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Abstract: In this paper, we first propose a strategy to parallelise the simulation of
deformable objects based on a particle decomposition. We apply this strategy to cloth
simulation and we describe the implementation of SAPPE, our parallel cloth simulation,
using the Athapascan parallel programming language. We present experiments with
about half a million particles on a cluster of PCs showing good speedups. Then we
combine this parallel simulation with the Net Juggler multi-display visualisation system.
Key Words: Cluster of PCs - Large Dynamic System - Physical Model - Parallel Cloth

Simulation - Coupled Clusters Applications - Multi-Display Visualisation.

1 Introduction

Progresses in hardware and software technologies make possible the use of parallel platforms

and more specially PCs clusters in image synthesis. In this domain, deformable object



simulation is an essential topic of dynamic sceneries animation. Therefore, this kind of
platforms make possible simulation and visualisation of complex scenes with massive data
sets.

In this paper, we first propose a strategy to parallelise simulation of deformable objects
based on a particle decomposition and we apply our method to cloth simulation. The main
difficulty of such parallel simulation is the result of interactions between objects and several
parts of the same object. The challenge is to provide a high performance implementation
that scales well as the size of the complex scene increases.

SAPPE, our parallel cloth simulation, is implemented using Athapascan [1], a paral-
lel programming language, enabling scalability and portability on any parallel platforms
architecture (SMP, cluster of PCs, cluster of SMPs). Moreover this environment builds
at runtime data-flow graph and generates the dependencies graph associated in order to
distribute efficiently data among processors, using a scheduler to assign tasks onto proces-
sors. We simulate large simulation with about half a million particles and we obtain good

speedups on a cluster of PCs.

The second interest of our application concerns its visualisation. Visualisation appears
as an efficient way to analyse results of complex simulations. Immersive environments, like
CAVE:s [2], enhance the visualisation experience. They provide a high resolution and large
surface display created by assembling multiple video projectors. These environments are
classically powered by dedicated graphics supercomputers like SGI Onyx machines.

Today, the anatomy of super-computing is quickly and deeply changing. Clusters of
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commodity components are becoming the leading choice architecture. They are scalable
and modular with a high performance-price ratio. Clusters have proved efficient for clas-
sical (non interactive) intensive computations. Recently the availability of low cost high
performance graphics cards have foster researches to use these architectures to drive im-
mersive environments [3]. The first goal was to harness the power of multiple graphics
cards distributed on different PCs. But the scalability and performance of PC clusters
allow to go beyond only distributed graphics rendering. While some cluster nodes have
graphics cards to power the immersive environment, complex simulations can take advan-
tage of extra nodes to decrease their execution time and reach an update rate suitable for
interactivity.

In this paper, we propose a coupling of the parallel cloth simulation with a multi-
display visualisation on a PCs cluster. The distributed graphics rendering is made using
Net Juggler [3] which enables an application to use the power of multiple graphics cards

distributed on different PCs.

The paper is organised as follows. The next section presents principles of dynamical
system modelling and parallelisation. Section 3 explains models and integration methods
used for physical cloth simulation. Section 4 presents the parallelisation of our cloth sim-
ulation written in Athapascan and gives some experiments. Section 5 presents how we
combine the parallel cloth simulation with a multi-displays visualisation. We conclude in

section 6.



2 Model and Parallel Methods

2.1 Discrete Model Simulation

We focus essentially on simulation of deformable objects. They are represented by physical
models and discretised into a mesh structure. Vertices of this mesh are called particles and
the mesh topology describes how the particles interact and exert forces on each other. Each
particle of the system is defined by its mass, position, velocity and forces applied to it due
to its topological neighbouring.

A simulation of deformable object consists, at each time step, in the computation of
a numerical solution for the equations of motion. We have: F(t) = MX"(t) which is
the fundamental equation of the dynamics that describes the relationship between the
force F' and the acceleration X" at time ¢, with M a diagonal mass matrix. Therefore
each simulation iteration is composed of two main parts. First, the computation of forces
that act on each particle. Second, the update of each particle state (position, velocity,
acceleration) by integrating the dynamic equations of the particle system. Then our goal
is to decompose these computations to parallelise the simulation while taking into account

the specificity of the PC cluster architecture.

2.2 Parallel Methods

The most common solution to parallelise an application is to divide it in several computa-
tion tasks and to execute them onto several processors. The major difficulty results from
the dependencies between tasks due to shared data. In a simulation of deformable objects,
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major dependencies come from forces computation. There exist essentially three kinds of

parallel methods for computing the forces.
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Figure 1: Spatial Decomposition vs Particle Decomposition

e Spatial decomposition: The physical space of the simulation is split into areas,
each box being assigned to a processor (Fig. 1.a). Using this strategy, the particles
forces present on a box are only computed using interactions from a neighbourhood
of the box. The main drawback of this method concerns the computation load. As
particles number is different between boxes, some processors could be more loaded

than others.

e Force decomposition: This method splits the matrix of the forces between each
pair of particles to balance the forces computation among the processors [4, 5]. But

it does not take into account the locality of data needed for calculating these forces.

e Particle decomposition: This decomposition distributes particles among the pro-
cessors. The object is split in several parts (the set of particles describing the object
is divided in several subsets). Each processor manages a subset and computes the

forces and particles states associated to this subset. The computation load of each



subset is approximately the same. Moreover, the forces tasks involving particles on
different processors are mapped onto one of the processors that manages the particles,
in order to balance the workload among the processors. Therefore with this strategy,
all processors have approximately the same computation load. The size of the subset
of particles represents the granularity of the parallel application. The parallelisation

of our cloth simulation [6] follows this approach (Fig. 1.b).

These three methods have an arithmetic cost in O(n/p) for a parallel simulation with n
particles on p processors. Particle and spatial decompositions have a communication cost

in O(n/p) and force decomposition in O(n/,/p).

3 Application to Cloth Simulation

In this part, we shortly describe the physical simulation of cloth. There is an interest
in 3D animation of cloth simulation because it enables the realistic modelling of dressed
humans. The principal stages of a cloth animation are: (a) The integration of an Ordinary
Differential Equation (ODE), (b) The collision processing and (c) The rendering. This

section focuses on the first stage.

3.1 Discrete Physical Model of Cloth

In computer animation, particles systems have proven to be an appropriate model for fast
physically based simulation of deformable objects [7, 8, 9, 10, 11]. Cloth is modelled as a

triangular mesh of n particles in space, connected by springs which enable to reproduce



realistic behaviour.

Provot [12] proposes a mass-spring system for

damping

textiles with a rectangular mesh in which the parti- Diseete

Model
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lenght rest

cles are connected by structural springs to counter-
act tension, diagonal springs for shearing and inter-

) Figure 2: Triangular particles
leaving springs for bending (see Fig. 2).

mesh connected by springs: Provot

3.2 Numerical Resolution model [12]

The acceleration of the i** particle of the simulation is given by the basic Newton’s law,
mz!! (t) = f;(t), where f;(t) is the force applied to this particle at time ¢ and m; its mass.
If we define the diagonal matrix M by M = diag(my, my, my,...,my, my, my), where

my, ..., my are the masses of the particles, we have:
a"(t) = M7 f(x(t),2'(¢)) (1)

The forces exerted at time ¢ on each particle are due to springs forces (local forces) and
to external forces like gravity, air-damping or wind (global forces). Consequently, the force
applied on the ™ particle of the particle system is given by:

fz" = > [kig(liy — logj)tij — vij(vi — vj)ids;] + mg + Fiopternal (2)
jl(@,j)EE

where E is the set of all edges in the particle system, k;; and v;; are the stiffness and

damping constants determining the spring properties, /;; the rest lengths between the



particles ¢ and j, ly;; its lengths at time o, g the gravity constant, u;; = Hz"_xj

m and Vi, Uy

velocities projected to the u;; direction.

Computing particle accelerations allows the update of positions and velocities using
numerical integration. Many integration methods have been used in cloth simulation [13].
We invite the reader to refer to [14] written by Hauth and Etzmuss in 2001, which presents
analysis to exploit special properties of the mechanics of deformable objects, and analyses

stability for stiff equations.

3.2.1 Explicit Methods

The simplest method of integration is the explicit Euler’s method. Time is discretised into
slices of length h. The Fig. 3 shows the geometrical interpretation of the explicit Euler
integration scheme. The solution approximation at time ¢ + h is given by the tangent of

the solution at time ¢.

Z1

to t1 t

Figure 3: Geometrical interpretation of the explicit Euler integration scheme

The formulation of position = and velocity v at time ty and ¢ + h is given by:

x'(ty) = = Z(t+h) = 2'(t)+ ha"(t+h)

z(to) = o z(t+h) = z(t)+ ha'(t + h)



To obtain a stable simulation using this integration method, we have to limit the step size
h. Indeed if we increase the springs damping and stiffness constants, we have to reduce h

to maintain stability.

The leap-frog method is another explicit integration method which is time reversible
because of the symmetric way in which it is defined, allowing energy conservation. This

method is only second-order accurate, but it has been shown experimentally stable. It uses

position z at time ¢ and velocity ' at time ¢ — %:
2"(ty) = xy r .
'(t) = f(t)/m (3)
o'(to) = w4
9 v ) P+ = -+ ha"(t) (4)
() = zf+ Laf
\ z(t+h) = z(@t)+h(Et+2) (5)
{ SL'(to) = Xy

3.2.2 Implicit Euler’s Method

Baraff and Witkin [11] have shown that implicit integration methods allow the use of large
time steps in cloth simulation without loss of stability. We define Az = z(t+h)—z(t),Az’ =

z'(t + h) — 2'(t). By applying a Taylor series dynamical equation (1) becomes:

of of of
M —h—"— —h*Z= | Az’ = hf(t) + B2~/ (t
( ox' 8$> v )+ oz *)
which we have to solve to obtain Az’ and then easily compute /(¢ + h) = 2'(t) + Az’ and
z(t + h) = z(t) + hz'(t + h). To sum up, to use implicit Euler’'s method we have to: (a)
value f(t), (b) value % and 2L (c) to build a linear sparse system, (d) to solve it in order

ox'?

to compute Az’, (e) and then to update z and '
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To solve the linear system, we apply the conjugate gradient method [11, 15] which easily
uses the sparsity of the matrix, since it only addresses the matrix through its product with
a vector. A complete description of our parallelisation of the conjugate gradient method is
presented in [6]. In this paper, we focus essentially on explicit integration parallelisation.
But we can note that explicit and implicit methods parallelisation have the same schemes

parallelisation.

4 Parallel Cloth Simulation

In this part, we explain how we exploit the parallel programming environment Athapascan.

4.1 Related Works

Romero and Zapata [16] have detailed a solution for cloth and other non-rigid solid simu-
lations on parallel computers. They have developed an application, which combines data
parallelism with task parallelism. Inside an object, the redistribution and reordering of
elements among the assigned processor, have been performed using domain decomposition
methods. The preconditioned conjugate gradient algorithm has been parallelised following
a strategy in which the successive parts of the vectors and the properly aligned rows of
the matrices are distributed among the processors. Computations inside a processor have
been performed using sequential BLAS libraries. They present results on 8 processors with
3,520 particles: computation time for this simulation is about 3s per step using implicit

method with collision treatment.
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4.2 Parallelisation with Athapascan

From the point of view of an Athapascan Subset; Subset; Subsety

[ x,x, forces | [ x, X, forces | [ x,x, forces | Data

developer, the parallelism is expressed with ¢ M /
O O O Parallel tasks

a set of tasks interacting through a global Local interactions I nteractions between 2 subsets
memory [1]. The developer has a total con- +
ubset;

trol of the computation tasks and of the

communicated objects granularity (shared Figure 4: Forces computation task (2)
variables). Programs are written in C4++ using the following syntax. A shared vari-
able v of type T will be declared Shared < T > v. A task is created using statement
Fork < Task > (param), where Task is a structure which operator “()” implements the
computing code and takes param as parameters. Shared variables are passed with access
rights information. For instance a read-only parameter is declared Sharedr < p >, a
write-only parameter is declared Shared_w < p > and a read-write parameter is declared
Shared_rw < p >.

In our parallel cloth simulation based on particle decomposition, shared data are the
subsets of particles resulting from the decomposition (Fig. 1.b) and tasks exist in two
different kinds. The first kind of task compute particle states of an entire subset according
to the integration schemes (position (5), velocity (4), acceleration (3)). Since these tasks
do not need information from other particles subsets, they have no dependencies with

others tasks. Hence, they do not require inter-node communication and can be computed

efficiently in parallel.
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The second kind of tasks calculate interactions between two adjacent subsets of particles
(Fig. 4). Two subsets are said adjacent if there is at least one particle of one subset
connected with another particle of the other subset (a subset being adjacent with itself).
We create a task for each couple of adjacent subsets. This task is executed on one of
the nodes where are placed the subsets. Hence, the computation of interactions between
adjacent subsets placed on the same node (which includes intra-subset interactions) do not
generate communication. However, for adjacent subsets placed on two different nodes, the
computation first requires the communication of the positions of the distant subset before
the forces can be computed. Note however that for efficiency reasons only the positions
of the particles constituting the border are communicated. The main difference between
the parallelisation of an explicit integration method and an implicit one comes from this

second kind of tasks which are more frequent in implicit than in explicit.

Thanks to Athapascan, the code for com- = O
puting the interactions between two sub- 0 <><>
> O & Ot OO
sets does not depend on the placement of
OEE
those subsets. Tasks programmers just do enilt i -
not have to consider where the data are < RS &

actually placed. They take in parameters

the positions of the two subsets, the list of

interacting particles and a reference to the Figure 5: Data-flow graph built at runtime
resulting forces. The positions are passed as read-only shared variables (Shared_r), whereas
the forces are passed with “cumulative write” (Shared cw) access rights.
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Cumulative writes are very useful for associative and commutative operations which is
the case here since the force applied to a particle is the sum of the elementary interaction
forces with its connected particles. Elementary forces can then be computed in parallel by
the above mentioned tasks, potentially on different nodes, and are automatically added by
the Athapascan runtime. Without this facility, computing the sum would be particularly

inefficient since it would lead to a lot of dependencies.

At runtime, Athapascan builds the data-flow graph

)
that expresses the accesses into the global memory K é ‘

a

£

made by the tasks. This graph is built by interpret-

1[7

ing shared and task statements [17]. For example,

Fig. 5 shows the graph built for an execution of the

application for four subsets of particles. Rectangles,

lozenges and circles represent respectively “accesses

to shared data”, “shared data” and “tasks”. Figure 6: Dependencies graph with

Given this data-flow graph, Athapascan gener- its partitioning generated by Atha-

ates the dependencies graph partitioned onto pro- pascatl
cessors. A scheduling algorithm is then applied to map the tasks and the data onto the
processors and the memory locations according to information given in our implementa-

tion. Fig. 6 shows the dependencies graph and its partition onto 4 processors (16 tasks

mapped on 4 processors).
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4.3 Experimentations on a PCs Cluster

Leapfrog and implicit Euler’s integration methods have been implemented and tested on a
cluster of PCs composed of 190 mono-processor Pentium III at 733MHz with 256 M-Bytes
of main memory interconnected with a switched 100M-bit/s network. Computation times
are shown in Fig. 7.

Simulation of 490,000 particles with leapfrog method (blocks of 2,500 particles) Simulation of 160,000 particles with Euler’s implicit method (blocks of 2,500 particles)
14 T T T

" Time in seconds —— j j j " Time in seconds ——
Speedup - Speedup -
12 - 4 20

10

i
13
T

Time in seconds
%
Time in seconds
=
o
T

é £0 1‘5 26 2‘5 30 é £0 1‘5 26 2‘5 30
Number of nodes Number of nodes
Figure 7: Performances obtained for 490,000 particles using the leapfrog integration method

(left) and for 160,000 particles using the implicit Euler’s integration method (right) for one

iteration with a size of subsets of 2,500 particles

The sequential time for the leapfrog integration method is about 4.28s. The parallel
time on two nodes is 2.36s (speedup of 1.81) and 0.57s on sixteen nodes (speedup of 7.51).
For the implicit method, we surprisingly obtain a speedup of around three on two nodes
(21.27s is sequential and 7.10s on two nodes) which can be explained by the large amount
of memory needed by the tasks which exceed the available physical memory of a single
node.

As we can see, for both methods, the computation time decreases significantly up to
sixteen processors before the gain begins to stagnate. As the calculation time decreases, the
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overhead due to the runtime becomes more and more significant. This overhead includes
the computation of the data-flow graph, the mapping of data and tasks on processors and
the communication of shared data. To estimate this overhead, we run the same application
with empty tasks (the tasks are executed, the data are transfered, but no computation is
performed). The difference shows a near to optimal speedup which means that the tasks
are well distributed. Hence, to obtain better speedup, some improvements are required to
diminish this overhead. A new version of Athapascan, which is being developed, should
soon give us even better results. Among other, the construction of the data-flow graph
and the mapping onto the processors will be done only once. This is possible in our case
since it is the same at each iteration. We can also expect better speedups for larger clothes
on more powerful clusters, which we could not experiment on our cluster due to memory

constraints.

5 Improving Reactivity by a Parallel Visualisation

For the rendering of our cloth simulation, we use the Net Juggler library [18, 3]. Net
Juggler is based on VR Juggler [19], a platform for virtual reality applications. It enables
an application to use the power of multiple graphics boards distributed on several PCs. It
parallelises graphics rendering computations for multi-display environments by replicating
the rendering program on each node and using MPI (Message Passing Interface) to ensure
that copies are consistent and displayed images are synchronised.

In order to combine our parallel simulation with parallel rendering, we have made
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two programs [20, 21]. The first one computes positions of particles using the parallel
programming environment Athapascan (explained in section 4.2). The second program
makes the rendering of the cloth using Net Juggler. These two programs communicate
together using a TCP connection. Each process of the first program sends its computed
positions to a specific computer of the graphic cluster and then this computer broadcasts

positions to others. The Fig. 8 shows this coupling.

To obtain real time animation (Fig. 9 T
(Fig. 9) 2 i
we have to manage that these two paral- L articls positions .
’ g p o o particles positigns i
47 = ] Four multimedia projectors
lel programs have different execution times: =
simulation iteration step, integration method 7 /

step and display frequency. Consequentl
p p y q y q y’ Parallel simulation Multi-display visualisation
using Athapascan using Net Juggler

positions computed by the parallel simu-

lation are only sent to the visualisation for Figure 8: Coupling the parallel simulation

multiple iteration of 0.04s. The model built with a multi-display visualisation.

is then completely asynchronous.

6 Conclusion

We have presented the problem of parallelising the simulation of deformable objects us-
ing physical models. Different integration methods for the equations of motion have been
presented. Two of them, namely the leapfrog and the Euler’s implicit methods have been
implemented with a parallelisation based on a particle decomposition. This kind of decom-

position enables to obtain the same computation load on each processors of the cluster.
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Figure 9: Pieces of cloth of 490 particles

We wrote the application using the Athapascan programming language which relieves
us from the management of data distribution and tasks synchronisation. Indeed Atha-
pascan is a parallel programming environment suited to this kind of application. It offers
facilities to adapt the scheduling strategy to the specificities of the applications and the
target architecture. Furthermore the high level programming interface helps to implement
applications in an easier way than with communication libraries like MPI. We obtain good
speedups up to sixteen processors.

We also described how we couple this parallel simulation with the Net Juggler multi-
display visualisation system. It enables our application to use the power of multiple graph-
ics cards distributed on different processors of a cluster. The model built is totally asyn-
chronous. Any synchronisation is made between the simulation and the visualisation.

Particles positions are sent so as to ensure real time.
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