i = 1 ∧ i ≤ N) ∨ (abicdeif | i 6= 1 ∧ i ≤ N),
and since these rewrites are sort of orthogonal, they both rewrite to a word equal to

(df | i = 0 ∧ i ≤ N) ∨ (abc | i = 1 ∧ i ≤ N) ∨ (abicdeif | i 6= 0 ∧ i 6= 1 ∧ i ≤ N).

Theorem 3. The instances of a parameterized rewrite system R are confluent (resp.

locally confluent) on words iff parameterized rewriting withR is confluent (resp. locally

confluent) on parameterized words.

Proof. Follows from the lifting Lemma 1. ⊓⊔

We now turn our attention to a critical pair analysis of local confluence. Consider the

parameterized rewrite system R = {aibai → aibi | i ≤ N, aba → ǫ}. Since aba is a

factor of aibai → aibi | i ≤ N under the additional constraint i > 0, the lefthand side

of the first rule can be rewritten by the second rule. And since aibai → aibi | i ≤ N is

a factor of aba under the additional constraint i = 0, the lefthand side of the second can

be rewritten by the first. We can indeed describe all critical pairs of each rewrite system

[[R]]ν by computing factorizations and left-overlaps.

Consider the parameterized system R = {aNai → aN | 0 < i < N}, which all

instances are critical pair-free. Let aNai → aN | 0 < i < N and aNaj → aN | 0 <
j < N be two arbitrary rules in R. Their instances belong to the same system [[Rn]]
provided they share the same parameter N , while the dependent variable is renamed

(otherwise, we would have the same rule). It is easy to see that aNai and aNaj cannot

overlap unless i = j, in which case we have a trivial critical pair. On the other hand,

rules of different systems [[Rn]] and [[Rm]] do overlap and yield non-joinable critical

pairs. This example shows the practical need of the two kinds of variables in our model.

Definition 2 Let l → r | ϕ and g → d | ψ be two rules of a parameterized rewriting

system R such that VarI(ϕ) ∩ VarI(ψ) = ∅.
(i) Let ∨i(ui, gi, vi | θi) be a complete factorization of l | ϕ by g | ψ. The pair

(r |
∨

i θi,
∨

i uidvi | θi) is called a critical pair of g → d | ψ on l→ r | ϕ;

(ii) Let (
∨

i(ui, vi, wi | θi) be a complete left-overlap of l | ϕ on g | ψ. The pair

(
∨

i uir |θi,
∨

i dwi | θi) is called a critical overlapping pair of l→ r |ϕ on g → d |ψ.

Lemma 2. For each valuation ν, the set of critical pairs in [[Rν]] is the set of corre-

sponding instances of the critical and overlapping pairs in R.

Proof. Follows again from the lifting Lemma 1. ⊓⊔

13

Lemma 3. Parameterized rewriting with R is locally confluent iff all critical and over-

lapping pairs of R are joinable by parameterized rewriting.

Proof. (sketch). The only if direction is straightforward, but the converse is more subtle.

Let s | ϕ−→(u | θ) ∨ (s | ϕ ∧ ¬θ), and s | ϕ−→(v | γ) ∨ (s | ϕ ∧ ¬γ). Then,

(u | θ) ∨ (s | ϕ ∧ ¬θ) =
(u | θ ∧ γ) ∨ (u | θ ∧ ¬γ) ∨ (s | ϕ ∧ ¬θ ∧ γ) ∨ (s | ϕ ∧ ¬θ ∧ ¬γ) =
(u | θ ∧ γ) ∨ (u | θ ∧ ¬γ) ∨ (s | ¬θ ∧ γ) ∨ (s | ϕ ∧ ¬θ ∧ ¬γ).
Similarly (but we change the order of disjuncts), (v | γ) ∨ (s | ϕ ∧ ¬γ) =
(v | θ ∧ γ) ∨ (s | θ ∧ ¬γ) ∨ (v | ¬θ ∧ γ) ∨ (s | ϕ ∧ ¬θ ∧ ¬γ).
We see that the first disjuncts of both expressions are joinable by a critical pair analysis;

the second disjuncts are joinable by a rewrite step with g → d | ψ; the third disjuncts

are joinable by a rewrite step with l→ r | ϕ; and the fourth disjuncts are equal. ⊓⊔

Using Lemmas 2, 3 and Newman’s lemma, we get the main practical result of this work:

Theorem 4. Assume the rewrite systems [[Rν]] on words are terminating. Then, they are

confluent iff all critical and overlapping pairs of R are joinable.

Unfortunately, this does not imply the decidability of confluence or local-confluence

even under our termination assumption since parameterized rewriting may be non-

terminating, and therefore the usual joinability check may not terminate for some pairs.

We don’t know, however, whether joinability is decidable or undecidable in our model

of parameterized rewriting. This problem is left open.

5.3 Implementation and example

As an example, consider the presentation of dihedral groups of order N > 1 by RN =
{s2 → ǫ; sr → rN−1; rN → ǫ}, which we input to the tool CiME2[3] in the format:

let N = parameters "N";

let S = pword_signature N "s | {N>=2}; r | {N>=2}" ;

let R = psrs S "s s -> | {N>=2};

s r -> rˆ{N-1} s | {N>=2} ;

rˆ{N} -> | {N>=2};"

;

let Rnorm = psrs S "s rˆ{k} -> rˆ{N-k} s |{N>=2 /\

1<=k<=N-1 };";

pconfluent_ext R Rnorm;

The procedure Rnorm iterates the second rule, allowing us to overcome some limita-

tions of the current implementation to uniform rewrite proofs introduced in definition 5.

CiME2 computes 13 overlapping pairs joinable immediately while 4 others need a few

(uniform) rewrite steps. In case N = 1, the lefthand side sr of the second rule becomes

reducible by the third rule r2 → ǫ, while this is not the case if N > 1: the restriction

N > 1 present in the CiME2 specification allows one to comply with the restriction to

uniform rewrite proofs: CiME2 is not able to show the joinability of all critical pairs if

N > 1 is changed to N > 0.

14

6 Conclusion

We have defined a framework of parameterized rewrite systems operating on parameter-

ized words for describing infinite families of rewriting systems on words and mechanize

their study, using a sophisticated rewriting toolkit for parameterized words.

We have given a method for showing termination of all instances of a parameterized

system R by using an adequate ordering for checking the rules of a transformed system

C(R), therefore allowing to reuse existing tools.

We have reduced confluence of all instances of a parameterized rewriting system to the

joinability of its finitely many critical or overlapping pairs under termination of the in-

stances. Whether joinability can be decided in this context merits further investigations.

We could have made the choice of a more abstract framework based on parameterized

structures for representing infinite families of rewriting systems on that structure, as-

suming the necessary toolkit for the parameterized structure, and then apply the abstract

results to parameterized words as described here or parameterized trees as described

in [2, 5]. We indeed conjecture (but have not checked) that our approach scales up,

opening up interesting applications for example to multicore hardware modelisations.

Formalisms for representing families of terms, equations or rules fall in two categories:

tree automata and term schematizations. Our formalism of parameterized words belongs

to the second but its strong closure properties suggest to blend it with automata in the

line of [9], a recent bridge between both kinds of worlds.

Acknowledgments: to Evelyne Contejean and Claude Marché for discussions with the

second author and to the several anonymous referees who helped shaping this paper.

References

1. R.V. Book and F. Otto. String Rewriting Systems. Text and monographs in Computer Science.

Springer-Verlag, Berlin, 1993.

2. Hubert Comon. On unification of terms with integer exponents. Math. Systems Theory, 28:67–

88, 1995.

3. Evelyne Contejean, Claude Marché, Benjamin Monate, and Xavier Urbain. Cime version 2.

Technical report, Université Paris-Sud, 2000.

4. Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In J. van Leeuwen, editor,

Handbook of Theoretical Computer Science, volume B, pages 243–309. North-Holland, 1990.

5. Miki Hermann and Roman Galbavý. Unification of infinite sets of terms schematized by

primal grammars. Theoretical Computer Science, 176(1–2):111–158, 1997.

6. Jan Wilhelm Klop et alii. Term rewriting systems. In Cambridge Tracts in Theoretical Com-

puter Science, volume 55. Cambridge University Press, 2003.

7. Philippe Le Chenadec. Canonical forms in finitely presented algebras. Pitman, London, 1986.

8. Philippe Le Chenadec. Analysis of dehn’s algorithm by critical pairs. Theoretical Computer

Science, 51(1-2):27–52, 1987.

9. Nicolas Peltier. A unified view of tree automata and term schematisations. In Giorgio Ausiello,

Juhani Karhumäki, Giancarlo Mauri, and C.-H. Luke Ong, editors, IFIP TCS, volume 273 of

IFIP, pages 491–505. Springer, 2008.

10. Gernot Salzer. On unification of infinite sets of terms and its applications. In Voronkov,

editor, Proc. LPAR 92, LNCS 624, pages 409–421, 1992.

15

