
HAL Id: inria-00516164
https://inria.hal.science/inria-00516164

Submitted on 11 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Specifying time-sensitive systems with TLA+
Hehua Zhang, Ming Gu, Xiaoyu Song

To cite this version:
Hehua Zhang, Ming Gu, Xiaoyu Song. Specifying time-sensitive systems with TLA+. COMPSAC
2010 : 34th Annual IEEE Computer Software and Applications Conference, Jul 2010, Seoul, South
Korea. pp.425-430. �inria-00516164�

https://inria.hal.science/inria-00516164
https://hal.archives-ouvertes.fr

Specifying time-sensitive systems with TLA+

Hehua Zhang
School of Software, KLISS, TNLIST

Tsinghua University & INRIA
Beijing, China & Nancy, France
Email: zhanghehua@gmail.com

Ming Gu
School of Software, KLISS, TNLIST

Tsinghua University
Beijing, China

Email: guming@tsinghua.edu.cn

Xiaoyu Song
Dept. ECE

Portland State University
Oregon, USA

Email: song@ee.pdx.edu

Abstract—We present a pattern-based method to express
time specifications in the language TLA+. A real-time module
RealTimeNew is introduced to encapsulate the definitions of
commonly used time patterns. We present a general framework
to differentiate the temporal characterizations from system
functionality with time constraints. The temporal specification
is concise and provably as a refinement of its corresponding
functional description without time. The method ameliorates
the usability of TLA+ in specifying and verifying time-sensitive
systems. A case study is harnessed to illustrate and validate
the approach.

Keywords-real-time; specification; TLA+; refinement

I. INTRODUCTION

TLA+ [1] is a formal specification language, which is
based on the Temporal Logic of Actions TLA [2], first-
order logic, and Zermelo-Fränkel set theory. It was designed
for specifying and reasoning about concurrent and reactive
systems and was widely used in many fields [3], [4].

With the wide use of real-time systems, embedded sys-
tems and pervasive computing in everyday applications,
time-sensitive systems (i.e. systems whose behavior is influ-
enced by the passing of time) attract many people’s attention.
To formally analyze time-sensitive systems, it is necessary
to represent time in the formalisms. Carlo [5] presents a
comprehensive survey on the time modeling methods in
computing. Among various approaches, the TLA+ language
shows both operational and descriptive features [6] in a
single logic framework. It is thus suitable to describe both
the evolution of a system and the properties to be satisfied.

Abadi and Lamport introduced firstly the time modeling
format in the TLA logic [7]. Different with many implicit-
time models like timed automata [8] and time Petri nets [9],
they explicitly represents the real time with a state variable
now, and describes the expected behaviors with respect to
the occurrence of the actions and the current time now.
This format was then taken to specify several kinds of
time-sensitive systems [10], [11], but the time specification
method is still ad hoc. Lamport developed a real-time mod-
ule RealTime [12] to ease the time modeling applications.
However, it can be used to specify only the time duration
of an action, not the time intervals between actions, which
are also common for time-sensitive systems.

In this paper, we present a method to ameliorate the
usability of TLA+ in specifying and verifying time-sensitive
systems1. A real-time module RealTimeNew is introduced
to encapsulate common time patterns. The basic patterns
specify the time duration of an action or the time interval
between actions. Advanced time patterns are further defined
based on the basic ones. We then present a general frame-
work to differentiate the temporal characterizations from
system functionality with time constraints. The temporal
specification is concise and provably as a refinement of
its corresponding functional description without time. Fur-
thermore, the obtained time specifications can be checked
directly by the TLC model checker, when limited to a finite
domain.

The paper is organized as follows. The preliminaries of
TLA+ are introduced in Section II. We define the real-time
module RealTimeNew in Section III. The framework of time
specification is presented in Section IV. Section V presents
a case study that validates our approach and introduces the
verification. Finally, we conclude the work in Section VI.

II. PRELIMINARIES OF TLA+

The characteristic form of the TLA+ specification of a
transition system is a formula of the form

Spec , Init ∧2[Next]vars ∧ L,

where vars is a tuple containing all state variables of the
system. The first conjunct Init describes the possible initial
states of the system. The second conjunct of the specification
asserts that every step (i.e., every pair of successive states in
a system run) either satisfies Next or leaves the term vars
(and therefore all state variables) unchanged. Allowing for
such stuttering steps is a key ingredient to obtain composi-
tionality of specifications. However, it means that executions
that stutter indefinitely are allowed by the specification. The
third conjunct L is a temporal formula stating the liveness
conditions of the specification, and in particular can be used
to rule out infinite stuttering.

1This research is sponsored in part by NSFC Program (No.90718039)
and 973 Program (No.2010CB328003) of China.

2010 IEEE 34th Annual Computer Software and Applications Conference

0730-3157/10 $26.00 © 2010 IEEE

DOI 10.1109/COMPSAC.2010.50

425

2010 34th Annual IEEE Computer Software and Applications Conference

0730-3157/10 $26.00 © 2010 IEEE

DOI 10.1109/COMPSAC.2010.50

425

III. MODELING TIME IN TLA+

A real-time module RealTimeNew is provided to model
time in TLA+. The format of it is inspired by Lamport’s
RealTime module, but there is a basic difference. The Re-
alTime module is designed to be used through specification
composition [12], while we design the RealTimeNew module
to be used in a single specification, so that it can be verified
directly by the TLC model checker (on a finite domain) or
deductive verification. RealTimeNew also encapsulates richer
time patterns and can then be applied to more applications.

The time formulas are classified into four kinds: time
evolving, the time duration of an action, the time interval
between actions and advanced time patterns.

A. Time evolving

The time evolving representation follows the one in the
RealTime module [12], with the real time is modeled by a
real-valued variable now:

NowNext(v) , ∧ now ′ ∈ {r ∈ Real : r > now}
∧ UNCHANGED v .

The action NowNext(v) changes the value of now by any real
number r satisfying r > now , while leaves the parameter
v unchanged. The parameter v denotes a single variable
or a tuple of variables. Furthermore, Zeno behaviors [7]
of time need to be ruled out, since the real time increases
unboundedly. To ensure non-Zenoness, a fairness constraint
is defined as

RTFairness(v) ,

∀r ∈ Real : WF now(NowNext(v) ∧ (now ′ > r)).

WFv (A) represents the weak fairness constraint, which
means that if the action A is continuously enabled, then
it will eventually happen. Since the action (NowNext(v) ∧
(now ′ > r)) is always enabled, RTFairness(v) denotes that
a NowNext(v) action will eventually occur, ensuring the non-
Zenoness.

B. Time duration of an action

Constraints on the time duration of an action is common
in time-sensitive systems. For example, “The duration of an
hour step of an electric clock should be between 59.9
minutes to 60.1 minutes”. To represent this kind of time
constraints, four time patterns are defined, respectively.

A general time duration constraint of an action A is
a range (with both lower bound and upper bound). For
formal specifying this time constraint, we face the question
that whether the action A is forced to occur, when the
upper bound is reached with time elapsing ? Following
the convention, we call it the strong time request (STR)
when the answer is “Yes” while the weak time request
(WTR) otherwise. Since STR and WTR are both possible in

applications, boht of them are considered in the definition
of the time range constraint DurationBound:

DurationBound(STRflag , t ,A, v ,min, lb,max , ub) ∆=
LET
TNext ∆= t ′ = IF 〈A〉v ∨ ¬(ENABLED 〈A〉v)′

THEN 0
ELSE t + (now ′ − now)

UpperBound ∆=
IF STRflag = TRUE
THEN IF ub THEN t ′ ≤ max ELSE t ′ < max
ELSE A ⇒ IF ub THEN t ≤ max ELSE t < max

LowerBound ∆=
A ⇒ IF lb THEN t ≥ min ELSE t > min

IN ∧ TNext
∧ UpperBound
∧ LowerBound

The definition takes eight parameters. The first parameter is
a STR flag, with the value TRUE denoting STR and the value
FALSE otherwise. A denotes the action to be considered. The
time duration of A is recorded by a timer t , and is requested
to be between the range [min,max]. The parameters lb and
ub are boolean flags denoting the boundary value min and
max is included or not, respectively. The parameter v is a
single variable or a tuple of variables.

The DurationBound action is composed by the con-
junction of three sub-formulas: TNext, UpperBound and
LowerBound. TNext denotes how the timer t is changed.
According to its definition, the new value of t is reset to
zero when A occurs or will be disabled in the next step.
Otherwise, A is continuously enabled, so that the timer t
accumulates its value with time elapsing. 〈A〉v equals to
A ∧ v ′ 6= v , denoting the actual execution of A, excluding
stuttering steps.

UpperBound denotes the upper bound of the time dura-
tion. When it is a STR, UpperBound specifies that the next
value of t must be always less than (or equal to) max , and
thus ensures the happending of A when the upper bound is
reached. When it is a WTR, the formula only specifies that
the occurrence of A implies t ≤ max . As a result, A may
happen but not requested when the upper bound is hit.

LowerBound requests that if A happens, the current value
of t must be greater than (or equal to) min , and thus
expresses the lower bound on the duration. In sum, the
conjunction of TNext, UpperBound and LowerBound defines
a range constraint on the time duration of an action A.

For example, “The duration of an hour step of an
electric clock should be between 59.9 minutes to 60.1
minutes” can be represented by an instantiated action:
DurationBound(TRUE, t, Step, v, 59.9, FALSE,60.1, FALSE),
where Step denotes the hour stepping action.

The other three actions are variations of DurationBound,
for ease of use. The formula DurationUB specifies the
case when only the upper bound constraint of a time

426426

duration is required. Dually, we provide the formula
DurationLB(t ,A, v ,min, lb) to describe the case when
only the lower bound of a time duration is required. The
fourth action DuratonValue is used to represent the exact
value request on a time duration.

C. Time interval between two actions

Constraints on the time interval between two actions are
also common for time-sensitive systems. For example, the
period of time between the occurrence of the action B and
the action D should be always greater than 2.5 seconds; The
actions C happens within 3 seconds of the preceding action
A. The RealTimeNew module also contains four actions for
the different possible time constraints on time intervals.

The fist formula IntervalBound specifies a range of the
time interval, and both STR and WTR are considered. When
considering the time interval between A and B with the
precedence relationship, STR requests that when the upper
bound is reached, B forced to occur, while WTR not.
Another question is: when we talking about the time interval
between the actions A and B , is the time computed by the
beginning of the execution or the end of the execution of
A (or B)? There are several possibilities. The time interval
semantics we take in this paper is from the end of A to the
end of B . As a result, the action IntervalBound specifying
a range of a time interval can then be defined as follows.

IntervalBound(STRflag , t ,Acts,B , v ,min, lb,max , ub) ∆=
LET TNext ∆= t ′ = IF 〈B〉v ∨ ¬(ENABLED 〈Acts ∨ B〉v)′

THEN 0
ELSE t + (now ′ − now)

UpperBound ∆=
IF STRflag = TRUE
THEN IF ub THEN t ′ ≤ max ELSE t ′ < max
ELSE B ⇒ IF ub THEN t ≤ max ELSE t < max

LowerBound ∆=
B ⇒ IF lb THEN t ≥ min ELSE t > min

IN ∧ TNext
∧ UpperBound
∧ LowerBound

To compute the total time from the ending of A to the
ending of B , it is required to know the actions possibly
happen between A and B . Suppose there are n actions
possibly happen between A and B , denoted by A1, . . . ,An ,
respectively , we can describe the time interval between the
action A and B by taking Acts ∆= A1 ∨ . . . ,∨An . The
time interval is recorded by the timer t .

According to the definition of TNext, the new value of t
is reset to zero when B happens or Act ∨B will be disabled
in the next step. Otherwise, the timer t accumulates its value
with time elapsing. As to all the actions that neither makes
an action between A and B happens nor makes B happens,
the timer t does not count. As a result, only the elapsing

time related to the interval is counted. The meaning of other
parameters are same to the ones in DurationBound .

For example, considering the four actions A, B , C and D
which happen sequentially, the request that “the time inter-
val between B and D should be always greater than or
equal to 2.5 seconds and less than 3.5 seconds” can be
represented by the instantiated action IntervalBound(TRUE,
t, C, D, v, 2.5, TRUE, 3.5, FALSE).

It’s noteworthy that when the actions A and B are adja-
cent, the time interval between A and B denotes the duration
of B in fact, according to the time interval semantics
we adopt. Formally, as to the definitions of time interval
constraints, like IntervalBound , when A and B happen
adjacently, there is not any action between them, so Acts =
FALSE. In such a case, the definition of IntervalBound for
A and B is just reduced to the definition of DurationBound
for B . It tells that the expression of time intervals between
actions is the general case of the time duration of a single
action.

The other three actions are variations of IntervalBound .
The definitions are omitted for the sake of space.

D. Advanced time patterns

Some time concepts like deadline and timeout are usually
used in the practical time-sensitive systems. In this section,
we provide the corresponding time concepts in TLA+. As a
result, both model checking and formal proofs can be made
with TLA+ proving rules.

Delay: The request that delays the execution of an
action A by val time units is represented in TLA+ by a pa-
rameterized action Delay(A, val , t , vars), where t denotes
the timer to record this delay ,and vars represents a tuple
of variables. The last two parameters are used to compose a
correct TLA+ formula. The delay concept is interpreted by
a time duration constraint:

Delay(A, val , t , vars) ∆=
DurationValue(TRUE, t ,A, vars, val).

Deadine: The deadline of an action A requests that
A must terminate before time t . It is represented by
Deadline(A, val , t , vars) in TLA+. According to the seman-
tics of deadline, it is interpreted by an upper bound constraint
on the duration of A:

Deadline(A, val , t , vars) ∆=
DurationUB(TRUE, t ,A, vars, val , TRUE).

Timeout: The timeout concept is described with
Timeout(A,B , val , t , vars) in TLA+. It means that if the
action A does not occur in val time units, then execute the
action B . It is interpreted by the basic duration constraints

427427

as

Timeout(A,B , val , t , vars) ∆=
∧DurationUB(FALSE, t1,A, vars, val , TRUE)
∧DurationValue(TRUE, t2,B , vars, val , TRUE).

The timeout concept is interpreted by the conjunction of
two duration constraints, on A and B , respectively. First, the
timeout concept implies that if A occurs, the corresponding
timer t1 should satisfy t ≤ val , but the occurrence of A is
not requested. This is described by the first conjunct, with
the DurationUB on A, as a WTR. On the other hand, the
timeout concept also implies that the action B must happen
when the timer t2 reaches the value val , which is described
by the second conjunct, with the action DurationValue as
a STR.

IV. THE FRAMEWORK OF A TIME SPECIFICATION

With the RealTimeNew module, we suggest a framework
to write time specifications with TLA+, where the functional
and time descriptions are separated to get a clear, well-
organized specification, with a good property for specifi-
cation and verification based on refinement.

A. The description of the framework

Suppose the functional part Spec of the time specification
is described in a TLA+ module FuncModule, and defined
with canonical form Spec , Init ∧ 2[Next]vars ∧ L. The
time specification which contains n time constraints can be
composed with the following framework:

MODULE RTmodule

EXTENDS FuncModule,RealTimeNew ,Sequences
VARIABLE t1, t2, . . . , tn

BigInit ∆= Init ∧ now = 0
n∧

i=1

ti = 0

BigNext ∆= ∧(Next ∨ (UNCHANGED vars))
∧(NowNext(vars) ∨ UNCHANGED now)
n∧

i=1

(∀ | ∃ j ∈ SomeSet :)?

DurationBound |DurationUB
|DurationLB |DurationValue
|IntevalBound | IntervalUB
| IntervalLB | IntervalValue
|Delay |Deadline |Timeout

RTvars ∆= 〈now , t1, . . . , tn〉 ◦ vars
RTL ∆= L ∧ RTFairness(vars)
RTspec ∆= BigInit ∧2[BigNext]RTvars ∧ RTL

The time specification is defined within a module named
RTmodule. The “EXTENDS M ” statement adds all the dec-
larations in module M into the module containing this

statement. The predefined TLA+ module Sequences is in-
cluded to operate tuples. The n timers are then declared
by the VARIABLE statement. The whole time specification
is defined by a normal formula RTspec, composed of the
initial predicate BigInit, the next state action BigNext and
the fairness constraint RTL.

The initial state of the whole system is composed of the
description of the initial state of the functional part, the real
time variable now and the n timers.

The next state action BigNext of the whole system is
composed of Next for the functional part, NowNext for
time evolving and all the requested time constraints. A time
constraint can be an instantiation of any former defined time
patterns. Parameters are omitted for the sake of conciseness.
The quantified bound may also be included in the time
constraints with the form ∀|∃ j ∈ SomeSet , where SomeSet
is the parameter, which is usually a set. The notations are
borrowed from regular expressions with the “?” symbol
denoting option and “|” for choice.

The tuple RTvars includes the real-time variable now, the
n timers and all the variables in the functional part. This is
defined by the sequence concatenating operator ◦ in TLA+.

Finally, the fairness constraint RTL is the conjunction of
RTFairness on time and the fairness constraint L on the
functional part.

B. The refinement property of the derived specification

The framework we provide for describing time specifica-
tions in TLA+ not only derives a clear and well-organized
specification, but also has a refinement property between the
time specification RTspec and its functional part Spec. This
refinement relationship is denoted by the TLA+ formula

RTspec ⇒ Spec (1)

The proof is easy to get following TLA+ proving rules.
Satisfying this refinement relationship is useful for verifica-
tion. For any property P , if it is satisfied by the behaviors
specified in Spec, say, Spec ⇒ P , through the transitivity
of implication relation, RTspec ⇒ P holds, so it is also
satisfied by the behaviors specified in RTSpec. In practice,
the functional properties can be verified on Spec, while the
truth are naturally kept on RTspec. Since Spec involves less
variables, checking properties on it usually requires less
space and time. This method therefore provides an efficient
way to prove properties, which will be justified by the case
study in the next section.

V. CASE STUDY

In order to give a fuller account of the time-related
representations and to validate the method, we describe its
application to a simple answer machine case.

428428

A. The answer machine case

There are a host and several competitors in a competition.
The rules are specified as follows.

1) The host and the competitors operate the system
through buttons;

2) When the host presses his (or her) button, a new round
starts;

3) During a competition round, if some competitor
presses his (or her) button within 5 seconds, the corre-
sponding indicator light turns on, and that competitor
starts to answer questions; Otherwise, the beeper rings
3 seconds to denote the end of this round;

4) During the question answering phrase, the competitor
needs to answer a fixed number of questions. The
whole answering phrase should terminate in 20 sec-
onds. After that, the host can push the button to start
a new round;

5) Only the first button pressed is valid during a round.
6) To ensure the fairness, when more than one competing

buttons are pressed simultaneously, none of them is
accepted.

B. The TLA+ specification

The functional specification of the answer machine case
in TLA+ is shown in Figure 1. The detailed definitions of
the actions like Compete(i) and BeeperRing are omitted for
the space limitation.

module answerMachine
extends Naturals
constants

Competitors, MaxMark , QuestionNum
variables

start , button, light , mark , beeper , count , s

Init ∆= ∧ start = false
∧ button = [i ∈ Competitors 7→ false]
∧ light = [i ∈ Competitors 7→ false]
∧mark = [i ∈ Competitors 7→ 0]
∧ beeper = false
∧ count = 0
∧ s = “init”

. . .
Next ∆=
∨ StartNewRound
∨ ∃ i ∈ Competitors : (Compete(i) ∨Answer(i) ∨AnswerFinish(i))
∨ (BeeperRing ∨ BeeperRingFinish)

vars ∆= 〈start , button, light , mark , beeper , count , s〉
L ∆= WFvars(Next)
Machine ∆= Init ∧2[Next]vars ∧ L

1

Figure 1. The functional specification of the answer machine.

This TLA+ specification has three parameters, with Com-
petitors denoting the set of competitors, MaxMark denoting
the maximal mark for a competitor (which is necessary
for TLC model checking), and QuestionNum denoting the
number of questions in the answering phrase.

The next state action Next can be a new round starting
action operated by the host: StartNewRound, the competing
and answering action for some competitor i : Compete(i),
Answer(i) or AnswerFinish(i), or the timeout processing
action: BeeperRing or BeeperRingFinish.

The functional specification is then defined by the formula
machine in the canonical form, where the liveness constraint
is simply to rule out infinite stuttering, obtained by defining
L as a weak fairness constraint of the next-state relation.

For the next step, The time specification is given by the
formula RTmachine, and shown in Figure 2. The first time
constraint expresses a timeout constraint on the competing
action, which takes a Timeout pattern. The second time
constraint denotes a delay of the beeper ringing, which is
described by the Delay pattern. The last one expresses the
20 seconds time constraint on the answering phrase, which
adopts the basic time interval action to describe it.

module RTanswerMachine
extends answerMachine, RealTimeNew , Sequences
variable t1, t2, t3

BigInit ∆= ∧ Init
∧ now = 0
∧ t1 = 0
∧ t2 = 0
∧ t3 = 0

BigNext ∆= ∧ (Next ∨ (start ′ = start ∧ unchanged vars)
∧ (NowNext(vars) ∨ now ′ = now)
∧ ∀ i ∈ Competitors : Timeout(Compete(i), BeeperRing , 5, t1, vars)
∧Delay(BeeperRingFinish, 3, t2, vars)
∧ ∀ i ∈ Competitors :

IntervalUB(true, t3, Answer(i), AnswerFinish(i), vars, 20, true)
RTvars ∆= 〈t1, t2, t3, now〉 ◦ vars
RTL ∆= ∧ RTFairness(vars)

∧ L
RTmachine ∆= BigInit ∧2[BigNext]RTvars ∧ RTL

1

Figure 2. The time specification of the answer machine.

C. Checking Properties on TLC

The TLC model checker is the main verification tool for
TLA+, which can verifies properties over finite instances of
TLA+ specifications. To get a finite instance, we consider
the case when there are two competitors, the maximal mark
Maxmark is 80 and there are two questions to answer
in a round (QuestionNum = 2). Furthermore, a bounded
discrete time model is taken with now ∈ 0..50, instead of
the original continuous time model with now ∈ Real . The
instantiated specification RTMachine is then checked by
TLC (10 April 2008 Release), on a computer with an Intel R©
CoreTM 2 duo, T8100 2.10GHz CPU and 3 GB memory.

The first property denotes uniqueness of the accepted
answers. This is described by the temporal formula AtMo-
stOneLightOn:

AtMostOneLightOn ∆=
2(∀i , j ∈ Competitors : light [i] ∧ light [j] ⇒ i = j).

429429

Note that AtMostOneLightOn is a time-less property. We
checked this property on Machine, and the TLC model
checker verified it in 1.6 seconds. As a result, the property
holds for RTMachine according to our method. For compar-
ison, we checked the AtMostOneLightOn property directly
on the RTMachine specification. TLC successfully verified
it as expected, but with a much larger time 561.1 seconds.
The result justified the utility of our separation principle.
The specification can be written and verified in a stepwise
way. It usually saves verifying efforts since the results hold
stepwise owing to the refinement relationship.

We then checked 6 time-related properties on RTMachine
to further illustrate our time model. They are defined as
follows.

TimeRequest1 ∆=
2[∀i ∈ Competitors : t1 > 5 ⇒ ¬Compete(i))]RTvars

TimeRequest2 ∆= 2[t1 ≤ 5 ⇒ ¬BeeperRing]RTvars

TimeRequest3 ∆=
2[∀i ∈ Competitors : AnswerFinish(i) ⇒ t3 ≤ 20]RTvars

TimeRequest4 ∆= 2[now ≥ t1 ∧ now ≥ t2 ∧ now ≥ t3]
TimeRequest5 ∆= 2[t2 > 0 ⇒ t1 = 0]
TimeRequest6 ∆= 2[t3 > 0 ⇒ t1 = 0 ∧ t2 = 0]

TimeRequest1 and TimeRequest2 together represent the
5 seconds time-out request on the answering phrase.
TimeRequest3 represents that when the answering phrase is
finished, the value of timer t3 must be less than or equal to
20, for all the competitors.

TimeRequest4, TimeRequest5 and TimeRequest6 further
explain the time model. TimeRequest4 specifies that the
value of the timer t1, t2 or t3 is never greater than the
real time now. This is the fundamental property of our time
model since a timer counts a certain period of time which
is evolving. The last two time properties do not seem so
intuitive. TimeRequest5 declares that when t2 is accumulat-
ing its value, the value of t1 is always zero. By analyzing
the actions related to t1 and t2, we know that t2 > 0 only
when the action BeeperRingFinish is continuously enabled.
On the other hand, when BeeperRingFinish is continuously
enabled, both Compete(i) and BeeperRing are disabled,
and the value of t2 keeps zero in this case. The similar
analysis can be taken to validate the TimeRequest6 property.

We hand the verification procedure to the TLC model
checker. All the 6 properties were successfully verified
by TLC with a total time of 584.7 seconds. It generates
1,883,403 states, with 144,551 distinct states.

VI. CONCLUSION

We presented a pattern-based method to express time
specifications in the language TLA+. A real-time module
RealTimeNew is introduced to encapsulate the definitions
of commonly used time patterns. Both basic and advanced
time patterns are defined to for different applications. A
general framework is then presented, which differentiates the

temporal characterizations from system functionality with
time constraints. The temporal specification is concise and
provably as a refinement of its corresponding functional
description without time. The framework thus supports the
progressive specification and verification. The method is
validated by an answer machine case study. The method
ameliorates the usability of TLA+ in specifying and verifying
time-sensitive systems.

Parameterized specification is permitted in TLA+, while
currently the TLC model checker can only process finite and
instantiated specification. However, an automatic theorem
prover of TLA+ is under development, which will process
real numbers and the parameterized specification directly.
Our pattern-based method will be adapted to the new veri-
fication support of TLA+.

REFERENCES

[1] Stephan Merz. The specification language TLA+. Logics of
Specification Languages, pages 401–448, 2008.

[2] Leslie Lamport. The temporal logic of actions. ACM Trans-
actions on Programming Languages and Systems, 16(3):872–
923, May 1994.

[3] Stephan Merz. TLA+ case study: A resource allocator.
Rapport de recherche, LORIA, August 2004.

[4] Gudmund Grov, Greg Michaelson, and Andrew Ireland. For-
mal verification of concurrent scheduling strategies using
TLA. In ICPADS ’07: Proceedings of the 13th International
Conference on Parallel and Distributed Systems, pages 1–6,
2007.

[5] Carlo A. Furia, Dino Mandrioli, Angelo Morzenti, and Matteo
Rossi. Modeling time in computing: a taxonomy and a
comparative survey. ACM Computing Surveys, To appear.

[6] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Funda-
mentals of Software Engineering. Prentice Hall, 2nd edition,
2000.

[7] Martı́n Abadi and Leslie Lamport. An old-fashioned recipe
for real time. ACM Transactions on Programming Languages
and Systems., 16(5):1543–1571, September 1994.

[8] Rajeev Alur and David L. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, 1994.

[9] P. Merlin and D. Farber. Recoverability of communication
protocols–implications of a theoretical study. IEEE Transac-
tions on Communications, 24(9):1036–1043, Sep 1976.

[10] Thorsten Gerdsmeier and Rachel Cardell-Oliver. A method
for verifying real-time properties of ada programs. Engi-
neering of Complex Computer Systems, IEEE International
Conference on, 0:35–47, 2001.

[11] Paul Regnier, George Lima, and Aline Andrade. A TLA+
formal specification and verification of a new real-time
communication protocol. Electronic Notes in Theoretical
Computer Science, 240:221–238, 2009.

[12] Leslie Lamport. Specifying Systems. Addison-Wesley, 2002.

430430

