
INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Tempo Documentation –
Interacting with a C Program Specializer

Renaud Marlet

N° 0390

September 7th, 2010

___ Distributed Systems and Services ___

IS
S

N
 0

24
9-

08
03

   
 IS

R
N

 IN
R

IA
/R

T-
-0

39
0-

-F
R

+E
N

G





Tempo Documentation - Interacting with a C Program Specializer 

Renaud Marlet*

Theme: Distributed Systems and Services
Networks, Systems and Services, Distributed Computing

Project-Team Phoenix

Technical Report n° 0390 — September 7th, 2010 — 149 pages

Abstract: Tempo is  a  program specializer  for  C  programs.  It  has  been  developed  at  IRISA / INRIA - 
University of Rennes     1   (1994-2000), and then at LaBRI / INRIA - University of Bordeaux     1   (since 2000). 

This technical report puts together a cleaned-up and reformatted version of the various on-line manuals and 
other useful documents that have been written on Tempo for its distribution, but that used to exist only as  
separate and sometimes mobile HTML pages. Grouping them and giving them a technical report number  
make it easy to reference them in a publication.

Although it is not developed and maintained anymore, Tempo is still distributed. It can be downloaded from  
the Phoenix project-team web pages  (http://phoenix.inria.fr/).  Publications  concerning Tempo as  well  as 
tutorial slides are also available on this web site.

Technical information in this report is (theoretically) up to date with respect to the last official release of 
Tempo, dated February 11th, 2003.

Keywords: program specialization, partial evaluation, compile-time specialization, runtime specialization, 
user's guide, reference manual, C language

* Currently at École des Ponts ParisTech – renaud.marlet@enpc.fr

Centre de recherche INRIA Bordeaux – Sud-Ouest
Domaine Universitaire – 351, cours de la Libération – 33405 Talence Cedex

Téléphone : +33 5 24 57 40 00

http://phoenix.inria.fr/
http://www.u-bordeaux1.fr/
http://www.inria.fr/bordeaux/
http://www.labri.fr/
http://www.univ-rennes1.fr/
http://www.inria.fr/rennes/
http://www.irisa.fr/
mailto:renaud.marlet@enpc.fr


Documentation de Tempo –
Interagir avec un spécialiseur de programmes C

Résumé :  Tempo est un spécialiseur de programmes C. Il a été développé à l'IRISA / INRIA - University of 
Rennes     1   (1994-2000), puis au LaBRI / INRIA - University of Bordeaux     1   (à partir de 2000).

Ce rapport technique rassemble des versions « nettoyées » et remise en forme des divers manuels et autres 
documents pratiques qui ont été écrits pour la distribution de Tempo, mais qui n'existaient que sous forme de 
pages HTML séparées et parfois mobiles. Les regrouper et leur donner un numéro de rapport technique 
permet d'y faire proprement référence dans des publications.

Bien qu'il ne soit désormais plus développé et maintenu, Tempo est toujours distribué. Il peut être téléchargé 
sur le site web de l'équipe-projet (http://phoenix.inria.fr/). Les publications de l'équipe sur Tempo ainsi que 
les transparents d'un tutoriel sont également disponibles sur ce site.

Les  informations  techniques  dans  ce  rapport  sont  (en  théorie)  à  jour  par  rapport  à  la  dernière  version 
officielle de Tempo, qui date du 11 février 2003.

Mots-clés : spécialisation de programmes, évaluation partielle, spécialisation à la compilation, spécialisation 
à l'exécution, guide de l'utilisateur, manuel de référence, langage C

http://phoenix.inria.fr/
http://www.u-bordeaux1.fr/
http://www.inria.fr/bordeaux/
http://www.labri.fr/
http://www.univ-rennes1.fr/
http://www.univ-rennes1.fr/
http://www.inria.fr/rennes/
http://www.irisa.fr/


Tempo Specializer Documentation 3

Tempo Specializer Documentation

• Manuals 
• 1. Tutorial (p. 4)
• 2. User's Manual (p. 16)
• 3. Reference Manual (p. 63)
• 4. Installation Manual (p. 105)

• Trouble Shouting 
• 5. Frequently Aksed Questions (p. 110)
• 6. Limitations (p. 125)
• 7. Known bugs (p. 133)

• Embedded Environments 
• 8. SML (p. 135)
• 9. SUIF (p. 136)

• Miscellaneous 
• 10. Demos (p. 139)
• 11. History and Contributions (p. 140)

MAIN  TUTOR  USER  REF  INSTALL  FAQ  LIMIT  BUGS  SML  SUIF  DEMO  CONTRIB 

.....

RT n° 0390



4 R. Marlet

1 > Tempo — Tutorial

• Program Specialization 
• Partial Evaluation   
• What is Tempo?   

• Starting Point of a Guided Tour of Tempo   
• Running Tempo   
• Configuring The Analysis   

• Working Directory   
• Function To Specialize and Specialization Context   
• Visualizer   

• Running The Analysis   
• Binding-Time Analysis   
• Evaluation-Time Analysis   
• Action Analysis   

• Building a Compile-Time Specializer   
• Running a Compile-Time Specializer   
• Building a Run-Time Specializer   
• Using a Run-Time Specializer   

MAIN  TUTOR  USER  REF  INSTALL  FAQ  LIMIT  BUGS  SML  SUIF  DEMO  CONTRIB 

Partial evaluation is program transformation that automates a specialization process. Tempo Specializer (or 
Tempo for  short) is  a partial  evaluator for C programs.  It  has been applied in various  domains such as 
operating  systems and networking,  computer  graphics,  scientific  computation,  software  engineering  and 
domain specific languages. 

1.1 Program Specialization

Let us consider a program P, taking two arguments S and D, and producing a result R: 

P(S,D) = R

If S is known before the execution of the program (S is said to be static whereas D is dynamic), we may form 
a new program <P,S> that  waits  until  D is available  and then calls  the original  P program on (S,D) to 
produce the same result R: 

<P,S>(D) = P(S,D) = R

INRIA



Tempo Specializer Documentation 5

However, now that S is "known to P", computations relying on S can be performed before D is actually  
available. Therefore, we can form a new program PS equivalent to <P,S> where computations depending on 

S have already been exploited. We thus have: 

PS(D) = <P,S>(D) = P(S,D) = R

The program PS is called a specialization of P with respect to the invariant S. 

More generally, specialization exploits any invariant present in the code, not only input values. The idea is to 
factor out computations from the specialized program. A specialized program generally runs faster and in 
some cases may also be smaller that the original program. 

1.2 Partial Evaluation

Partial evaluation is the process that automates program specialization. A partial evaluator (or specializer) 
is a program M that takes two arguments, a program P and a known (static) subset of the input S, and 
produces the result PS: 

M(P,S) = PS

(Very)  roughly  speaking,  common partial  evaluation can be  thought  of  as  a  combination  of  aggressive 
constant folding, inlining, loop unrolling and inter-procedural constant propagation applied to all data types 
(including pointers, structures and arrays) instead of just scalars. 

Partial  evaluation  has  been  applied  in  various  domains  such  as  operating  systems,  computer  graphics, 
numerical computation, circuit simulation, program understanding, compiling and compiler generation. 

1.3 What is Tempo ?

Tempo Specializer is a partial evaluator for C programs. It has first been developed in the Compose project-
team at IRISA / INRIA - University of Rennes     1   (1994-2000), in France. The group then moved to Bordeaux 
to form the Phoenix project-team at LaBRI / INRIA - University of Bordeaux     1   (since 2000). 

Features

Tempo is an off-line specializer: the specialization process is divided into two steps. First, a program analysis 
propagates information about known and unknown values throughout the code. The output of this process  
may be visualized in order to assess the degree of specialization of the program. Then, the user may provide 
actual  specialization  values  (i.e.,  values  of  invariants)  and  the source  code  of  a  specialized program is 
automatically produced; this is called  compile time specialization. Tempo can specialize programs at  run 
time as well, for cases when the invariants are known only after execution starts. 

Distribution

Although it is not developed and maintained anymore, Tempo is still distributed. It can be downloaded from 
the Phoenix project-team web pages (http://phoenix.inria.fr/).  Publications  concerning Tempo  as well  as 
tutorial slides are also available on this web site. See also the Installation Manual.

RT n° 0390

http://phoenix.inria.fr/
http://www.u-bordeaux1.fr/
http://www.inria.fr/bordeaux/
http://www.labri.fr/
http://phoenix.inria.fr/
http://www.univ-rennes1.fr/
http://www.inria.fr/rennes/
http://www.irisa.fr/
http://www.inria.fr/recherche/equipes/equipe25.fr.html


6 R. Marlet

A Prototype, Not A Product

Note that Tempo is a prototype, not a product. It comes with no warranty. 

1.4 Guided Tour of Tempo

Let us consider a C file /home/jake/spec/power.c with the following content. 

int pow(int base, int expon)
{
  int accum = 1;

  while (expon > 0) {
    accum *= base;
    expon--;
  }
  return accum;
}

We want to specialize the  pow() function with respect to a known exponent. We want to specialize it at 
compile  time  as  well  as  at  run  time.  The  following  sections  list  the  basic  interaction  with  Tempo  for 
achieving that. 

Further reading: 

• Modular Specialization   (User's Manual) 

1.5 Running Tempo

The user interacts with the Tempo Specializer system through an interactive top level that encapsulates all 
functionalities. It is actually a Standard ML top level (Tempo is mainly built on top of SML/NJ) where the  
Tempo functionalities have been pre-loaded. 

To run the Tempo system, invoke the shell command tempo. You should see something that looks like this 
(the output of the system is in bold face, roman is for what you type): 

mingus% tempo
TEMPO Version 1.191, 03/24/98,
  Copyright (c) IRISA/INRIA-Universite de Rennes
val it = () : unit
- 

The "-" sign is the prompt character of this top level. 

Further reading: 

• The SML Top Level   (User's Manual) 

INRIA



Tempo Specializer Documentation 7

1.6 Configuring The Analysis

Before specializing a program, Tempo must first analyze it. This not only prepares the specialization process  
(it makes it more efficient) but also lets you visualize the possible impact of specialization before actually  
providing specialization value. 

Further reading: 

• The Analyses and Their Precision   (User's Manual) 

1.6.1 Working Directory
The first thing that you have to do is to tell Tempo where the program that you want to specialize is or, more 
precisely, where the working directory is. Type the following command in the Tempo top level. 

- cd "/home/jake/spec";
val it = "/home/jake/spec" : string

You  could  also  have  run tempo  directly  from  the /home/jake/spec  directory,  as  the  current 
directory is considered the working directory by default. 

1.6.2 Function To Specialize and Specialization Context
Then, you must specify what is the function in power.c that you are interested in (there could be several 
of them, calling each others) and with respect to what known information you want to specialize it. This 
function is called the entry point. In our case, the entry point is pow(). 

To specify the entry point, you have to create a configuration file next to your power.c file. It has the 
same prefix but extension config.sml, i.e. power.config.sml. In this file, write the following 

entry_point := "pow(D,S)";

Setting the entry_point variable tells Tempo two things: (i) that the function to specialize is pow(), 
and (ii) that its first argument is to be considered unknown ("D" is for dynamic) while the second can be 
assumed known ("S" is for static). 

Note that, in the general case, if there are several functions that call each other in the C file, specialization is  
inter-procedural: each function is analyzed and specialized in turn starting from the specified entry point,  
with an automatic propagation of known quantities and specialization values. 

Further reading: 

• Configuring the Analyses   (User's Manual) 

1.6.3 Visualizer
You are now almost ready to run the analysis phase of Tempo. This phase prepares the actual specialization  
process  and lets  you assess  the  degree  of  specialization  of  your  function.  This  assessment  is  provided 
through generated files that represent the results of the analysis. Most of those files are colored files. There 
exists two formats, that let you use different visualizers. 

RT n° 0390



8 R. Marlet

MIME text/enriched format. 
Those file are suffixed by ".color". You can view them using the emacs (or xemacs) editor. 

HTML format. 
Those file are suffixed by ".html". You can view them using any HTML viewer. 

By default,  Tempo generates  MIME text/enriched color  files.  If  you prefer  to  use  HTML files,  do  the 
following in the top level: 

- viewer := html;
val it = () : unit

Further reading: 

• Visualization of Colored files   (User's Manual) 

1.7 Running The Analysis

You now can run the analysis phase of Tempo. As said above, this phase prepares the actual specialization 
process and lets you assess the degree of specialization of your program. The top-level command to do so is  
named an. It takes as an argument the root name of the program file, i.e. "power". 

- an "power";
Starting from /home/jake/spec/power.c
Generating Suif file
Generating Suif tree
Generating abstract syntax tree
Eliminating gotos
Analyzing aliases
iterating analysis
Eliminating function pointers
Analyzing side effects
Generating MONO binding time information
Generating MONO evaluation time information (phase 1)
Generating MONO evaluation time information (phase 2)
Generating flattened program (phase 1 - Return sensitivity)
Generating flattened program (phase 2 - S&D)
Generating action tree
Produced file : power.at
val it = true : bool

Tempo lists all the sub-phases of the analysis. In the working directory, a set of files have been generated,  
among which are: 

• power.bta.color: Color-annotated result of the binding-time analysis 
• power.eta2.color: Color-annotated result of the evaluation-time analysis 
• power.at.color: Color-annotated result of the action analysis 
• power.at: Final result the analysis phases 

If you did viewer := html then you see ".html" files rather than ".color" files. 

INRIA



Tempo Specializer Documentation 9

1.7.1 Binding-Time Analysis
In  the  working  directory,  a  set  of  files  have  been  generated.  Try  to  visualize  the  file  named 
power.bta.color in an emacs editor (or file power.bta.html if you decided to switch to HTML 
files generation). You should see something like this. 

/* TEMPO Version 1.193, 04/18/98,
  Copyright (c) IRISA/INRIA-Universite de Rennes */

/* LEGEND:  STATIC  DYNAMIC  SD_FUNC  STRUCTURE  BOTTOM
 */

extern int power(int, int);

extern int power/*0*/(int base, int expon)  {
    int accum;

    accum = 1;
    if (0 < expon)
      {
        do
          {
            accum = accum * base;
            expon = expon - 1;
          }
        while (0 < expon);
      }
    return accum;
  }

As you can see,  your original  program as been transformed a  little.  Some of those transformations are 
performed inside the  SUIF system, which is used as a front end for  parsing C files. Others are done by 
Tempo during abstract syntax generation, to work on a smaller C subset. 

• int accum = 1 has been split into a declaration and an explicit assignment. 
• The while loop has been turned into a do ... while loop, duplicating the condition. 
• accum *= base and expon-- have been made explicit. 

Moreover,  colors express binding times, as computed by the  binding-time analysis (BTA).  For example, 
assuming expon is known (shown with blue "STATIC" color, as indicated in the legend), the expression 
0 < expon is  also known,  i.e. static.  Similarly,  the  assignment expon = expon - 1 inside the 
do ... while loop is static because it only involves static expressions and it is performed a static number of 
times. (This reasoning requires induction, which translates into a fix-point iteration in the analysis.) 

Although assigned to 1 in the first statement (which makes it static), the accum variable becomes dynamic 
in the do ... while loop: it becomes dynamic as soon as the first iteration as it is assigned an expression that 
depends on the unknown (shown with red "DYNAMIC" color, as indicated in the legend) base variable: 
accum * base. The second iteration reaches the fix-point. 

Further reading: 

• Colors For Binding-Time Information   (User's Manual) 

RT n° 0390



10 R. Marlet

1.7.2 Evaluation-Time Analysis
Note that, in the above BTA file, the left-hand side of assignments appears as static because it expresses the 
binding time of the address, not of the memory content. This is not true in the power.eta2.color, 
which is the next interesting file to visualize. 

/* TEMPO Version 1.193, 04/18/98,
  Copyright (c) IRISA/INRIA-Universite de Rennes */

/* LEGEND:  STATIC  DYNAMIC  STAT&DYN  STRUCTURE  BOTTOM
 */

extern int power(int, int);

extern int power/*0*/(int base, int expon)  {
    int accum;

    accum = 1;
    if (0 < expon)
      {
        do
          {
            accum = accum * base;
            expon = expon - 1;
          }
        while (0 < expon);
      }
    return accum;
  }

It shows the result of running the evaluation-time analysis (ETA2). At this point, the color of an assignment 
to a variable expresses the evaluation time of the assignment, and thus the binding time of the variable after  
the assignment. This is why the left-hand side of the accum = accum * base assignment has become 
totally dynamic. 

The evaluation-time analysis  actually  propagates  backwards uses  of  dynamic and static  variables.  Even  
though computed "static" by the BTA, the accum = 1 assignment must have a dynamic facet as there is a 
dynamic use of the variable accum (inside the loop): we need the preceding definition(s) of accum to be 
residualized,  i.e. to  appear  in  the  specialized  program.  The  assignment  should  thus  be  both  static  and 
dynamic, i.e. accum = 1. However, there is actually not any use of a static accum after this assignment, 
hence  the  static  facet  of  the  assignment  is  useless:  the  static  computed  value  is  never  exploited. 
Consequently, the static facet of the assignment can be removed, yielding accum = 1. 

Further reading: 

• Colors For Evaluation-Time Information   (User's Manual) 

1.7.3 Action Analysis
The final output of the analysis phase is the power.at.color file, which reflects the action analysis. 

INRIA



Tempo Specializer Documentation 11

/* TEMPO Version 1.193, 04/18/98,
  Copyright (c) IRISA/INRIA-Universite de Rennes */

/* LEGEND:  EVAL  REDUCE  REBUILD  IDENTITY  STRUCTURE  EV&RES
 */

extern int power_1/*0*/(int base, int expon)  {
    int accum;

    accum = 1;
    if (0 < expon)
      {
        do
          {
            accum = accum * base;
            expon = expon - 1;
          }
          while (0 < expon);
      }

    return accum;
  }

Here  colors  express  specialization  actions,  i.e. transformations  to  perform  at  specialization  time.  Blue 
expressions  are  totally  evaluated  at  specialization  time.  Green expressions  contain  a  totally  evaluated 
condition;  they  are  reduced:  an  if is  rewritten  into  one  of  its  branches,  a  loop  is  unrolled.  Orange 
expressions  (here,  blocks)  contains  subcomponents  that  can  be further  specialized  but  that,  themselves,  
cannot be reduced: during specialization, they are rewritten as they are, with specialized sub-terms. Finally,  
red expressions are just copied verbatim to form the specialized program. 

Knowing this, we can see that the if and the while will be simplified (i.e. removed) by the specialization 
process. All computation depending on the expon variable disappears. 

We  can  even  see  the  form  of  any  specialized  program:  it  will  always  start  with  the accum = 1 
assignment, it will be followed by several accum = accum * base (actually, the line will be repeated 
expon times), and it will be always ended by return accum. 

As long as your original program does not change, you do not have to re-run the analysis; the  generated 
power.at file will be used as the starting point for all subsequent phases. 

Further reading: 

• Colors For Actions   (User's Manual) 

1.8 Building a Compile-Time Specializer

Once the analysis has been performed successfully, i.e. if you are satisfied with the computed binding times, 
you can move on to building a compile-time specializer. The top-level command to do so is named cs. It 
takes as an argument the root name of the program file, i.e. "power", just like the an command. 

RT n° 0390



12 R. Marlet

- cs "power";
Starting from /home/jake/spec/power.at
Generating specializer file
Produced file : power.ctspec.C
val it = true : bool

If you list the files in your /home/jake/spec directory, you will see that three new files have been 
created (you do not have to understand at all their content): 

• power.sctx.h: header file for specifying actual specialization values. 
• power.ctspec.C: the specializer for pow() 
• power.ev.c: the evaluator of static expressions in pow() 

As long as your original  program does not  changes,  you do not  have to re-run the construction of the  
compile-time  specializer;  the  above  files  can  be  used  as  the  starting  point  of  the  following  actual  
specialization phase. 

1.9 Running a Compile-Time Specializer

Now we need to provide Tempo with actual specialization values. Because the initialization of those values 
can be arbitrarily complex (including library calls), the values are given using a C file, that is linked to the  
compile-specializer for performing actual specialization. This C file is named power.sctx.c. It should 

• include the file power.sctx.h, 
• define a function named set_specialization_context() whose arguments are pointers 

to the actual arguments of your entry point, so that you can set them by an indirect assignment. 

In our case, we create the following power.sctx.c file. 

#include "power.sctx.h"

void set_specialization_context(int *expon)
{
  *expon = 4;
}

Note that the expon variable here is an *int, not an int as in the pow() entry point: the value is 
written using a pointer dereferencing. (Writing expon as opposed to *expon just sets the local variable 
and leaves the corresponding argument unaffected, i.e. uninitialized.) 

Note  also  that  you  must  provide  a  value  for  the  static  arguments  only.  The  arguments  of 
set_specialization_context() should be in the same order as those of the entry point. You can 
use the name that you want for the arguments as it is a normal C function. 

When that is done, run the specializer by invoking the sp top-level command: 

- sp "power";
Starting from /home/jake/spec/power.ctspec.C
Generating specializer
gcc   -c -I/usr/local/lib/tempo/bin/../ctcg
  /home/jake/spec/power.ev.c
  -o /home/jake/spec/SunOS-5/power.ev.o
gcc   -c -I/usr/local/lib/tempo/bin/../ctcg

INRIA



Tempo Specializer Documentation 13

  /home/jake/spec/power.ctspec.C
  -o /home/jake/spec/SunOS-5/power.ctspec.o
gcc   -c /home/jake/spec/power.sctx.c
  -o /home/jake/spec/SunOS-5/power.sctx.o
gcc    -L/usr/local/lib/tempo/bin/../ctcg/SunOS-5
  /home/jake/spec/SunOS-5/power.ev.o
  /home/jake/spec/SunOS-5/power.ctspec.o
  /home/jake/spec/SunOS-5/power.sctx.o
  -lctcg -lbsdmalloc
  -o /home/jake/spec/SunOS-5/power.ctspec 
Specializing
TEMPO specializer: version 1.18, 98/03/03, Copyright Irisa
Postprocessing
Translating abstract syntax into C text
Produced file : power.cts.c
val it = true : bool

The resulting power.cts.c file is: 

/* TEMPO Version 1.193, 04/18/98,
  Copyright (c) IRISA/INRIA-Universite de Rennes */

/* 
call signature of entry point pow:
binding times of formals: base D 
 */
extern int _Gpow_1_0_0(int);

extern int _Gpow_1_0_0/*0*/(int base)
/* 
binding times of formals: base D 
evaluation time of body: D 
evaluation time of return: D 
evaluation times of pairings: D 
 */
  {
    int accum;

    accum = base * base * base * base;
    return accum;
  }

Though correct and nice, this result may seem a bit strange as we said in the Action Analysis section that any 
specialized program would always start  with the accum = 1 assignment,  followed by  expon times 
copies of accum = accum * base , and ended by return accum, i.e. 

extern int _Gpow_1_0_0/*0*/(int base)
  {
    int accum;

    accum = 1;
    accum = accum * base;
    accum = accum * base;
    accum = accum * base;
    accum = accum * base;
    return accum;
  }

RT n° 0390



14 R. Marlet

The reason is that specialization is followed by a  post-processing phase which performs some algebraic 
transformations.  It  is  not  crucial  that  Tempo performs  those  transformations  as  they  are  done  by  most 
compilers nowadays. But the post-processing also performs some cleaning up of the specialized code which 
makes it more pleasant to read. 

Each time that you want to specialize your program with respect to new specialization values, you do just  
have to edit the file  .sctx.c   file and re-run the sp top-level command. 

Further reading: 

• Invocation of a Compile-Time Specializer   (User's Manual) 
• Post-Processing   (Reference Manual) 

1.10 Building a Run-Time Specializer

Starting from the ".at" action file after the analysis has been performed, you may also generate a run-time 
specializer. There is nothing like an .sctx.c file to provide at this stage since the static parameters will 
be given at run time, when calling the specializer. In order to build the run-time  specializer, run the rs 
command. 

- rs "power";
Starting from /home/jake/spec/power.at
Generating binary run-time specializer
gcc -O0   -c /home/jake/spec/power.temp.c
  -o /home/jake/spec/SunOS-5/power.temp.o
/usr/local/lib/tempo/bin/../rtcg/tcc/SunOS-5/tcc
  /home/jake/spec/power.temp
  /home/jake/spec/SunOS-5/power.temp
tcc: ret in template temp_5 offset 0x0010
gcc -O0   -c  -DSUNOS5 /home/jake/spec/power.rtspec.c
  -o /home/jake/spec/SunOS-5/power.rtspec.o
ld -r -o /home/jake/spec/SunOS-5/power.rts.o
  /home/jake/spec/SunOS-5/power.rtspec.o
  /home/jake/spec/SunOS-5/power.temp.o
  /usr/local/lib/tempo/bin/../rtcg/rts/SunOS-5/functions.o
  /usr/local/lib/tempo/bin/../rtcg/rts/SunOS-5/flushcopy.o
Produced file : power.rts.o
val it = true : bool

The result of the specialization may be found in SunOS-5/power.rts.o. (A directory named after the 
architecture  and  system  of  the  current  machine  is  generated.)  A file  named power.rts.h  is  also 
generated in the working directory; it contains the signature of the run-time specialization function. 

Further reading: 

• Construction of a Run-Time Specializer   (User's Manual) 

1.11 Using a Run-Time Specializer

The power.rts.h file contains the (partial) prototype of the run-time specializer: 

INRIA



Tempo Specializer Documentation 15

/* TEMPO Version 1.193, 04/18/98,
  Copyright (c) IRISA/INRIA-Universite de Rennes */

extern void *rts_pow_1(int);

The run-time specializer rts_pow_1 is a function that takes an integer argument (the static value of 
expon) and returns a function pointer. Indirect call of this function pointer with an integer argument (some 
value for base) returns the same result as the original int pow(int,int) function. 

Here is a example of use. Write the following test.c file. 

#include <stdio.h>
#include <stdlib.h>

#include "power.rts.h"

main(int argc, char **argv)
{
  int i, base, expon;
  int (*spec_pow)(int);  // Important to give proper type

  base = atoi(argv[1]);  // First argument on the command line
  expon = atoi(argv[2]); // Second argument on the command line

  spec_pow = rts_pow_1(expon);       // Invoke run-time specialization

  printf("pow(%d,%d) = %d\n",
    base, expon, (*spec_pow)(base)); // Use specialized pow()
}

Now compile it and link it with the run-time specializer, i.e. SunOS-5/power.rts.o. 

mingus% gcc test.c SunOS-5/power.rts.o -o testpower
mingus% ./testpower 2 3
pow(2,3) = 8

Congratulations!, you have achieved your first run-time code specialization. 

Further reading: 

• Invocation of a Run-Time Specializer   (User's Manual) 

MAIN  TUTOR  USER  REF  INSTALL  FAQ  LIMIT  BUGS  SML  SUIF  DEMO  CONTRIB 

.....

RT n° 0390



16 R. Marlet

 

2 > Tempo — User's Manual

• Running Tempo 
• Running the Analysis   
• Building a Compile-Time Specializer   
• Running a Compile-Time Specializer   
• Building a Run-Time Specializer   
• The SML Top Level   
• Running Tempo In Batch Mode   
• Running Tempo Under Emacs   

• Modular Specialization   
• Concepts   
• Installation of a Specialized Function   

• The Analyses and Their Precision   
• Memory Model   
• Alias Analysis   
• Side-Effect Analysis   
• Binding-Time Analysis   
• Evaluation-Time Analysis   

• Configuring the Analyses   
• Specifying the Program to Specialize   
• Entry Point and Binding Times For Its Arguments   

• Specifying several entry points   
• Binding Time of Global Variables   
• Binding Time of Arrays   
• Binding Time of Structures and Unions   

• Structure and Union Fields   
• Nested Structures and Unions   
• Anonymous Structures and Unions   
• Restrictions on Typedef   

• Binding Time of External Function Calls   
• Binding Time of External Indirect Function Calls   
• Behavior of External Functions   

• Providing Abstract Functions   
• Modeling Dynamic Memory Allocation   
• Safety of Abstract Functions   
• Standard Tricks for Specifying Aliases and Binding Times   

• Specifying Complex Analysis Contexts   
• Binding Times of Parameters Passed By Reference   
• Initial Alias Relation   
• Live Locations After The Entry Point   

• Visualization   
• Colored Files   

INRIA



Tempo Specializer Documentation 17

• Annotations For Alias Information   
• Colors For Binding-Time Information   
• Colors For Evaluation-Time Information   
• Colors For Actions   
• Function Polyvariance   
• Function Call Site   
• Function Definition   
• Function Signature   
• Entry-Point Signature   

• Compile-Time Specialization   
• Construction of a Compile-Time Specializer   
• Invocation of a Compile-Time Specializer   

• Run-Time Specialization   
• Construction of a Run-Time Specializer   
• Invocation of a Run-Time Specializer   
• Recursive and Multiple Run-Time Specializations   

MAIN  TUTOR  USER  REF  INSTALL  FAQ  LIMIT  BUGS  SML  SUIF  DEMO  CONTRIB 

2.1 Running Tempo

The user interacts with the Tempo Specializer system through an interactive top level that encapsulates all 
functionalities. It is actually a Standard ML top level (Tempo is mainly built on top of SML/NJ) where the 
Tempo functionalities have been pre-loaded. 

To run the Tempo system, invoke the shell command tempo. You should see something that looks like this 
(the output of the system is in bold face, roman is for what you type): 

mingus% tempo
TEMPO Version 1.191, 03/24/98,
  Copyright (c) IRISA/INRIA-Universite de Rennes
val it = () : unit
- 

The "-" sign is the prompt character of this SML top level. 

To exit the Tempo system, just type ̂ D, i.e. control-D, i.e. end-of-file character. 

2.1.1 Running the Analysis
Before specializing a program, Tempo must first analyze it. This not only prepares the specialization process  
(it makes it more efficient) but also lets you assess the degree of specialization before actually providing 
specialization value. 

Starting  from  compulsory  files file  .c   and file  .config.sml   (the  file  .actx.c   file  is 
optional), the analyses produce as the final result a file  .at   file. By default, it also produces color files 
that show the intermediate results of the analyses (see Visualization.) 

RT n° 0390



18 R. Marlet

The SML command that runs the whole analysis phase is an. Alternatively, you may use the tempo 
SML command (not the  tempo shell-level command) to run sub-phases individually or up to a certain 
phase. E.g., 

- an "power";
Starting from /home/jake/spec/power.c
Generating Suif file
Generating Suif tree
Generating abstract syntax tree
Eliminating gotos
Analyzing aliases
iterating analysis
Eliminating function pointers
Analyzing side effects
Generating MONO binding time information
Generating MONO evaluation time information (phase 1)
Generating MONO evaluation time information (phase 2)
Generating flattened program (phase 1 - Return sensitivity)
Generating flattened program (phase 2 - S&D)
Generating action tree
Produced file : power.at
val it = true : bool

Note that if the program to specialize does not lie in the directory where the tempo shell-level command 
was run, you have to specify the working directory explicitly (see  Specifying the Program to Specialize 
below). 

See also: 

• The Analyses and Their Precision   
• Configuring the Analyses   
• Visualization   

2.1.2 Building a Compile-Time Specializer
When the ".at" action file has been generated and assessed, you can move on to building a compile-time 
specializer, using the top-level cs command. The result is split into two files: .ctspec.C and .ev.c. 
E.g., 

- cs "power";
Starting from /home/jake/spec/power.at
Generating specializer file
Produced file : power.ctspec.C
val it = true : bool

An additional .sctx.h is also produced, to be used in the next phase, i.e. actual specialization. 

See also: 

• Compile-Time Specializer Construction   

INRIA



Tempo Specializer Documentation 19

2.1.3 Running a Compile-Time Specializer
The last step is the generation of the source of a specialized program, given actual values for the static  
parameters of the entry point.  For this,  you must  provide a .sctx.c file,  that  expresses parameters' 
initialization as C code, and run the sp command. 

- sp "power";
Starting from /home/jake/spec/power.ctspec.C
Generating specializer
gcc   -c -I/usr/local/lib/tempo/bin/../ctcg
  /home/jake/spec/power.ev.c
  -o /home/jake/spec/SunOS-5/power.ev.o
gcc   -c -I/usr/local/lib/tempo/bin/../ctcg
  /home/jake/spec/power.ctspec.C
  -o /home/jake/spec/SunOS-5/power.ctspec.o
gcc   -c /home/jake/spec/power.sctx.c
  -o /home/jake/spec/SunOS-5/power.sctx.o
gcc    -L/usr/local/lib/tempo/bin/../ctcg/SunOS-5
  /home/jake/spec/SunOS-5/power.ev.o
  /home/jake/spec/SunOS-5/power.ctspec.o
  /home/jake/spec/SunOS-5/power.sctx.o
  -lctcg -lbsdmalloc
  -o /home/jake/spec/SunOS-5/power.ctspec 
Specializing
TEMPO specializer: version 1.18, 98/03/03, Copyright Irisa
Postprocessing
Translating abstract syntax into C text
Produced file : power.cts.c
val it = true : bool

The result of the specialization may be found in the generated .cts.c file. It is up to you to install it in 
your original  application. Make sure you call the specialized entry point when appropriate,  i.e. when the 
specialization hypothesis (actual values of static parameters) are valid. 

See also: 

• Compile-Time Specialization   

2.1.4 Building a Run-Time Specializer
Starting from the ".at" action file after the analysis has been performed, you may also generate a run-time 
specializer. There is nothing like an .sctx.c file to provide at this stage as the static parameters will be 
given at run time, when calling the specializer. 

In other to build the run-time specializer, run the rs command. 

- rs "power";
Starting from /home/jake/spec/power.at
Generating binary run-time specializer
gcc -O0   -c /home/jake/spec/power.temp.c
  -o /home/jake/spec/SunOS-5/power.temp.o
/usr/local/lib/tempo/bin/../rtcg/tcc/SunOS-5/tcc
  /home/jake/spec/power.temp
  /home/jake/spec/SunOS-5/power.temp
tcc: ret in template temp_5 offset 0x0010

RT n° 0390



20 R. Marlet

gcc -O0   -c  -DSUNOS5 /home/jake/spec/power.rtspec.c
  -o /home/jake/spec/SunOS-5/power.rtspec.o
ld -r -o /home/jake/spec/SunOS-5/power.rts.o
  /home/jake/spec/SunOS-5/power.rtspec.o
  /home/jake/spec/SunOS-5/power.temp.o
  /usr/local/lib/tempo/bin/../rtcg/rts/SunOS-5/functions.o
  /usr/local/lib/tempo/bin/../rtcg/rts/SunOS-5/flushcopy.o
Produced file : power.rts.o
val it = true : bool

The result of the specialization may be found in the generated .rts.o file, that is generated in a directory 
named after the architecture and system of the current machine (see variable arch_dep_dir). A .rts.h 
file  is  also  generated  in  the  working  directory;  it  contains  the  signature  of  the  run-time  specialization 
function. 

It is up to you to install the run-time specializer in your original application, including the management of 
run-time specialized functions: when to specialize, caches for already specialized functions, etc. Make sure  
you call  the run-time specialized entry points when appropriate,  i.e. when the specialization hypothesis 
(actual values of static parameters) are valid. 

See also: 

• Run-Time Specialization   
• Using a Run-Time Specializer   (Tutorial) 

2.1.5 SML Top Level
The Tempo Specializer top level provides a standard  SML top-level interaction. You may type any SML 
code, i.e. definitions as well as expressions to evaluate, separated by semicolons. 

- 1+2;
val it = 3 : int 
- "Te" ^ substring("compose",2,3);
val it = "Tempo" : string
- val foo = ["bar","gee"];
val foo = ["bar","gee"] : string list
- (hd foo, tl foo, fact 6);
val it = ("bar",["gee"]) : string * string list
- hd [];
uncaught exception Hd
- fun fact n = if n=0 then 1 else n*fact(n-1);
val fact = fn : int -> int
- fact 6;
val it = 720 : int 

Using SML Variables

In particular, from this top level the user may consult or set  Tempo configuration variables. Most of those 
variables are reference variables, i.e. pointers to a value. This can be seen from the type: it ends with "ref". 
E.g. 

- explicit_cts_bufsize;
val it = ref NONE : int option ref

INRIA



Tempo Specializer Documentation 21

- max_decls_size;
val it = ref 100 : int ref
- max_decls_size := 3 * (!max_decls_size);
val it = () : unit
- max_decls_size;
val it = ref 300 : int ref

Note the use of: 

!variable 
to return the value pointed by a existing reference variable, i.e. to dereference it. 

variable := value 
to assign a value to an existing reference variable, i.e. to overwrite its previous value. 

val variable = value 
to define a top-level variable. (This is not needed unless having very complex interactions with  
Tempo.) 

Using SML Commands

The user may also run Tempo commands, e.g. 

- cd "/home/jake/spec";
val it = "/home/jake/spec" : string
- cs "power";
Starting from /home/jake/spec/power.at
Generating specializer file
Produced file : power.ctspec.C
val it = true : bool

Note that all of the SML commands provided by Tempo are curried i.e. arguments are provided separated by 
spaces. For example, the SML-level  tempo command (not the  tempo shell-level command) is used as 
follows: 

- tempo "power" "alias" "bta";
Starting from /home/jake/spec/power.alias.as
Eliminating function pointers
Analyzing side effects
Generating MONO binding time information
Produced file : power.bta.as
val it = true : bool

If you forget an argument to this command, you will not get a type error; you will be returned a partially  
instantiated closure without any action being performed, e.g. 

- tempo "alias" "bta";
val it = fn : string -> bool

However, if you provide the arguments as a tuple (separated by commas and surrounded by parentheses),  
you do get a type error: 

- tempo("power","alias","bta");

RT n° 0390



22 R. Marlet

std_in:26.1-26.29 Error: operator and operand don't agree
(tycon mismatch)
  operator domain: string
  operand:         string * string * string
  in expression:
    tempo ("power","alias","bta")

Using SML Files

Besides the user's interaction at the SML top level, there are two SML files that are used in Tempo: the  
file  .config.sml   per-program configuration  file  and  the .tempo.sml per-session  configuration 
file. Those are standard SML files. In particular, you may write (nestable) comments in them as follows. 

(* Specialization of pow(base,expon)
   Assume expon is known
 *)
entry_point := "pow(D,S)";

post_inlining := true;
output_mode := COLOR;
external_functions := RESIDUALIZE ["printf","scanf"];

Note that each variable setting must be ended by a semicolon. If you wish to load explicitly an SML file,  
type: 

use "some_file.sml";

2.1.6 Running Tempo In Batch Mode
If you wish to run Tempo in batch mode, just pipe SML commands into the shell command tempo, e.g. 

mingus% echo 'wd := "/home/jake/spec"; cs "power"' | tempo
Running Tempo on SunOS-5
TEMPO Version 1.191, 03/24/98,
  Copyright (c) IRISA/INRIA-Universite de Rennes
val it = () : unit
- val it = () : unit
Starting from /home/jake/spec/power.at
Generating specializer file
Produced file : power.ctspec.C
val it = true : bool
- mingus%

The end of the input marks the end of the job. 

2.1.7 Running Tempo Under Emacs
Here is a suggestion for running Tempo under emacs (courtesy of Olivier Danvy). Put the following lines in  
your .emacs file and run run-tempo to get a convenient shell buffer with a running Tempo. 

(setq tempo-path "/usr/local/lib/tempo/bin/tempo")

INRIA



Tempo Specializer Documentation 23

(defun run-tempo ()
  "Run an inferior Tempo process,
     input and output via buffer *Tempo*."
  (interactive)
  (require 'comint)
  (pop-to-buffer
    (make-comint "Tempo"
                 "/bin/sh"
                 nil
                 "-c"
                 tempo-path))
  ;(inferior-sml-mode) 
  (make-local-variable 'comint-prompt-regexp)
  (setq comint-prompt-regexp "- ")
  (setq mode-name "Inferior Tempo"))

2.2 Modular Specialization

It is not usually practical or even desirable to apply specialization to a complete application,  i.e. from the 
main() function  down  to  all  leaf  functions.  Instead,  specialization  is  usually  applied  to  part  of  an  
application (without altering the rest of the application) or to library functions. 

2.2.1 Concepts
Modular specialization supports for specializing a fragment of an application. It is explained through the 
following definitions. 

Application. 
An application is some code that makes up a full executable,  i.e. that contains a  main() function. 
Part of it may be available only in binary form; you only need to have the source code of the parts that  
you wish to specialize (the module), and to know how those parts are called (the execution context). 

Entry Point. 
The  entry point is  (the name of) the function of  your application that  you wish to specialize.  In 
practice, it generally is not the main() function. 

Formals, Actuals and Parameters. 
We use the terms formals to refer to the formal arguments of a function, actuals to refer to their actual 
value and parameters to designate the formals as well as the global variables that are visible from this 
function. 

Execution Context. 
An execution context before a function is called (or execution pre-context) is some knowledge about 
the current memory store as well as the actual arguments of the function. An execution context after a 
function is called (or execution post-context) is some knowledge about the uses of the results of the 
function, not only the returned value but all uses of the memory affected by the function call. (The  
term "knowledge" is intentionally vague as in practice we actually refer to analysis and specialization 
contexts; see below.) 

RT n° 0390



24 R. Marlet

Analysis Context. 
The  analysis context is a set of properties that are true at  some point of the execution flow. The 
analysis context before a function is called (or analysis pre-context, or initial analysis context) is the 
execution  pre-context  that  consists  of  alias  relations  and  binding  time  properties  concerning  its 
parameters. The analysis context after calling a function (or analysis post-context), consists of the live 
uses of memory locations occurring after the function has returned. 

Specialization Context. 
The specialization context of the entry point (and more generally of any function) consists of actual 
values for the parameters (including content values for pointers). 

Program (a.k.a. Module). 
The program (or module) is the set of functions of your application that you wish to specialize. It at 
least includes the entry-point function. It may also include other functions called by the entry point,  
however  it  does not  have to  include  all  such functions.  The program is provided  to  Tempo as  a 
single C file. 

External Function. 
External functions are functions that are external to the program, i.e. functions of your application that 
are called by the program but that you do not want to specialize. The definitions of external functions 
should not be provided in the program file. Such functions may include library functions such as 
printf() or  strcpy(). 
Making  a  function  external  can  be  a  choice:  it  may  not  interesting  to  specialize,  not  actually 
specializable  (always  called  with  only  static  or  only  dynamic  arguments),  too  big,  etc.  When  a 
function is part of a library whose source code is inaccessible, the function of course must be external. 

Abstract Function. 
An  abstract  function is  a function written to  model  the behavior  of  another  function (usually  an 
external  function) with respect  to  the  analyses.  In  other  words,  it  may not  respect  the  execution  
semantics of the function (i.e. return the same results) but it should respect the analysis semantics (i.e. 
return the same analysis results). Most often, an abstract function is useful in order to give an abstract  
definition to an existing function that is uninteresting to specialize or that is available only as binary 
code. See Behavior of External Functions below for more details. 

Context Abstract Function. 
Tempo needs to know the execution context in which the entry point is called from the application.  
This analysis context can be specified using a context abstract function. It may also be necessary to 
specify the behavior of  the  application  after the  entry-point  function is  called,  especially  uses  of 
locations that are manipulated by the entry point (because otherwise they may be specialized away).  
This may also be specified using a context abstract function. 

Abstract Function File. 
Abstract functions (for external functions as well as context abstract functions) are provided to Tempo 
in a separate file suffixed with actx.c (e.g. fft.actx.c). This abstract function file is optional. 

More practical details are given in the sections  Behavior of External Functions and  Specifying Complex 
Analysis Contexts below. 

INRIA



Tempo Specializer Documentation 25

2.2.2 Installation of a Specialized Function
It is up to the user to integrate in the application a specialized function or, more generally, various instances 
of specialized functions. (Whether the specialized functions are produced at compile time or generated at run 
time is a separate issue.) In doing so, you must make sure that you call  the specialized functions when 
appropriate, i.e. when the specialization hypotheses (actual values of static parameters) are valid. There are  
several strategies for that. In the general case, you must implement some switching mechanism between the  
original function and specialized functions. 

Specialized Application

In  some cases,  it  is  possible  to  restrict  the  domain  of  your  application  so  that  your  are  sure  that  the  
specialized functionality will always be called in the appropriate context, unconditionally. In those cases, you 
can just replace the original entry point with the specialized one. This is often the case when you specialize 
interpreters. Another, less common case is when you specialize your whole application. 

Dynamic Testing

If switching functions is needed, one approach is to test the execution context. If it matches a context for  
which you have a specialized function (either constructed at compile time or generated at run time), then call  
it. Otherwise call the original, generic, entry point function. 

The cost is in performing the tests for each invocation of the function. This strategy is interesting when the 
test is negligible with respect to the execution time of the specialized function. 

Guards

Another strategy to switching functions is to invoke the function indirectly via a pointer variable and to put  
guards  at  each  program point  where  the  execution  context  may  change  (with  respect  to  specialization  
hypotheses). Each time the context is changed in the course of the execution, the corresponding guard checks 
if the new execution context matches a context for which you have a specialized function (either constructed 
at  compile time or generated  at  run time).  If  so,  the function pointer  variable  is  set  to  the specialized  
function. If not, the function pointer variable is set to the original, generic, entry point function. Invocations 
should be indirect, through the function pointer variable. 

The cost here is in performing the tests each time the context may change. This second strategy is interesting  
when there  are  many function invocations  between each context  change.  Otherwise,  you might  end up  
performing tests, installing new specialized functions, but never actually calling the function. 

Specialized Functions Cache

Another  issue  concerns  specialized  functions  cache  when  doing  run-time  specialization:  When  is  it 
interesting to make a new specialized function as opposed to use the original function? When is it interesting 
to  keep in  a cache an installed  specialized function when the context  changes,  in the hope that  it  will 
eventually switch back to the same context? The answers to those questions are highly dependent on your 
application... 

RT n° 0390



26 R. Marlet

2.3 The Analyses and Their Precision

Tempo is an off-line partial  evaluator:  specialization is  preceded by an analysis phase that  prepares the 
specialization process (and makes it more efficient). Moreover, it lets you assess the degree of specialization  
of your program. The main analyses compute: 

• Alias analysis  : the set of possible targets for pointer locations and expressions. 
• Side-effect analysis  : the set of non-locals variables that are read or written in functions. 
• Binding-time analysis  : binding-time properties for each statement and expression. 
• Evaluation-time analysis  : evaluation-time properties for each statement and expression. 

A large part of the power of an off-line partial evaluator lies in the precision of its analyses. All Tempo  
analyses  are  inter-procedural, i.e. properties  at  the  various  call  sites  of  a  function  are  exploited  when 
analyzing the function. In the following, we list other features, that are specific to each analysis. But before  
that, we need to present the memory model used by Tempo. 

2.3.1 Memory Model
Before explaining the different ways to parameterize and to read the results of Tempo's analyses, the concept  
of "location" must first be understood: all initial and deduced properties are specified or computed in terms  
of locations. Here are some definitions that will be used afterwards. 

Scalar and Structured Types. 
A scalar type is an integer, floating point or pointer type (including array). A structured type is a 
structure or union. 

Named Memory Cells. 
All C objects are stored in memory cells. Each memory cell has an address. Scalar memory cells store 
integers, floating point numbers or pointers (including pointers to arrays).  Composite memory cells 
store structures, unions and arrays (i.e. the sequence of cells, not the pointer). A named memory cell is 
a memory cell that can be given a name, i.e. 

• a variable (whether local or global), 
• a function (for indirect function calls), 
• an array (i.e. the name of the constant pointer to the first array cell), 
• a structured data type (structure or union), 
• a field of a structured data type. 

This is in contrast with for example malloc(), that does not return a named memory cell. In other 
words, named memory cells include static and stack allocated cell, but exclude heap allocated cells. 

Locations. 
A location is a named scalar memory cell. The fact that a location is scalar and that Tempo's analyses  
work on locations means that there is no property directly attached to a structure or a union; properties  
only apply to (scalar)  fields of  those structured types.  Consequently,  when providing information  
about  a structured data type,  each of its  (scalar)  field must  be referred to individually.  Similarly,  
visualization of computed properties  attaches  no explicit  information to structured data type as a 
whole; however, each occurrence of individual fields does reflect the properties. 

Composite Locations. 
A composite location is a location that corresponds to possibly many actual memory cells. Composite 
locations are 

INRIA



Tempo Specializer Documentation 27

• arrays: a single name for all cells of the array, i.e. there is not an explicit location for each cell 
(see Array Monovariance below), 

• structure and union fields: a single name for all instances of the same structure or union type 
(see Structure Mono/polyvariance below). 

Since  properties  are  attached  to  locations,  this  means  in  particular  that  properties  of  arrays  are 
properties that are true for all cells of the array (i.e. index does not matter). 

Globals, Locals and Non Locals. 
Globals are location that are static (in the C sense, i.e. not on the stack nor on the heap) and visible 
from everywhere in the program file.  Locals of a function are stack allocated locations,  i.e. local 
variables.  Non locals of  a  function are  all  locations  but  locals  that  can be manipulated from the 
function,  i.e. globals and, possibly, locals of other functions up in the call graph that are passed as 
pointer arguments or via globals. 

Structure Mono/Polyvariance. 
In this Tempo version, our alias and binding-time analyses are by default monovariant with respect to 
structured types (structure and union). This means that for the purposes of the analyses, all instances 
of a given field are represented by a single location. Thus, properties of fields are properties that are 
true for  all  instances  of  the  structured  type.  In  Tempo,  we  use the name of  the  type to  refer  to 
structured type locations, as opposed to using names of instances.

However, there is an experimental feature that  allows structure  polyvariance.  Please see variables 
poly_structs and struct_version .

Array Monovariance. 
Similarly, our alias and binding-time analyses are monovariant with respect to array cells. This means 
that for the purposes of the analyses, all cells of an array are represented by a single location. Thus, 
properties of arrays are properties that are true for all cells of the array. As a matter of fact, in Tempo 
we use the name of the array to refer to any (pointed) array cell. 

Composite Locations and Binding Times. 
Because of monovariance, once a field has become dynamic at some point in the control flow, it  
cannot be made static again afterwards, neither by an assignment nor by any other mechanism. This is  
because making the field of one instance static does not guarantee that the corresponding field of all 
other instances may be considered static, whereas it is always safe to leave it dynamic. The same  
applies to array cells: putting a dynamic value in an array cell makes the whole array dynamic for the 
rest of the control flow. E.g., 

struct str {int a; ...} s1, s2;
int u[5], x;
// Assume everything is static initially

x = dynexp;     // x becomes dynamic
u[0] = dynexp;  // u[i] becomes dynamic for all i
s1.a = dynexp;  // Both s1.a and s2.a become dynamic

x = 42;         // x is now static
u[0] = 42;      // u[i] stays dynamic for all i
s1.a = 42;      // Both s1.a and s2.a stay dynamic

Note that this happens even if there is only one instance of a given structured type or if the array index 
is fully known. 

RT n° 0390



28 R. Marlet

Composite Locations and Aliases. 
The same applies to the alias property: once a field may point to some location at some point of the 
control flow, there is no way to "kill" this afterwards. This is because assigning the field of an instance  
with a pointer to some other location does not guarantee that  the corresponding field of all  other 
instances are still not able to point to the original location. However, it is always safe to assume that 
the field (of all instances) may point to both the old and the new location. 

struct str {int *a; ...} s1, s2;
int u[5], *p, a, b;
// Assume all pointers may point to nothing initially

p = &x;     // p may point to x only
u[0] = &x;  // u[i] may point to x for all i
s1.a = &x;  // Both s1.a and s2.a may point to x

p = &y;     // p may point to y only
u[0] = &y;  // u[i] may point to x or y for all i
s1.a = &y;  // Both s1.a and s2.a may point to x or y

Note that this happens even if there is only one instance of a given structured type or if the array index 
is fully known. 

2.3.2 Alias Analysis
The alias analysis computes the set of possible targets for pointer locations and expressions. This analysis is: 

flow-sensitive 
The set of possible targets for a given pointer location may differ from one statement to another. 

context-insensitive 
There is a single alias analysis for each function, i.e. a single alias description for each function, not 
one per call site. 

2.3.3 Side-Effect Analysis
The side-effect analysis computes the set of non-locals variables that are read or written in each function. 
This analysis is: 

flow-sensitive 
The set of possible effects depends on the control flow. 

context-insensitive 
There is a single side-effect analysis for each function, i.e. no particular context depending on the call 
site is exploited. It relies only on alias information, which is computed on a context-insensitive basis 
as well. 

INRIA



Tempo Specializer Documentation 29

2.3.4 Binding-Time Analysis
The binding-time analysis annotates the program with binding-time information. This analysis is: 

flow-sensitive 
The binding time of a given location may differ from one statement to another. 

context-sensitive 
There is a separate binding-time analysis for each call site, depending on its binding-time context.  
This is also called (function) polyvariance. 

return-sensitive 
The BTA distinguishes between the binding time of the body of a function (static if the whole body is 
static, dynamic otherwise) and the binding time of its return value. With this approach, if a function 
performs some dynamic side effects but returns a static value, the static value can be exploited at the 
call site. The ability of the BTA to make this distinction is called return sensitivity. 

sensitive to partially-static structures 
A structure may have both static and dynamic fields at the same time. 

use-sensitive 
The binding time of a location is affected not only by the binding times of locations that it depends on, 
but also by the uses of the location. This information is actually computed by the evaluation-time 
analysis. 

monovariant with respect to arrays, possibly polyvariant w.r.t structures and unions 
There is a single location for all cells of an array; see Array Monovariance. There is a single location 
of  all  instances  of  a  given  structured  type  (structure  or  union),  or  possibly  many;  see  Structure 
Mono/polyvariance. 

2.3.5 Evaluation-Time Analysis
The evaluation-time analysis make the binding-time analysis use-sensitive: 

• It  makes dynamic all static expressions that appear in a dynamic context and are not representable as 
C program text (i.e. pointers, structures and arrays): ETA1. 

• It makes dynamic all the static definitions of variables with dynamic uses: ETA2. 
• If there is no static use of a definition, the definition is turned totally dynamic as the static facet is 

not needed: ETA2. 

Precision for evaluation times in the ETA is the same as the precision for binding times in the BTA, i.e. the 
ETA  is  flow-sensitive,  context-sensitive,  return-sensitive,  sensitive  to  partially  static  structures  and 
monovariant with respect to arrays, structures and unions. 

RT n° 0390



30 R. Marlet

2.4 Configuring the Analyses

Tempo is an off-line specializer. This means that the specialization is preceded by an pre-processing phase.  
This pre-processing phase is divided into a sequence of program analyses that compute properties about 
locations and resulting specialization transformations: 

• the alias relation between locations, 
• the binding times of program locations, 
• the specialization actions, i.e. the transformations to perform at specialization time. 

The result of the analyses can be visualized in order to assess the degree of specialization of the program. 

In  order  to  parameterize  the  analyses,  the  user  must  provide  Tempo  with  the  following  compulsory  
information. 

1. A program  , i.e. a single legal ANSI C file. 

2. An entry point  , i.e. the root of the call-graph, i.e. the name of the function to specialize. 

3. Initial binding times for the arguments of the entry point  . 

In addition, the user may provide the following information. 

1. Initial binding times of global variables  . By default, all uninitialized global variables are assumed 
dynamic. 

2. Initial  binding  times  of  arrays  .  This  is  necessary  because  of  the  array  monovariance  of  the 
analyses. By default, all arrays are assumed dynamic. 

3. Initial binding times of structures and unions  . This is necessary because of the default structure 
(and union) monovariance of the analyses. By default, all fields are assumed dynamic. 

4. The binding time of external functions calls  , i.e. the permission or prohibition to evaluate external 
functions (if any) at specialization time if all the arguments are static, 

5. The binding time of unknown indirect function calls  , i.e. the permission or prohibition to evaluate 
external indirect function calls (if any) at specialization time if all their arguments are static, 

6. The behavior of external functions   with respect to aliases and binding times. By default, external 
functions are assumed not to have any effect on aliases or binding times at all. 

7. The binding time of parameters passed by reference   (for the entry-point function). The standard 
binding-time specification for the arguments describes just the arguments themselves, not the values 
they point to. By default, pointed scalar values have the same binding time as the pointer and pointed 
composite  values  are  dynamic  (i.e. default  binding  time  rules  for  structures,  unions and  arrays 
apply). 

8. Initial alias relations   among pointer parameters (actual arguments and global variables), if any. By 
default, it is assumed that all locations are unrelated. 

9. Live locations after the entry point   is called in the original application. By default, no location is 
assumed to be live at the end of the program. 

INRIA



Tempo Specializer Documentation 31

2.4.1 Specifying the Program to Specialize
The program to specialize is provided to Tempo as a  single legal ANSI C file. It is passed through  cpp 
(the C pre-processor) before parsing. Consequently, it may contain statements like  #include, #define 
and  #ifdef. When visualizing annotated source code with Tempo, you will see the result of the  C pre-
processor expansion, not the original code. 

The specification of the program to specialize is done in two steps. 

1. The user must specifying the working directory, which is the directory where the program lies. In 
order to do so, the user may use either the wd variable, as in 

wd := "/home/jake/spec/misc";

or the cd command, as in 

cd "/home/jake/spec/misc";

which also sets the variable wd. By default, the working directory is the directory in which Tempo is 
run, unless the shell variable TEMPOWORK is defined. 

2. Then, in order to run any phase, the name of the program must be used each time, as in 

an "fft";
cs "fft";
sp "fft";

This runs the analyses and specialization of the program  fft.c,  located in the current  working 
directory. Note that you must specify the file prefix only, not the suffix (i.e., "fft", not "fft.c"). 

Note also that several programs may reside in the same working directory. Thus, you may run: 

sp "fft";
an "power";

if both fft.c and power.c lie in the current working directory. 

In practice, step 1 is done once, as long as you work on the same program file, and step  2 is performed many 
times. 

2.4.2 Entry Point and Binding Times For Its Arguments
The  entry  point  and  the  binding-time  information  of  its  arguments  are  defined  by  the  SML variable 
entry_point. This variable must be defined in the config.sml file (e.g. fft.config.sml), in the 
same directory as the c file (e.g. fft.c). Assigning it at the SML top level has no effect and the default 
value ("") is not meaningful. In the following example 

entry_point := "foo(S,D)";

the function foo is the entry point. It has two arguments: the first one is initially static, the second one is 
initially dynamic. 

Valid binding-time specifications for the entry-point parameters are: 

RT n° 0390



32 R. Marlet

S : scalar static argument 
D : scalar dynamic argument 
_ : uninitialized or non-scalar argument 

If an argument is a structured type (union or structure), the specified binding time must be _ and the actual 
binding  time must  be  provided  separately  (see  Binding  Time  of  Structures  and  Unions below).  If  the 
argument is a pointer (hence a scalar), the specified binding time is for the pointer, not the pointed value. See 
below for specifying binding time of pointed values. 

Specifying Several Entry Points

For the time being, Tempo is restricted to a single entry point and binding-time information definition. If you 
wish to perform specialization for  multiple entry points (e.g., a whole library), you have to explicitly (i.e. 
manually) 

1. Build a dummy entry point that calls all  sub entry points. This is typically in a switch or a 
cascade of ifs so that the call to one entry point doesn't influence the calls to the others. It is up to 
you to propagate relevant binding time information from the dummy entry point to each sub entry 
points. 

2. Extract specialized entry points. There is some additional work to do on the resulting specialized 
file. 

i. At the moment, in a specialized program file, only the specialization(s) of the entry point  
is/are declared extern; all other specialized functions are made static (in the C sense). 
You have to manually turn those specifiers into extern. 

ii. Furthermore, it is only possible to specify the name of the specialization of the actual entry  
point (using the variable  specialized_entry_point_name).  The sub entry points 
have to be renamed by hand, if desired. 

You must also make sure that sub entry points are not inlined into the dummy entry point. 

2.4.3 Binding Time of Global Variables
The initial binding time for global variables is specified using the SML variable  static_locations. 
The  default  is  that  no  global  locations  are  static,  i.e. static_locations is  the  empty  list.  As  an 
example, the following definition specifies that  the global  variables  x and  y are static;  all  other global 
variables are considered dynamic. 

static_locations := ["x", "y"];

It is not necessary to specify the binding times of local variables (including formals), as these are determined 
automatically by their use. 

2.4.4 Binding Time of Arrays
Because of  array monovariance, there is only one location associated with an array. This location can be 
declared static using the SML variable static_locations as well, meaning that all cells of the array are 
static. E.g., an array int a[5] can be declared static as follows. 

INRIA



Tempo Specializer Documentation 33

static_locations := ["a"];

Note that only the name of the array is used, without the brackets. Note also that the pointer to the array ( i.e. 
a itself, meaning &a[0]) is a constant, and hence is always static. 

2.4.5 Binding Time of Structures and Unions
Unlike binding times for scalar variables which are "per variable", binding times for a given structured type 
are the same for any instance: it is a "per type" binding time. (See Structure Mono/polyvariance above.)

For example, if the C program contains the following declaration, 

struct pt {
  int x;
  int y;
} point1, point2;

then specifying 

static_locations := ["pt.x"];

with the following C declaration in the program file

makes both point1.x and point2.x static. An error will be reported if you try to specify

static_locations := ["point1.x"];

In other words, you must provide the name of the type for the fields of a structure or a union, not the name of 
an instance. 

Structures and Unions Fields

If  a  whole  structure  or  union is  static,  each  field must  be  declared  as  such individually.  For  example, 
specifying 

static_locations := ["pt.x","pt.y"];

with the following C declaration in the program file

struct pt {
  int x;
  int y;
} point1, point2;

will make both point1 and point2 totally static. An error will be reported if you try to specify

static_locations := ["pt"];

This is because there is no location associated to a structured type; the only locations are for each field. 

RT n° 0390



34 R. Marlet

Nested Structures and Unions

Let us consider the following global declarations: 

struct pt2d {
  int x;
  int y;
};

struct pt3d {
  struct pt2d pt;
  int z;
};

struct pt2d u;
struct pt3d v;

Because the  pt field of a  pt3d structure has a structure  type,  trying to directly  declare  pt3d.pt or 
pt3d.pt.x to be static will raise an error. The only locations that can be declared static are  pt2d.x, 
pt2d.y and pt3d.z. For example, the following makes u and v.pt static: 

static_locations := ["pt2d.x", "pt2d.y"];

The following makes u and v static:

static_locations := ["pt2d.x", "pt2d.y", "pt3d.z"];

Anonymous Structures or Unions

If the definition of your original structure or union is anonymous (this is common with nested structures) like 
this 

struct /*no name here*/ {
  int x;
  int y;
} point;

then SUIF will automatically generate a dummy name:

struct __tmp_struct1 {
  int x;
  int y;
} point;

As the name is generated automatically with an unknown suffix, it is not safe to rely on SUIF to pick a  
particular name for you. When is possible, it is better to provide an explicit name in the original file. 

Restrictions on Typedef

Names of structured types defined using typedef cannot be used to specify a location. For example, with a 
type definition like this 

typedef struct pt {

INRIA



Tempo Specializer Documentation 35

  int x;
  int y;
} point;
point point1, point2;

You cannot specify 

static_locations := ["point.x"];

You have to write 

static_locations := ["pt.x"];

2.4.6 Binding Time of External Function Calls
The SML variable external_functions     is used to specify the binding times of external function calls.  
For each function, you may either force all calls to be residualized (i.e. dynamic) or to be evaluated (i.e. 
static) provided the arguments allow it (i.e. if they are all static). 

Evaluation is often allowed for library functions, whereas residualization can be required to prevent I/O side-
effects at specialization time (such as printing). 

E.g., the following declaration means that all calls to the external functions foo and bar are residualized, 
regardless of the arguments or the possible abstract definitions are; all calls to other external functions are  
evaluated if all their arguments are static. 

external_functions := RESIDUALIZE["foo","bar"];

This declaration has the following impact on the binding-time analysis. 

foo(stat,dyn);  // Natural residualization of the call
foo(stat,stat); // Forced residualization of the call
gee(stat,dyn);  // Natural residualization of the call
gee(stat,stat); // Allowed evaluation of the call

If you have more external functions to residualize than to evaluate, you may want to use this other form,  
instead: 

external_functions := EVALUATE["foo","bar"];

The above declaration means that all calls to the external functions foo and bar should be evaluated if their 
arguments are static; all calls to other external functions are always residualized. I.e. 

foo(stat,dyn);  // Natural residualization of the call
foo(stat,stat); // Allowed evaluation of the call
gee(stat,dyn);  // Natural residualization of the call
gee(stat,stat); // Forced residualization of the call

The  default  treatment  is  to  residualize  all  calls,  i.e. to  evaluate  none  of  the  external  functions: 
EVALUATE[]. 

RT n° 0390



36 R. Marlet

2.4.7 Binding Time of External Indirect Function Calls
The boolean variable residualize_all_icalls is used to specify the binding time of indirect external 
function  calls.  If  it  is  true,  indirect  calls  to  unknown  external  functions  are  always  residualized 
(independently of their arguments). If it is false, they are evaluated if possible (i.e. function pointer and 
arguments are static) at specialization time. 

This variable is only useful when the phase to eliminate indirect function calls cannot totally transform some 
indirect  calls.  This  usually  happens  when  not  enough information  is  given  to  the  alias  analysis:  some 
unknown function pointer (provided as a global variable or as an argument to  the entry-point function, or 
returned by an external call) may be used for an indirect call. 

In the following program, fp may point to f1, f2, or *gfp, for which alias information is not provided. 

int f1(int, int), f2(int, int), (*gfp)(int, int);

int entry()
{
  int (*fp)(int,int);

  if (c == 1)
    fp = f1;
  else if (c == 2)
    fp = f2;
  else
    fp = gfp;

  // fp may point to f1, f2 and ... *gfp

  return (*fp)(a,b);
}

The phase that eliminates external function pointers rewrites this program as follows: 

int entry()
{
  if (c == 1)
    fp = f1;
  else if (c == 2)
    fp = f2;
  else
    fp = gfp;

  return _apply_1(fp,a,b);
}

int _apply_1(int (*_q)(int,int)), int _a1, int _a2)
{
  if (_q == f1)
    return f1(_a1,_a2);
  else if (_q == f2)
    return f2(_a1,_a2);
  else
    return (*_q)(_a1,_a2);
}

INRIA



Tempo Specializer Documentation 37

This rewriting enables possible specializations of  f1 and  f2, even though they are used through function 
pointers. However, the global variable gfp might point to some unknown function f3. That is why a default 
case (*_q)(_a1,_a2) remains in _apply_1. If the alias analysis can determine that the only possible 
targets are known functions (as here, f1 and f2), there is no such default case. 

The remaining indirect external call 

(*_q)(_a1,_a2);

can  be  forced  to  be  dynamic  or  allowed  to  be  static  (providing  all  arguments  are  static),  using  the  
residualize_all_icalls variable. With 

residualize_all_icalls := true;

the binding-time analysis yields only dynamic indirect calls, even if _q, _a1 and _a2 all are static 

(*_q)(_a1,_a2);  // Note: static pointer _q later
(*_q)(_a1,_a2);  //       turned dynamic by eta1
(*_q)(_a1,_a2);  // Ditto

whereas with 

residualize_all_icalls := false;

the binding-time analysis may yield a static (i.e. evaluated at specialization time) indirect call if both the 
function pointer and the arguments are static: 

(*_q)(_a1,_a2);  // Redidualized because _a1 is dynamic
(*_q)(_a1,_a2);  // Redidualized because _q is dynamic
(*_q)(_a1,_a2);  // Evaluated

There is no way to specify an imposed or allowed binding time per indirect call site, not even per generated  
_apply_n function. 

2.4.8 Behavior of External Functions
By default, external functions are supposed not to have any action. Consider for example a pointer argument 
to an external function call that has not been given an abstract definition: 

ch = 'X';       // 'X' is static
read(fd,&ch,1); // Call to read does not affect ch
t = ch;         // Considered static instead of dynamic 

The pointer &ch is read at the call site, but the content ch is considered unaffected, not even read. This is 
not specific to binding times: a similar case can be constructed regarding aliases. The problem is that the  
default void behavior for external functions is not safe. 

In Tempo, the behavior of  external functions with respect to aliases and binding times is expressed using 
abstract functions, i.e. some C code that mimics the actual implementation of external functions. The code of 
those  abstract  functions  is  used during  the analyses  to  simulate  the  real  behavior  and yield  the  proper 
analysis results. However, at specialization time, only the actual values and implementations are used. In  
other words, abstract function are not specialized; calls to them may either be residualized or evaluated using 
the real implementation. 

RT n° 0390



38 R. Marlet

Example

Consider for example this implementation of the strcpy() function. 

char *strcpy(char *dest, const char *src)
{
  char *orig_dest;
  orig_dest = dest;
  do
  {
    *dest++ = *src;
  }
  while (*src++ != '\0');
  return orig_dest;
}

This function copies the value of the src array into the dest array. No aliases are created. The alias and 
binding-time behavior of this function may be modeled by the following abstract function. 

char *strcpy(char *dest, const char *src)
{
  *dest = *src;
  return dest;
}

Because of the monovariance of arrays,  we achieve the effect of  copying the contents of  an array into  
another by copying a single cell. We also model the return behavior of  strcpy by returning  the  dest 
pointer. 

As a result, the binding-time analysis of the program file yields, for example, the following propagation of  
dynamic values (assuming q points to an array with dynamic content): 

x = p[0];    // Static pointer to static array
strcpy(p,q); // Copy from static pointer to dynamic array
y = p[0];    // Static pointer to dynamic array

or the preservation of static computation (assuming q points to an array with static content): 

x = p[0];    // Static pointer to static array
strcpy(p,q); // Copy from static pointer to static array
y = p[0];    // Static pointer to static array

Similarly, the alias analysis exploits the fact that the returned value of  strcpy is a pointer to the same 
targets as the first argument. 

char a[5], b[5], c[5], d[5], *p, *q, *r;
p = c1 ? a : b;
q = c2 ? c : d;
x = p/* a[], b[] */[0];  // p may point to arrays a or b
y = q/* c[], d[] */[0];  // q may point to arrays c or d
r = strcpy(p,q);
z = r/* a[], b[] */[0];  // r may point to arrays a or b

This model is correct with respect to an analysis that does not make any difference for different array cells 
(as is the case for Tempo). This is why the loop that is present in the original strcpy() function does not 

INRIA



Tempo Specializer Documentation 39

need to be represented in the abstract function. If the analysis was finer,  e.g. interval analysis and separate 
attributes for array segments, a loop would be needed in order to express the (potentially partial) overwriting  
of dest with src. 

Providing Abstract Functions

In order to provide abstract functions definitions to Tempo, just write them in a separate  abstract    function   
file, i.e. suffixed with actx.c. Thus, if the program file is foo.c, the optional abstract function file should 
be foo.actx.c. 

When an abstract function is provided, Tempo automatically uses the abstract function for analysis and the 
actual  function  for  specialization.  Note  that,  additionally,  you  still  may  have  to  use  variable 
external_functions in order to specify whether actual functions may be called at specialization time 
(see Binding Time of External Function Calls above). 

In practice, the content of the program file and the abstract function file (c and actx.c) are merged and 
analyzed together. (There is a special treatment for functions defined in the abstract function file though.)  
When  visualizing the result of the analyses, you can see abstract functions as well. However, all abstract 
functions are removed during action analysis, i.e. the last analysis phase, which yields an action-annotated 
program without any trace of abstract code. 

Modeling Dynamic Memory Allocation

As explained above, the memory model of Tempo does not handle memory cells that have no name, such as 
cells  generated  by  dynamic  memory allocation.  Another  typical  use  of  external  functions  is  to  bestow 
(predefined) names on such memory cells by providing a function that models memory allocation. E.g., 

char dummy_location[1];

char *malloc(size_t size)
{
  return dummy_location;
}

The above abstract definition returns the same named memory cell, i.e. dummy_location[], for any call 
to malloc(). At specialization time, this abstract definition is removed; the actual malloc() function is 
used if static, or else residualized (see Binding Time of External Function Calls above). 

Returning the same location for each call to malloc() will merge all effects concerning that location. For a 
finer analysis, you may want to define and use a different memory allocation routine per call site, each one  
returning locations with a different name. 

Moreover, calls to  malloc() are often followed by a cast. Because it is not totally safe to use  casts in 
Tempo (especially for structured types), it is safer to define at least a "per type" allocation routine, e.g. 

struct foo dummy_struct_foo;

struct foo *malloc_struct_foo(size_t size)
{
  return &dummy_struct_foo;
}

RT n° 0390



40 R. Marlet

Note  that  it  is  useless  to  have  several  memory  allocation  routines  for  the  same  structured  type  with 
monovariance: all named structures (or unions) will share the same analysis properties anyway. 

Safety of Abstract Functions

You must be careful in writing an abstract function as Tempo can do nothing but assume it models the  
original function correctly. 

Moreover,  you  must  keep  in  mind  the  precision  of  the  analyses:  there  does  not  exists  a  single  good 
abstraction for a function that is independent of the analyses. Sometimes an abstract definition might be too 
precise with respect to present analyses. 

Consider for example the above abstract  definition for the function  malloc().  In this definition, it  is 
necessary for  dummy_location to be an array for safety reasons. If it is a scalar, as in the following 
abstract definition, 

char dummy_location;

char *malloc(size_t size)
{
  return &dummy_location;
}

this  is not  be safe  as one could write (pink color is for a  static & dynamic binding time) the following 
program. 

p = malloc(1);  // p points to dummy_location
*p = dynexp;    // dummy_location becomes dynamic
q = malloc(1);  // q points to dummy_location
*q = 's';       // dummy_location becomes static
ch = *p;        // Considered static instead of dynamic 

Note that it is always safe to consider an expression dynamic instead of static. (After all, the BTA, as most 
analyses, just  computes an approximation.) However, it  is  not  safe to consider static an expression that 
depends on a dynamic value. 

The problem above comes from the fact that the assignment *q = 's' acts as a killing definition for the 
binding  time  of  dummy_location.  This  situation  does  not  arise  with  an  array  definition  for 
dummy_location as, according to the memory model, the analysis conservatively merges binding times 
of all cells (i.e. array monovariance). Hence, with this definition, 

char dummy_location[1];

char *malloc(size_t size)
{
  return dummy_location;
}

the program is analyzed as follows 

p = malloc(1);  // p points to dummy_location
*p = dynexp;    // dummy_location becomes dynamic
q = malloc(1);  // q points to dummy_location
*q = 's';       // dummy_location stays dynamic
ch = *p;        // Considered dynamic 

INRIA



Tempo Specializer Documentation 41

Now *p is safely considered dynamic. 

Standard Tricks for Specifying Aliases and Binding Times

To finish with generalities concerning abstract functions, here are some standard tricks that are commonly 
used to express various binding-time or alias behaviors in abstract function files. The section  Specifying 
Complex Analysis Contexts below contains other typical uses. 

Dummy Dynamic Location

To make a dynamic location, you can declare a global location in the actx.c abstract function file; global 
locations are dynamic by default (see the variable static_locations     ). Alternatively, calling a dummy 
external function returns a dynamic value by default (see the variable external_functions     ). E.g. 

int dyn;
foo()
{
  x = dyn;    // Globals are dynamic by default
  y = fdyn(); // So are external calls
}

Dummy Static Location

To make a static location, you can declare a location in the abstract function file and initialize it to a constant  
value (or declare it static in the config.sml configuration file). E.g. 

int stat = 0;  // Or add stat in static_locations
foo()
{
  x = stat;
}

Turn a Location Dynamic

A location may be turned dynamic either by assigning a dynamic value to it or by making an assignment 
under dynamic control, e.g. 

if (dyn)  // Any dynamic condition
  x = x;  // Even if x is static,
use(x);   // now x is dynamic

Pointer to a Set of Locations

To make a dynamic (resp. static) pointer to a set of locations, you can assign the pointer to one of the 
required targets depending on a dynamic (resp. static) condition, e.g. 

{
  if (cond)  // p gets the same binding time as cond
    p = &x;  //   p may point to x

RT n° 0390



42 R. Marlet

  else       // or 
    p = &y;  //   p may point to y
}

Now  p points to either  x or  y. Furthermore, the variable  p has the same binding time as the expression 
cond. 

Note that cond should not be a constant because SUIF unconditionally eliminates dead code when parsing 
code such as if(0) or if(1). A simple variable, as used in if(cond) above, does the trick. 

Note also that the ifs are necessary because assignments to pointers may kill previous targets. E.g., after 

{
  p = &x;  // p may point to x only
  p = &y;  // p now may point to y only
}

variable p may point to location y only. 

2.4.9 Specifying Complex Analysis Contexts
When only a  module of a larger  application is to be specialized (modular specialization), the user must 
specify the exact analysis context of the module. This description includes information about the execution 
context both before and after the entry point is called from the larger application. 

If the parameters (formals of the entry point and globals) are simple scalars, the variables entry_point 
and static_locations are enough to provide Tempo with the relevant initial binding time context (see 
Entry Point and Binding Times For Its Arguments and Binding Time of Global Variables above). This covers 
a lot of common cases. 

For specifying more complex contexts,  i.e. initial  alias relations, binding times of parameters passed  by 
reference, or live locations after calling the entry point, another (less declarative) mechanism is provided, 
named context abstract functions. 

In addition to abstract external functions, the abstract function file (i.e. suffixed with actx.c) may contain: 

• a  function  void set_analysis_context(),  whose  arguments  are  pointers  to  the  entry 
point's arguments, to be used for setting the initial analysis context,  i.e. the execution context just 
before calling the entry point in the original application. 

• a  function  void set_post_analysis_context(),  whose  arguments  are  pointers  to  the 
entry point's  arguments, to be used for setting the uses of non-locals of the entry point,  i.e. the 
execution context after calling the entry point in the original application. 

If a function  set_analysis_context() or  set_post_analysis_context() is defined in the 
abstract context file, Tempo will automatically create a new (dummy) program entry point. This new entry 
point has the same interface as the previous one and does three things: 

1. It calls the set_analysis_context() function (if any) with arguments that are pointers to the 
original entry-point arguments. 

2. It calls the original entry point. 

INRIA



Tempo Specializer Documentation 43

3. It  calls  the  set_post_analysis_context() function  (if  any)  with  arguments  that  are 
pointers to the original entry-point arguments. 

For example, starting from a program file bar.c with content 

char foo(int a, struct baz *b) { ... }

and an abstract context file bar.actx.c with content 

void set_analysis_context(int *p_a, struct baz **p_b)
{ ... }
void set_post_analysis_context(int *p_a, struct baz **p_b)
{ ... }

Tempo actually analyses merge the two files and considered as the new entry point the following generated 
function. 

char dummy_entry_point(int a, struct bar *b)
{
  char retval;

  set_analysis_context(&a,&b);
  retval = foo(a,b);
  set_post_analysis_context(&a,&b);
  return retval;
}

Do  note  that  abstract  context  functions  set_analysis_context() and 
set_post_analysis_context() take as arguments pointers to the real entry-point arguments. The 
body of those functions may contains  any C code in order to model  the proper  execution context  (see 
Behavior of External Functions). 

Note  also  that  the  dummy  entry-point  function,  as  well  as  set_analysis_context() and 
set_post_analysis_context(), are only used in the main analysis stages. They are removed at the 
beginning  of  the  phase  that  performs  the  flattening  of  static  returns (return  sensitivity  processing)  and 
replaced by the original entry point. In particular, there remains no trace of them in the  action-annotated 
program. 

The following sections give various examples showing uses of context abstract functions. 

Binding Times of Parameters Passed By Reference

When declaring a pointer static or dynamic, the binding time concerns the address only, not the content. By 
default, pointed scalar values have the same binding time as the pointer and pointed composite values are 
dynamic (i.e. default binding-time rules for structures, unions and arrays apply). The exact binding time of 
the content can be specified as follows. 

Pointers to Structures or Unions

Because of monovariance, the binding time of structures and unions are declared for all instances and must  
be stated separately (see  Binding Time of Structures and Unions above). This is the case even when the 
structure or a union is first given as a pointer. With polyvariance enabled, the binding time of structure  
instances may still differ though.

RT n° 0390



44 R. Marlet

Pointers to Scalars

Declaring  a  pointer  to  static  or  dynamic  scalar  can  be  specified  using  the  context  abstract  function  
set_analysis_context(). Consider for example the following program file foo.c 

int a, b, *q1, *q2, *q3, *q4;

entry(int *q, int x) { ... }

and the foo.actx.c file. 

int dyn1, dyn2; // Dummy dynamic locs
int stat = 0;   // Dummy static (thanks to the init) loc

                    // Declarations from foo.c are needed
extern int *q1,*q2; // only for the variables that are
                    // actually used in foo.actx.c

void set_analysis_context(int **p_q, int *p_x)
{
  // p_q is a pointer to the real (pointer) argument q
  // p_x must be present though unused 

  if (dyn1)
    q1 = &dyn1; // q1 dynamic ptr to some dynamic loc
  if (dyn1)     // q1 may also point to some other
    q1 = &dyn2; //   dynamic loc
  q2 = &dyn1;   // q2 static ptr to some dynamic loc
  q4 = &dyn2;   // q4 static ptr to some other dynamic loc
  *p_q = &stat; // q static ptr to some static loc
}

Note that, in the above example,  q1 may point to two locations whereas  q2 and  q4 may point only to a 
single (different)  locations.  It is important  here to provide a faithful  information (i.e.,  same or different 
location) because it may have an impact on the analysis. For example, if  q2 and  q4 were pointing to the 
same location dyn1, then assigning a static value to *q2 would make *q4 static as well. (*q1 would still 
not be static though, because it could point to dyn2 as well.) 

Note also that the above specification concerning q1 is not equivalent to the following one: 

  if (dyn1) {
    q1 = &dyn1; // q1 points to dyn1 only
    q1 = &dyn2; // q1 now points to dyn2 only
  }

Indeed, because the assignment act as a killing definition, only the latest one is taken into account in the final 
result. (See Behavior of External Functions: pointer to a set of locations.) 

Pointers to Strings and Arrays

As is the case for structures and unions, the binding time of arrays (e.g. strings) must be declared explicitly 
because of array monovariance. However, the binding time is not "per type" but "per actual array". Hence 
the above scheme can be applied to specify the binding time of pointed arrays. 

INRIA



Tempo Specializer Documentation 45

There is a trick though, because SUIF unconditionally turns array arguments into pointers. As a result, type 
information is lost, which can make the analysis unsafe. Let us consider an entry point f defined as follows: 

int f(int a[])
{
  a[0] = 3;
  return a[1];
}

This program is translated by SUIF into:

int f(int *a)
{
  *a = 3;
  return a[1];
}

As a result, Tempo cannot tell any longer whether a points to an scalar integer or to an array. Now assume 
the array a is dynamic. In the first case, if a points to an scalar integer, the statement *a = 3 acts as a 
killing definition and the location a is made static. As a result, a[1] is considered static as well, which is 
wrong (i.e. unsafe). In the second case, if a is considered to point to an array, the statement *a = 3 
does not act as a killing definition and the location a is stays dynamic because of array monovariance. In 
order to have that second, correct behavior, you can define the following context abstract function. 

int dummy_array[1];

void set_analysis_context(int **p_a)
{
  *p_a = dummy_array;
}

This actually defines argument a of f as a static pointer to a dynamic array. If the array is static, just add 
dummy_array in the variable static_locations. Note also that the above context abstract function 
forces the binding time of the argument of f to static, even if the variable entry_point specifies 
f(D). This is because dummy_array is a constant (hence static) pointer. If the pointer to the array is 
dynamic, you may define: 

int dyn, dummy_array[1];

void set_analysis_context(int **p_a)
{
  if (dyn)               // Dynamic condition makes
    *p_a = dummy_array;  // pointer p_a dynamic
}

Initial Alias Relation

Initial alias relations between locations can be specified using set_analysis_context(). Suppose we 
want to specialize the following procedure, which has been extracted from a larger program. Let  dyn be 
some dynamic expression and assume arguments of f are all static pointers to static locations. 

int a;               // Assume a is static initially
f(int *x,int *y)     // Static ptrs to static locations
{

RT n° 0390



46 R. Marlet

  if (dyn)           // The dynamic test makes *x
    *x = *y - a;     //   dynamic after the condition
  c = (*y + a) / *x; // Is (*y + a) static ?
}

Without more information, Tempo will consider that expression *y + a is static, so that it can be replaced 
by a constant during specialization. This is unsafe as function f could be called in the larger program (i.e. the 
application) with one of the following contexts: 

f(&a, &b);
f(&b, &b);

In the first case, making *x dynamic also makes a dynamic because of the aliasing relation. In the second 
case, making *x dynamic makes *y dynamic as well. 

We can specify these properties using the context abstract functions and thus yield a safe specialization. For  
example, the second case above can be specified by the following set_analysis_context() which 
states that the arguments x and y of f point to the same static cell. 

int dummy = 0;      // Any static value

void set_analysis_context(int **p_x, int **p_y)
{
  *p_x = *p_y = &dummy; // *p_x and *p_y refer to the same thing
}

Live Locations After The Entry Point

Live locations refer to locations that are still  live at the end of the program being specialized. This can 
happen during  modular specialization, when the program fragment is extracted from a larger program and 
this fragment is reinserted after specialization. Consider for example this function 

void foo(int a, int b)
{
  x = x + y;
  y = x + b;
  z = x + a;
}

used in the following context in the larger application. 

x = 1;
y = 2;
z = dyn;
foo(4,z);
bar(x,y,z);  // Called with arguments (3,3+dyn,7)

In this context, function foo can be specialized with a binding-time context where: a, x and z are static; b 
and y are dynamic. The binding time analysis then yields: 

void foo(int a, int b)
{
  x = x + y;    // Static assignment
  y = x + b;    // Dynamic assignment

INRIA



Tempo Specializer Documentation 47

  z = x + a;    // Static assignment
}

which leads to the following specialization: 

void foo_1(int b)
{
  y = 3 + b;
}

However, it is not correct to replug this function in the original application. 

x = 1;
y = 2;
z = dyn;
foo_1(z);
bar(x,y,z);  // Called with arguments (1,3+dyn,dyn)

The problem comes from the fact that Tempo has not been instructed that locations x, y and z are used after 
the entry point is called. Tempo has assumed that they were not used and has specialized away all the static 
locations (that is why only y remains). 

The variable live_locations is used to indicate to Tempo that some locations are live after the entry 
point is called. (Syntax and constraints on locations are the same as for variable static_locations.) 

live_locations := ["x", "y", "z"];

Using this information, Tempo now produces the following binding times. 

void foo(int a, int b)
{
  x = x + y;    // Static & dynamic assignment
  y = x + b;    // Dynamic assignment
  z = x + a;    // Dynamic assignment
}

which leads to the following specialization: 

void foo_2(int b)
{
  x = 3;
  y = 3 + b;
  z = 7;
}

It is now correct to replug this function in the original application. 

x = 1;
y = 2;
z = dyn;
foo_2(z);
bar(x,y,z);  // Called with arguments (3,3+dyn,7)

Live locations may be thought of as dynamic uses after calling the entry point. It is actually implemented  
using  the backward propagation  of  dynamic  uses  performed by the  evaluation-time analysis phase,  i.e. 
ETA2. 

RT n° 0390



48 R. Marlet

It  is equivalent  to specify live locations using variable  live_locations or to model  a use of those 
locations in the set_post_analysis_context() function. E.g., in the above example, live locations 
could also have been specified using this definition in the abstract context file: 

int dyn;                // Dynamic by default

void set_post_analysis_context(int *a, int *b)
{
  do { x=x; y=y; z=z; }  // Turns them dynamic
  while (dyn);           // and make dynamic uses
}

In  practice,  variable  live_locations covers  most  common  cases.  The  function 
set_post_analysis_context() is  used  for  more  complex  cases,  especially  when  aliases  are 
involved, as it is easier to rely on Tempo's analyses to simulate the exact dynamic uses. In this case, some C 
code  from  the  application  can  be  copy/pasted  (and  possibly  abstracted)  into  the  function 
set_post_analysis_context(). 

New alias relations occurring after the entry point is called do not actually have an impact on analysis and  
modular specialization. However, they may imply different uses of locations, which does have an impact on 
specialization. 

2.5 Visualization

Files  containing  the  result  of  intermediate  stages  of  the  analysis  have  extensions  ".as"  and  ".at",  e.g. 
fft.bta.as, fft.at. They are not kept by default, except the ".at" file which is the final result of all 
the analysis phases. 

The results are also stored as commented colored C files (generated by default) that can be used to visualize 
the outputs of the analysis, e.g. fft.bta.color, fft.at.html. In those colored files, the main items 
for understanding the result of the analyses are: 

• Annotations for alias information  : possible targets for each pointer expression. 
• Colors for binding-time information  : expressions that are static, dynamic, etc. 
• Colors for evaluation-time information  : expressions that should be static, dynamic, etc. 
• Colors for actions  : transformations to perform at specialization time. 
• Function polyvariance  : analysis of the same function in different contexts. 
• Function call site  : binding times and polyvariance index. 
• Function definition  : binding times and polyvariance index. 
• Function signature  : side effects (read and written non-locals) and live uses. 
• Entry-point signature  : summarized signature of the entry point. 

2.5.1 Colored Files
Color files show the result the analyses. Each color file has a legend near the top describing the colors used  
in the file. The colors have similar meanings (i.e. binding-time and evaluation-time information) in most of 
the files, except the at.color file, showing the results of the action analysis. We describe the colors used 
in this file separately. 

For visualizing those files, you can choose between two colored files formats: 

INRIA



Tempo Specializer Documentation 49

• the HTML format, that can be displayed using any any web browser, 
• the MIME text/enriched format, than can be displayed using GNU emacs or xemacs. 

The Tempo viewer variable let you choose between those two formats. It may be set to either html or 
emacs triggering the generation of HTML files (suffixed with .html) or MIME text/enriched format files 
(suffixed with .color). 

Be careful: if you choose, say, html, then the ".color" files that might be present in the directory will not be 
removed when the ".html" files are generated. This may lead to inconsistencies and confusion if later on you 
forget about html and read the ".color" files (that will not be up-to-date). 

In the following explanation, we assume that  viewer is set to  emacs. If  viewer is set to  html,  the 
HTML files generated are colored similarly. 

If you have troubles visualizing ".color" files with emacs, consider reading the Emacs Installation Issues in 
the Installation Manual. 

See also: 

• Variable: max_width   (width of displayed code) 
• Variable: max_decls_size   (threshold for declarations ellipsis) 
• Variable: print_dir_in_html_title   (display path in HTML title) 

2.5.2 Text For Alias information
Recall  that  the  analyses  operate  on  the  output  of  SUIF.  Hence  the  color  files  contain  the  results  of  
transformations performed by SUIF. In particular, note that SUIF unconditionally performs the following 
translations: 

ptr->field => (*ptr).field 

... *ptrexp ... => 
suif_tmp42  =  ptrexp;
... *suif_tmp42 ... 

where  ptrexp is  some pointer  expression (not  just  a variable).  Hence any dereference is  explicit  and 
applies only to a pointer variable. 

Alias information appears in the C output files as comments after each pointer dereference: 

*ptr/* loc1, ..., locN */ 

where  loc1,  ...,  locN is  the  list  of  locations  where  "ptr" may point  to,  i.e. it  is  a  superset  (safe 
approximation) of possible targets.  Those locations may be variable (including pointers) locations, array  
(contents) locations, structure locations, or (structure) member locations (remember that all instances of a 
structure type have the same binding time.) Here is how you can read alias information: 

*ptr/* var */ 
ptr may point to variable var, 

*ptr/* a[] */ 
ptr may point to any cell of array a, 

*ptr/* {s} */ 
ptr may point to any structure of type struct s, 

RT n° 0390



50 R. Marlet

*ptr/* s.f */ 
ptr may point to field f of any structure typed struct s. 

If the pointer variable has not been initialized (it may point to nothing yet), we consider that it points to...  
what it points to!: 

*ptr/* *ptr */ 

Thus, the alias information is never empty. 

See also: 

• Variable: verbose_aliases   (display alias information) 
• Variable: verbose_aliases_in_specializations 
• Variable: verbose_callsig   (display polyvariance index) 
• Variable: verbose_headers   (display signature information) 

2.5.3 Colors For Binding-Time and Evaluation-Time Information
The legend in ".bta.color" files, that express the results of the BTA phase, is: 

/* LEGEND:  STATIC  DYNAMIC  SD_FUNC  STRUCTURE  BOTTOM
 */

In the subsequent phases (i.e., ".color" files for "eta1", "eta2", "flsret", "flsd" and "preproc2"), the legend is: 

/* LEGEND:  STATIC  DYNAMIC  STAT&DYN  STRUCTURE  BOTTOM
 */

The only difference concerns the interpretation of the pink color, i.e. SD_FUNC vs. STAT&DYN. 

Blue color: Static

Blue  is  always used for  static  expressions.  The  color  of  the  left-hand side of  an  assignment  statement  
deserves  some explanation.  After  the  BTA (i.e.,  in the ".bta.color"  file),  when the L-value is  known at 
specialization time, the left-hand side of an assignment is considered static, regardless of the binding time of  
the variable before or after the assignment statement. Beginning with the ETA1 (i.e., in the ".eta1.color" and 
subsequent files), the color reflects the evaluation time of the assignment, and thus the binding time of the 
variable after the assignment. 

Red color: Dynamic

Red  is  always  used  for  dynamic  expressions  and  statements.  The  color  of  a  function  identifier  (and 
parentheses) in a function call reflects the binding time of the body of the called function. Regardless of this 
binding time, if the function definition is part of the program, it will be specialized. Thus even when the call  
is dynamic, some specialization can occur. 

INRIA



Tempo Specializer Documentation 51

Pink color: Static & Dynamic

There two meanings for the pink color, according to the phase 

BTA 
The pink color in the BTA only refers to calls to functions that contain some dynamic code in the body 
and have a  static  return value.  This  property  is  indicated  in  the  legend as  SD_FUNC (static  and 
dynamic function). Such calls will eventually be flattened in a subsequent phase. 

ETA (and subsequent phases) 
The pink color in the ETA and subsequently refers to definitions (and their subcomponents) that are 
both evaluated and residualized. This property is indicated in the legend as  STAT&DYN (static and 
dynamic expression). The use of pink in ETA files is actually ambiguous, since it is also used for calls  
to functions that contain a dynamic body and a static return value (as in the BTA). 

Pale blue color: Structure

In the ".color" files (except the ".at.color" file), structures are considered to simply have a generic "structure"  
binding-time. This "structure" binding-time does not specify if the structure is totally static, partially static, 
or  totally  dynamic.  It  only appears if  the structure  is  manipulated as  a whole,  e.g. assigned to another 
structure or passed as an argument. When a field is selected (with the "." dot operator), the field will be 
annotated with its corresponding binding time.

This color may appear as pale green, rather than pale blue. 

Black color: Bottom

Black indicates a term for which no binding time can be determined. Black usually appears when local  
variables are used before they are assigned. If the code is not dead code, this situation may represent an error  
in the source program. When combined with other binding times during the BTA, the "bottom" binding time 
is  treated  as  a  "static"  binding  time,  i.e. a  static  (resp.  dynamic)  expression  combined  with  a  bottom 
expression make a static (resp. dynamic) expression. 

2.5.4 Colors For Actions
The legend in ".at.color" files, that express the results of the Action Analysis phase, is: 

/* LEGEND:  EVAL  REDUCE  REBUILD  IDENTITY  STRUCTURE  EV&RES
 */

Blue color: Evaluate

Blue indicates a term that can be completely evaluated during specialization. Variable declarations that can 
be eliminated during specialization are also colored blue. 

RT n° 0390



52 R. Marlet

Green color: Reduce

Green indicates a term that can be simplified during specialization, but contains some dynamic components. 
For example, an if statement with a static test but dynamic code in the branches would be colored greern: 
after specialization, the if statement will be rewritten into (the specialization of) one of the two branches. 

Orange color: Rebuild

Orange indicates that a term cannot be simplified during specialization, but that the term does contain some 
subexpressions that can be simplified. For example, in an addition expression with a static operand and a  
dynamic operand, the addition operator would be colored orange. 

Red color: Identity

Red indicates a term that must be completely residualized. Such terms are essentially copied unmodified into  
the residual program. Variable declarations that are not used during specialization and will be part of the 
residual program are also colored red. 

Pale blue color: Structure

Pale blue is used for values of structure type, as in the other analyses. (It actually hides one of two possible  
actions: "identity" or "evaluate & residualize"; the case "evaluate" is printed out properly.) 

Pink color: Evaluate & Residualize

Pink  is  used  for  terms  and  variable  declarations  that  are  both  evaluated  and  residualized  during 
specialization. Because of the function flattening phase, there is not the second meaning of pink (in the BTA 
or ETA files)  to indicate  a function that  has  a static  return value but  some dynamic expressions in the 
function body. 

2.5.5 Function Polyvariance (a.k.a. Context Sensitivity)
After the BTA, a function definition may appear several  times in the colored file.  Because the  BTA is 
polyvariant, each occurrence of the definition corresponds to a different binding-time contexts,  e.g. once 
with a static argument, once with a dynamic argument. The binding-time context includes the binding times 
of the read variables, as well. 

In order to differentiate each variant of the function at the call site, the name of each function is labeled with  
an index (shown as a comment just after the function name) at the function definition as well as at the call  
site. Note that the index is global: each function, variant or not, gets a different index (e.g. f 1, f 2, g 3, g 4), as 

opposed to a "per-function" index (e.g. f 1, f 2, g 1, g 2). 

Note that there exist also a degree of polyvariance in the ETA as each BTA variant may be further split into 
several ETA variants. 

Note also that the polyvariance index is global to the current file: there is no relation between some index in 
the ".bta.color" file and the same index in the ".eta2.color" file. 

INRIA



Tempo Specializer Documentation 53

2.5.6 Function Call Site
A function call looks like this: 

bar/*7*/(statexp, dynexp, (sdexp))

The corresponding binding-time information can be read as follows. 

Function name and actuals' parentheses: bar(...) 
Binding time of the both the function body and the return value: blue means that both are static, red  
means that both are dynamic, pink (as above) means that the body is dynamic while the return value is 
static. If the function has a void return type, the binding time color is that of the body (thus it cannot 
be pink). 

Number next to function name: /*7*/ 
Polyvariance index, in order to find the corresponding definition (see  Function Definition below). 
Note that the index numbers for a particular function vary from analysis to analysis. In the HTML 
colored files, the index number at each call site is a hyperlink to the corresponding definition. 

Actuals: statexp, dynexp, (sdexp) 
Binding time of each actual argument. The possible extra parenthesis level means that the binding 
time of the actual argument (given by the color of the expression inside the parentheses) is different 
from the binding time of the formal argument (given by the color of the parentheses) in the analyzed  
function;  this  may  happen  only  after  ETA2  as  the  analysis  may  turn  a  static  expression  into  a 
static&dynamic or a totally dynamic expression. 

2.5.7 Function Definition
Let us consider the following colored binding-time annotations computed for a function definition. 

// BT of return, index, BT of body, BT of formals
extern int foo/*3*/(int stat, int dyn)
  {               // BT of body: dynamic
    gdyn = dyn;   // BT of stmt: dynamic
    return stat;  // BT of return: static
  }               // BT of body: dynamic

The corresponding binding-time information can be read as follows. 

Type and function name: int foo 
The color of the function name and type (here blue, i.e. static) indicates the binding time of the return 
value. If the function has a void return type, the function name and type are displayed in black. 

Number next to function name: /*3*/ 
Polyvariance index. Because of  polyvariance, there can be several definitions of the same  function 
corresponding to different call site (see Function Definition above), each with different binding-time 
properties. While all variants have the same name, each has a unique index number. Note that the 
index numbers for a particular function vary from analysis to analysis. 

RT n° 0390



54 R. Marlet

Formals' parentheses: (...) 
Binding time of the body of the function: red, i.e. dynamic, in the above example. 

Formals: int stat, int dyn 
Binding time of each formal argument. 

Body's braces: {...} 
Binding time of the body of the function: red, i.e. dynamic, in the above example. 

Return statement: return ... 
Binding time of the return value: blue,  i.e. static, in the above example. If the function has a void 
return type, the binding-time color (static or dynamic) is irrelevant. 

2.5.8 Function Signature
A signature is generated for each function when the variables verbose_headers is true (the default). In 
this case, the signature is shown in a comment at the beginning of each function. It provides information  
about the non-locals of a function. It looks like this. 

extern int foo/*42*/(int u, int v)
/*
binding times of read non_locals: a, b, tab, str.x
binding times of written non_locals: a, str.y
residual non-locals top: a, str.x
eval non-locals top: str.x
residual non-locals bottom: b
 */
  {
    ...
  }

Names listed are location names: scalar variables, arrays (without brackets), fields of structures and unions 
(with the name of the type, not of an instance). 

This  signature  contains  up  to  six  parts.  Only  the non-empty  parts  are  shown.  The  following signature  
components may appear in all color files. 

binding times of read non_locals: 
This list gives the binding times of non-local variables and structure fields that are read in either this 
function or in any function called by this function. 

binding times of written non_locals: 
This list gives the binding times of non-local variables and structure fields that are written by either 
this function or by any function called by this function. 

The ETA2 propagates information backwards from the point where variables are used to the points where 
they are defined. (There are possibly several of them.) In the ".eta2.color" file (as well as colored file of  
subsequent phases), a function signature contains in addition information about non-local variables that are 
evaluated or residualized within the function (or some function it calls) and about non-local variables that are 
evaluated or residualized after some call site of the function: 

INRIA



Tempo Specializer Documentation 55

residual non-locals top: 
There are residual occurrences of the non-local variables in this list somewhere in the control flow 
path after entering this function. 

eval non-locals top: 
There are evaluated occurrences of the non-local variables in this list somewhere in the control flow 
path after entering this function. 

residual non-locals bottom: 
There are residual occurrences of the non-local variables in this list somewhere in the control flow 
path after leaving this function. 

eval non-locals bottom: 
There are evaluated occurrences of the non-local variables in this list somewhere in the control flow 
path after leaving this function. 

If a variable is in a "top" list, but not in the corresponding "bottom" list (not to be confused with the black 
"bottom" binding time), then there is an occurrence of the variable within the function or some function it 
calls. If a variable is in a "bottom" list, but not in the corresponding "top" list, then the function or some  
function it calls provides the definition required for the subsequent occurrence of the variable. 

2.5.9 Entry-Point Signature
If verbose_headers is true (the default), there is also a comment near the beginning of each color file 
indicating the call signature of the entry point. This signature may contains the following information: 

binding times of formals: 
This list gives the binding times of the formals. 

binding times of read non_locals: 
This list gives the binding times of the global variables that are used by the program. 

residual non-locals bottom: 
This amounts to a list of the  live variables after the  program is called in the larger  application, as 
specified  by  the  live_locations Tempo  variable,  or  residualized  via  the 
set_post_analysis_context() function. 

2.6 Compile-Time Specialization

Once the analysis has been performed successfully, i.e. if you are satisfied with the computed binding times, 
you can move on to building a compile-time specializer.  The compile-time specialization is done in two 
steps: 

1. Construction of a Compile-Time Specializer  , given a successful analysis (i.e. an .at file). 
2. Invocation of a Compile-Time Specializer  , given actual values for static parameters of the entry 

point, yielding the source of a specialized program. 

RT n° 0390



56 R. Marlet

The first step is generally done once; you do not have to rebuild a new compile-time specializer as long as  
your program does not changes. The second step can be performed many times, for each set of specialization 
values. 

See also: 

• Installation of a Specialized Function   

2.6.1 Construction of a Compile-Time Specializer
There is no special parameterization for the construction of a compile-time specializer; just run the cs top-
level command on your program. (See Building a Compile-Time Specializer.) 

You do have to rebuild the specializer each time that you provide new specialization values; just edit the 
.sctx.c file (see below) and re-run the sp top-level command. 

2.6.2 Invocation of a Compile-Time Specializer
Before  specializing  a  program,  using  the sp top-level  command  (see  Running  a  Compile-Time 
Specializer), a value must be provided for each piece of data which has previously been declared as static.  
Recall that static parameters can be globals as well as arguments of the entry point. Because the initialization 
of those values can be arbitrarily complex, including library calls, the values are given using a C file that is  
linked to the compile-specializer for performing actual specialization. This C file is suffixed ".sctx.c". It 
should at least: 

• Include the file suffixed .sctx.h, that has been generated by the construction of the compile-time 
specializer  phase.  The  .sctx.h file  provides  the  exact  prototype  of  the 
set_specialization_context() function  (see  just  below).  It  also  contains  the  type 
definitions and the declarations of the global variables of your program. 

• Define a function named set_specialization_context() whose arguments are pointers 
to  the  actual  static  arguments  of  your  entry  point,  in  the  same  order.  Unlike  the 
set_analysis_context() function, the dynamic arguments of the entry point are not (and 
must not be) present. 

The set_specialization_context() function is called to set the static values before specialization 
so that  you can set  them by an indirect  assignment.  Because all  declarations  are provided through the  
.sctx.h file, static global variables can be set by ordinary assignment. E.g. 

#include "foo.sctx.h"

void set_specialization_context(int *expon)
{
  *expon = 4;
  glob = 3;
}

You can use the name that  you want  for  the  arguments  as  it  is  a  normal  C function.  In  practice,  it  is 
convenient to reuse the argument names of the entry point, i.e. to start from the list of formal arguments in 
the  definition  of  the  entry  point  function,  remove  the dynamic ones  and "add a  star"  in  front  of  each  
remaining formal. 

INRIA



Tempo Specializer Documentation 57

The general rule for not forgetting to provide a static value to a static memory cell is to check all locations  
listed  in  the  static_locations variable,  as  well  as  the  static  entry  point  arguments  listed  in  the 
entry_point variable.  If  you forget  to initialize  a  memory cell,  its  value is  undefined,  as  in  any C  
program. 

Since the .sctx.c file is a standard C file, you may also call functions, open files, read from the terminal, 
etc. E.g. 

#include <math.h>
#include <stdio.h>
#include "foo.sctx.h"

void set_specialization_context(int *n, struct bar **x)
{
  printf("Enter number of iterations: ");
  scanf("%d",n);

  phase = 4.0 * atan(1.0);

  *x = (struct bar *) malloc(sizeof(struct bar));
  (*x)->a = *n / 2;
  (*x)->b = &phase;
}

As you can see in the above example, there is no need to declare the global variable phase nor the strcture 
type bar: they are declared in the foo.sctx.h file. 

Note that structure  bar may have more fields than  a and  b. During specialization, the structure that are 
partially  static  are  not  split  into  separate  static  and  dynamic  parts.  You  may  thus  call  a  function  that 
initializes all fields of a structure even though only some of them are static. The initialization of dynamic  
fields is just useless. However, you cannot initialize, say, a dynamic global variable as it is not declared in 
the .sctx.h file. 

Common Errors in Setting Specialization Contexts

A common error is to set the local variables of set_specialization_context(), not their pointer 
values (i.e. not the static arguments of the entry point), e.g. 

void set_specialization_context(int *expon)
{
  expon = 4;  // Should be *expon
}

Another common error in  .sctx.c files is not to provide/allocate memory cells. This generally leads to 
segmentation faults or bus erros. Consider for example the following implementation of an inner product. 

int dot_product(int size, int *u, int *v)
{
  int i, sum = 0;
  for (i = 0; i < n; i++)
    sum += u[i] * v[i];
  return sum;
}

RT n° 0390



58 R. Marlet

Assuming vector u and integer size are static, it is an error to define this: 

#include "dotprod.sctx.h"

void set_specialization_context(int *size, int **u)
{
  *size = 3;
  (*u)[0] = 1;
  (*u)[1] = 0;
  (*u)[2] = 5;
}

The reason is  that  no memory cell  has  been allocated for vector u.  What the entry point  expects is  an 
initialized integer size and a initialized pointer to an initialized vector. What is written above does initialize  
the size but does not initialize the pointer; it assumes the pointer is initialized and only initializes the vector. 
When specializing the program, you will most likely get a segmentation fault or a bus error but in any case 
not the expect behavior. A pointer and a vector may be initialized as follows. 

#include "dotprod.sctx.h"

int init_u[3] = {1,0,5};

void set_specialization_context(int **u, size *n)
{
  *size = 3;
  *u = init_u;
}

You may  also  use  malloc() to  allocate  the  memory.  But  you should  not  define  a  local  variable  in 
set_specialization_context() and initialize  a  static  location with a  pointer  to  it  because the 
corresponding cell is lost (it is stack allocated) as soon as function set_specialization_context() 
returns, e.g. 

#include "dotprod.sctx.h"

void set_specialization_context(int **u, size *n)
{
  int init_u[3];

  *size = 3;
  *u = init_u; // Will put you into trouble
  (*u)[0] = 1;
  (*u)[1] = 0;
  (*u)[2] = 5;
}

See also: 

• Running a Compile-Time Specializer   
• Compilation

• Variable: ctcg_cflags   (flags for the C/C++ compiler) 
• Variable: ctcg_ldflags   (flags for the link editor) 
• Variable: ctcg_ldflags   (additional libraries) 
• Variable: sh_command   (shell setting) 

• Specializer

INRIA



Tempo Specializer Documentation 59

• Constant: default_cts_bufsize   (default buffer size for the specializer) 
• Variable: explicit_cts_bufsize   (buffer size for the specializer) 

• Post-processing   phase   (Reference Manual) 
• Pretty-printing & extra code transformations   phase   (Reference Manual) 

2.7 Run-Time Specialization

A compile-time off-line specializer first takes the source code of a program ( i.e., a set of functions and an 
entry point) and a description of the invariants. Analyses partition the program into fragments of code that 
can be evaluated knowing the invariants, and fragments of code that cannot be evaluated until run time. 
Then, given specialization values, the specializer yields the source code of the specialized program. This  
result may then be compiled to obtain a specialized executable code.

Unfortunately, this approach is not well suited to cases where the specialization values are only known at  
run-time.  For those cases, specialization must be performed at  run time. Directly reusing the traditional 
source-to-source program specialization would involve the use of a compiler at run-time. In most cases, 
because compilation is an expensive operation, this solution yields no speed up, but rather a slow down...

Run-time specialization is an extension of traditional off-line specialization. Our system uses the concept of  
generating extension. A traditional generating extension for a given program is a dedicated specializer that, 
given  specialization values  as  input,  yields  the  source code  of  the  specialized program. Our  generating 
extensions, called run-time specializers, directly produces the executable code of the specializations. A run-
time specializer may be called at run time to dynamically yield specialized executable code from run-time 
values.

A key issue in run-time specialization is amortization, i.e. the number of time the specialized code has to be 
called to recover the cost of its production (because production occurs at run-time). Our approach to lower 
amortization is to do as much compilation as possible before run-time using code templates, leaving only the 
assembling of templates for run time. Additionally, we prefer to rapidly produce reasonably fast code rather  
than  aggressively  optimize  the  specialized  code:  the  run-time specializer  generates  good code  (but  not  
optimal), very quickly. In particular, no code optimization is done at run-time.

2.7.1 Construction of a Run-Time Specializer
In  Tempo,  compile-time  and  run-time  specialization  share  the  same  analysis  up  to  the  action  analysis  
(although it is possible to parameterize the  evaluation-time analysis specifically to get better results from 
run-time specialization; see lift_all and lift_global variables). Consequently, the specification of 
the analysis context is the same in both cases. The only difference lies in the type of programs that can be  
specialized as it may rely on values that are only known at run-time. 

In order to build a run-time specializer, given a successful analysis ( i.e. an .at file), run the rs top-level 
command on your program. (See Building a Run-Time Specializer.) At the moment, only gcc (or a slightly 
modified version of lcc) can be used for constructing a run-time specializer; see variable compiler. 

The result is a compiled run-time specializer in a file suffixed with  .rts.o. This file is generated in a 
directory named after the architecture and system of the current machine; see variable arch_dep_dir. A 
.rts.h file  is  also  generated  in  the  working  directory;  it  contains  the  signature  of  the  run-time 
specialization function. 

RT n° 0390



60 R. Marlet

2.7.2 Invocation of a Run-Time Specializer
In order to install the run-time specializer in your original application, just include the .rts.h header file 
wherever  you  need  to  call  the  run-time  specialization  function  and  link  the  .rts.o file  with  your 
application. 

You get the name of the run-time specialization function by looking in the .rts.h header file, that contains 
its prototype. This name has the form: rts_entrypointname_suffix, e.g. 

/* TEMPO Version 1.193, 04/18/98,
  Copyright (c) IRISA/INRIA-Universite de Rennes */

extern void *rts_pow_1(int);

Using the run-time specializer is very simple: just call it with actual values for the static arguments of your  
entry point. It returns a pointer to the dynamically produced specialized function. E.g., 

int (*spow)(int);

x1   = pow(base,expon);
spow = rts_pow_1(expon);
x2   = (*spow)(base);

Actually, this is note pure ANCI C. This is because the prototype is not "complete". It should be: 

extern int (*((*rts_power_1)(int)))(int);

Thus, to be ANSI compilant, you would not have to write: 

spow = ((int(*((*)(int)))(int))rts_power_1)(expon);

The specialized function whose address is stored in spow is generated once, at run-time, and may be called 
many times to amortize the cost of generating it. 

See also: 

• Installation of a Specialized Function   

2.7.3 Recursive and Multiple Run-Time Specializations
In order to do multiple specializations, it is necessary to allocate new buffer space each time the specializer 
is called. Recursive functions have multiple specializations for the same function and thus require allocation  
of  buffer  space  as  well.  By  default,  the  run-time  specializer  allocate  new  buffer  space  each  time  the  
specializer is called and for each function. This also makes certain global variables local, so that generating 
extensions can be recursive to specialize recursive functions. The reentrant top-level variable can be set 
to false to instruct the specializer to generates code in a static buffer and returns a pointer to this buffer. 

Note: The run-time specializer does not have a specialization cache and thus recursive calls with previously 
specialized values will cause the specializer not to terminate. For example, backward branches in a byte-
code interpreter will cause an infinite loop. (See the Limitations to Run-Time   Specialization  .) 

Allocating new space each time a generating extension is called is not always desirable, however. If the 
entry-point  function calls  a second function, for example, then two buffers will  be allocated but  only a  
pointer to the entry-point function (and thus its buffer) is returned. In this situation, the second buffer can  

INRIA



Tempo Specializer Documentation 61

never be deallocated.  This behavior  can be changed by overriding the allocation functions used by the  
runtime  specializer.  The  specializer  calls  the  functions  pointed  to  by  rts_alloc_data and 
rts_alloc_code to allocate data and code buffers respectively. These are global variables and can be  
used to override the default allocation routines (malloc). 

The following is an example of overriding the allocation functions so that all code and data are allocated 
from different sections of a single buffer, so that the memory can be later released. 

/* Declare the function pointers for
   run-time specializer allocation */
extern char *(*rts_alloc_data)(unsigned int);
extern char *(*rts_alloc_code)(unsigned int);

/* Define some buffer sizes */
#define BUF_CODE_SIZE 500000   /* Total code buffer size */
#define FUN_CODE_SIZE 500      /* Amount of code buffer
                                    for each function */
#define BUF_DATA_SIZE 50000    /* Total data buffer size */
#define FUN_DATA_SIZE 50       /* Amount of data buffer
                                    for each function */

/* Pointers to the buffers */
char *code_buffer, *data_buffer;

/* The current positions in the buffers */
int code_pos, data_pos;

/* New allocation functions */

char *get_code_mem(unsigned int sz)
{
  char *ret;

  ret = code_buffer + code_pos;
  code_pos += FUN_CODE_SIZE;
  if (code_pos > BUF_CODE_SIZE) {
    puts("Code buffer overflow.");
    exit(1);
  }
  return ret;
}

char *get_data_mem(unsigned int sz)
{
  char *ret;

  ret = data_buffer + data_pos;
  data_pos += FUN_DATA_SIZE;
  if (data_pos > BUF_DATA_SIZE) {
    puts("Data buffer overflow.");
    exit(1);
  }
  return ret;
}

void reset_rts_buffers()
{

RT n° 0390



62 R. Marlet

  code_pos=0;
  data_pos=0;
}

/* Use run-time specializer */

void main()
{
  /* Override allocation functions */
  rts_alloc_data = get_data_mem;
  rts_alloc_code = get_code_mem;

  /* Allocate buffers */
  code_buffer = (char *) malloc(BUF_CODE_SIZE);
  data_buffer = (char *) malloc(BUF_DATA_SIZE);
  reset_rts_buffers();

  /* Specialize function */
  sp = rts_myfunc_1(5);

  /* Specialize again overwriting previous specialization */
  sp = rts_myfunc_1(10);
  
  /* Release buffers */
  free(code_buffer);
  free(data_buffer);
}

MAIN  TUTOR  USER  REF  INSTALL  FAQ  LIMIT  BUGS  SML  SUIF  DEMO  CONTRIB 

.....

INRIA



Tempo Specializer Documentation 63

 

3 > Tempo — Reference Manual

• Phases 
• Synopsis   
• Description   

• Files   
• By suffix   
• By type   
• Other files   

• Commands   
• Shell-level commands   
• Tempo top-level commands   

• Variables   
• Shell-level variables   
• Tempo top-level variables   

MAIN  TUTOR  USER  REF  INSTALL  FAQ  LIMIT  BUGS  SML  SUIF  DEMO  CONTRIB 

3.1 Phases

Specialization with Tempo is separated into many phases. They may be grouped into three stages: 

1. Analysis   phases, 
2. Compile-time specialization   phases, 
3. Run-time specialization   phases. 

The analysis phases are compulsory. The output of this stage (the action tree) is the shared input of the two 
independent specialization processes. 

3.1.1 Phases Synopsis
The following tables list the successive phases of Tempo, with required input files and generated output files. 
Only the suffixes of these files are mentioned (see  Files). The list of input and output files is exhaustive, 
apart from this: 

• Each phase reads the config.sml file. However, to keep the table readable, we have listed it only 
for the first (i.e., Suif parsing) phase.

• Phases from  binding-time analysis to  action analysis generate (by default, but this process  can be 
controlled using variable output_mode) an additional file that enables the colored visualization of 
program annotations.  This  file  is  suffixed either  with  .color (MIME  text/enriched format)  or 

RT n° 0390



64 R. Marlet

.html, depending on the configuration variable viewer (set to emacs by default). It is not listed 
in the following tables.

Optional input and output files are listed in square brackets [like this], as are optional phase (depending on  
configuration variables). An optional phase that is not selected,  i.e. "run", actually behaves as the  identify 
though it does generate output files. 

Analysis Phases

The goal of the analysis phases is to compute specialization actions. An important intermediate stage is the 
binding-time information, which is split into three steps in Tempo: binding-time analysis and evaluation-time 
analysis (1 and 2). 

Input Files Analysis Phases Output Files

c
config.sml
[actx.c]

Suif parsing
spd
[actx.spd]

spd
[actx.spd] Suif abstract syntax generation

st
suif.c
[actx.st]
[actx.suif.c]

st
[actx.st] Tempo abstract syntax generation

as
decl.h

as [Early pre-processing] preproc1.as

preproc1.as Goto elimination nogoto.as

nogoto.as Alias analysis alias.as

alias.as Indirect call elimination nofp.as

nofp.as Side-effect analysis se.as

se.as Binding-time analysis bta.as

bta.as Evaluation-time analysis (1) eta1.as

eta1.as Evaluation-time analysis (2) eta2.as

eta2.as Flattening of static returns flsret.as

INRIA



Tempo Specializer Documentation 65

flsret.as Flattening of Static&Dynamic calls flsd.as

flsd.as [Late pre-processing] preproc2.as

preproc2.as Action analysis at

Synopsis of the Analysis Phases

Compile-Time Specialization Phases

The goal of the compile-time specialization phases is first to build a dedicated specializer (from the original  
program and the initial binding-time information), and then to let the user generate many specialized source 
files for different specialization values. 

Input Files Compile-Time Specialization Phases Output Files

at Compile-time specializer generation
ev.c
ctspec.C
sctx.h

ev.c
ctspec.C
sctx.h
sctx.c

Compile-time specializer compilation ctspec

ctspec Compile-time specialization rawcts.as

rawcts.as Post-processing postproc.as

postproc.as Pretty-printing
& extra code transformations

cts.c
cts.h
cts.tempo.c

Synopsis of the Compile-Time Specialization Phases

Run-Time Specialization Phases

The goal of the run-time specialization phases is to build a dedicated run-time specializer (from the original 
program  and  the  initial  binding-time  information).  Specialized  versions  with  respect  to  execution-time 
values are generated as pointers to dynamically created functions. The invocation of the run-time specializer 
is left to the user. Architecture dependent files are created under a subdirectory ARCH named after the current 
platform. (See also variable arch_dep_dir.) 

RT n° 0390



66 R. Marlet

Input Files Run-Time Specialization Phases Output Files

at Run-time specializer generation

gram
rts.h
temp.c
temp.d
rtspec.c

Under ARCH/

rtspec.o
temp.i
temp.o
rts.o

at `C specializer generation
rtstc.c
rtstc.h

Synopsis of the Run-Time Specialization Phases

3.1.2 Description of the Phases
The original program undergoes several transformations before actually being treated by Tempo. Some are 
just side-effects of the Suif front-end while most others are aimed at translating full ANSI C into a smaller  
and easier  to handle  subset  of  the language.  Tempo's post-processing  rebuilds some constructs  that  are  
transformed at this stage so that the output looks more like the original source.

3.1.3 Parsing
C pre-processing, parsing, and transformation of the original file(s). 

The parsing of the c file relies on Suif's scc. It includes C pre-processor expansion (using cpp) and, 
optionally, some pre-processing using porky. If the actx.c file exists, it is parsed as well. 

The invocation pattern of the parsing phase is as follows. 

scc scc_flags -.spd file.c

If  the  configuration  variable  porky_flags is  not  the  empty  string,  the  following  additional 
transformation pass is run: 

porky porky_flags file.spd file.porky_spd
mv file.porky_spd file.spd

A similar pattern is applied to the actx.c file, if present. 

Suif makes some simplifications of the source program: 

1. When there are several  occurrences  of the same string in a program, Suif creates a static 
global variable for the string with the value of the string initialized in the variable declaration.  

INRIA



Tempo Specializer Documentation 67

This is common with printf() statements, that often have similar format strings. We have 
no control over that.

2. switches with at most 3 cases are automatically rewritten into a cascade of ifs. Note that 
this version of Tempo does not support the  switch construct.  Switches with 4 cases or 
more have to be manually rewritten into a cascade of ifs.

3. Suif also turns while and for loops into do while loops. This transformation duplicates 
the condition expression.

In addition, we use an option of Suif (of porky actually, see porky_flags variable) to turn static 
(in the C sense) variable into global variables. 

See also: 
• Suif environment   
• Limitations of the Input Language   
• Tempo abstract syntax generation   (for other initial source transformations) 
• Variable: scc_flags 
• Variable: porky_flags 

3.1.4 Suif abstract syntax generation
Transformation of Suif .spd files (i.e. file.spd and, possibly, file.actx.spd) into a Suif 
abstract syntax readable by Tempo, i.e. .st files. 

It is for internal usage. 

3.1.5 Tempo abstract syntax generation
Building of a Tempo abstract syntax tree by merging the original program (in st form) and, if present, 
the actx.c file (in st form as well). 

Tempo makes some simplifications of the source program: 

1. Function variables that  are declared in nested blocks are lifted into the main block of  the 
function. 

2. Initializations  of  global  variables  (including arrays,  structures  and unions)  are  split  into a 
separate  declarations  and  a/some  assignment(s).  This  introduces  a  new  function  named 
init_compound_data() that  contains  all  the  assignements.  A call  to this  function is 
inserted as the first instruction in the body of the entry point. E.g.,

int x = 3;
int u[3] = {1,0,5};
char hip[] = "hop";

yields 

int x;
int u[3];

RT n° 0390



68 R. Marlet

char hip[4];

void _init_compound_data_1()
{
  x = 3;
  u[0] = 1;
  u[1] = 0;
  u[2] = 5;
  strcpy(hip,"hop");
}

There  is  a  special  case  for  character  arrays:  By  default,  initialization  is  performed  using 
strcpy() rather  than  with  tons  of  single  assignments  (see  the 
explode_compound_data_strings variable). 

Note that initialization of compound data (i.e. arrays, structures and unions) for local variables seems 
to be broken at the Suif level. 

See also: 
• Parsing   (for other initial source transformations) 
• Limitations due to the transformation of initializations   
• Variable: explode_compound_data_strings (string initialization control) 

3.1.6 Early pre-processing
Inlining of functions with multiple returns. 

This  phase is  used to get  better  results for run-time specialization until  run-time inlining is  fully  
implemented. There are actually two preprocessing inlining phases. Inlining functions with multiple 
returns  introduces  gotos,  which  must  be  eliminated  during  goto  elimination  phase.  Thus  such 
functions must be inlined before goto elimination. It is not desirable, however, to perform a complete 
inlining at this point, because this transformation can greatly increase analysis time and make the code 
less readable. Thus functions with a single return are inlined as late as possible, i.e., in the late pre-
processing phase just before the action analysis. 

See also: 
• Variable: pre_inlining_time 

3.1.7 Goto elimination
All  gotos  are  eliminated  by  introducing  if, while,  and  break constructs,  using  temporary 
variables. The transformation also removes all labels, whether it is the target of a goto or not. This 
enables  Tempo  to work  internally  on  a  smaller  subset  of  C.  It  greatly  simplifies  the  subsequent 
analysis phases. 

3.1.8 Alias analysis
Computation  of  alias  annotations,  i.e.,  the  set  of  possible  target  locations  for  each  pointer 
dereferencing. 

A location is either: 
• a scalar variable (local or global), 

INRIA



Tempo Specializer Documentation 69

• an array (one single location for all array cells), 
• a structure field (one single location for all instances of this structure type) 

Note that there is no implicit location for heap allocated objects. This analysis is: 
• flow-sensitive: alias information depends on program point, 
• not context-sensitive: different calls with different alias information are merged. 
• monovariant with respect to structures (being able to point to a single structure instance means 

being able to point to all the instances), unless polyvariance flags are set. 

For the analysis to be correct, Tempo has to know all the possible aliases of locations if they have an 
impact on the program semantics. Alias information computed outside the program fragment to be 
specialized can be specified using the file  .actx.c   analysis context file. 

See also: 
• Limitations on aliases and casts   
• The Analyses and Their Precision   
• Visualization of analysis information   
• Variable: poly_structs 
• Variable: struct_version 

3.1.9 Indirect call elimination (a.k.a. function pointer elimination)
Transformation of all indirect calls into standard calls. For example: 

(*fexp)(exp1,exp2)

is rewritten into something like

_apply_37(fexp,exp1,exp2)

The number that follows _apply_ is some (unique) integer. The corresponding function definition is 
generated automatically;  it  depends on the possible  values  for  *fexp,  as  computed  by the alias 
analysis. This function has the following form: 

type _apply_37(_q,_a1,_a2)
{
  if (_q == func1)
    return func1(_a1,_a2);
  else if (_q == func2)
    return func2(_a1,_a2);
  else
    return func3(_a1,_a2);
}

supposing the possible targets are func1, func2 and func3. 

If the _apply_37 function is totally static or totally dynamic, it is turned back into an indirect call  
during  action  analysis;  indeed  there  is  not  any  specialization  to  perform.  Otherwise,  if  some 
specialization of functions func1, func2 and func3 is possible, the explicit dispatch stays in the 
residual program: if there is not too many cases, calling a specialized function should compensate for  
the ifs.

RT n° 0390



70 R. Marlet

If the list of possible targets includes some totally unknown function pointer (e.g., provided in a global 
variable or as an actual argument to the entry point), Tempo may generate something in the form of 

type _apply_37(_q,_a1,_a2)
{
  if (_q == func1)
    return func1(_a1,_a2);
  else if (_q == func2)
    return func2(_a1,_a2);
  else if (_q == func3)
    return func3(_a1,_a2);
  else
    return (*_q)(_a1,_a2);
}

The indirect call (*_q)(_a1,_a2) at the bottom of the function assumes that it cannot jump to any 
of the functions in the program; it is treated as an external call, i.e. evaluated or rebuilt (depending on 
variable residualize_all_icalls). 

See also: 
• Variable: residualize_all_icalls (binding time of external indirect calls) 

3.1.10 Side-effect analysis
Recording in each function signature the set of non-locals variables that are read or written. 

See also: 
• Visualization of analysis information   
• Variable: poly_structs 
• Variable: struct_version 

 

3.1.11 Binding-time analysis (a.k.a. BTA)
Annotation of the program with binding-time information. 

This analysis is: 
• flow-sensitive: binding-time information depends on program point, 
• context-sensitive: different calls with different binding-time contexts yield different function 

analyses, 
• return-sensitive: there is a separate binding time for the body and the return value of a function 

Note that because of the polyvariance (context sensitivity), some functions may appear duplicated due 
different binding times. Also, notice that sensitivity is limited to scalar values. 

The BTA alone does not yield correct binding-time annotations. Evaluation-time analysis is needed,  
providing the ``use-sensitivity'' feature. When visualizing BTA files, note also that static left-hand side 
of assignments only means that the address of the location is static, not that the content is static. 

See also: 
• Visualization of analysis information   
• Variable: poly_structs 
• Variable: struct_version 

INRIA



Tempo Specializer Documentation 71

 

3.1.12 Evaluation-time analysis (1) (a.k.a. ETA 1)
This analysis turns into dynamic all static expressions that appear in a dynamic context and whose 
corresponding values have no textual representation in C (i.e., pointers, structures and arrays). If such 
an expressions were to remain static, it would not be possible to provide a textual representation for it  
in the compile-time specialized program. This constraint might be partly removed in the case of run-
time specialization since no textual representation is required (see lift_all, and lift_global 
variables). 

See also: 
• Variable lift_all 
• Variable lift_global 
• Variable minimize_holes 

3.1.13 Evaluation-time analysis (2) (a.k.a. ETA 2)
This  analysis  implements  return  sensitivity and  completes  the  binding-time analysis.  It  turns  into 
dynamic  all  the  static  definitions  of  variables  with  dynamic  uses.  If  there  is  no  static  use  of  a  
definition,  it  is  turned  totally  dynamic  as  the  static  facet  is  not  needed.  The  analysis  is  also  
monovariant with respect to structures (unless polyvariance flags are set). 

See also: 
• Visualization of analysis information   
• Binding-time analysis   phase 
• Variable: poly_structs 
• Variable: struct_version 

 

3.1.14 Flattening of static returns (a.k.a. Flattening 1)
This transformation rewrites functions (both at  the call  site and the corresponding definition) that 
contain a dynamic body but static returns. 

The transformation consists of two parts: 
• In the function definition: 

1. Replace the return exp statements with an assignment statement to a fresh, new 
global variable (a.k.a. the return variable). 

2. Turn the return type of the function to void. 
• At the call site: 

1. Insert a statement before the call point that calls the new void function. 
2. Replace the call by the return variable. 

3.1.15 Flattening of static     &     dynamic calls   (a.k.a. Flattening 2)
This transformation flattens nested function calls with S&D parameters. There is no fundamental need 
for it; it just simplifies the action analysis that follows. After the transformation, function calls with 
S&D parameters can only be in one of these two forms: 

• func(... S&D parameters ...); 
• lexp = func(... S&D parameters ...); 

RT n° 0390



72 R. Marlet

3.1.16 Late pre-processing
Inlining of functions with a single return. 

It is used to get better results for run-time specialization until run-time inlining is fully implemented. 
The reason why there are two pre-processing inlining phases (the other is the early pre-processing) is 
that functions with multiple returns introduce gotos, which must be eliminated (see goto elimination). 
Functions with single  return are inlined as late as possible (i.e., just before the  action analysis) 
because pre-inlining can otherwise greatly increase analysis time. 

3.1.17 Action analysis  
Translation  of  binding-time  information  into  specialization  actions  (i.e.,  atomic  transformations). 
Action  analysis  also  turns  explicit  switches  over  functions  pointers  back  into  indirect  function 
pointer calls when they are fully static or dynamic (see indirect call elimination). 

3.1.18 Compile-time specializer generation  
Separation of static code fragments (to be evaluated) from the actions (driving of specialization and 
code reconstruction) to be performed by the compile-time specializer. 

3.1.19 Compile-time specializer compilation  
Compilation and linking of all the files needed for compile-time specialization: 

• an action tree to be interpreted (file ctspec.o), 
• the generic action interpreter (library file libctcg.a), 
• static fragments to be computed (file ev.o), 
• a function setting the initial specialization context (file sctx.o), 
• possibly, user libraries (see variable ctcg_ldlibs). 

See also: 
• Variable ctcg_cflags 
• Variable ctcg_ldflags 
• Variable ctcg_ldlibs 

3.1.20 Compile-time specialization
Execution  of  the  compile-time specializer.  By  default,  the  compile-time specializer  expects  non-
recursive programs. 

See also: 
• Variable explicit_cts_bufsize 
• Compile-time specialization   (User manual) 

3.1.21 Post-processing
Some transformations on the specialized program, not related to specialization. 

• Optimizations: 
• Inlining, 
• Algebraic simplifications. 

• Clean-up: 

INRIA



Tempo Specializer Documentation 73

• Dead-code elimination, 
• Removal of empty blocks and uselessly nested blocks 

• Re-sugaring. 

See also: 
• Variable post_clean_up (to enable clean-up) 
• Variable  post_common_subexpression (to  enable  unfolding  of  expressions  in 

consecutive assignments) 
• Variable post_do_inline (to force inlining of specific functions) 
• Variable post_do_not_inline (to prevent inlining of specific functions) 
• Variable post_inlining (to enable inlining) 
• Variable post_inlining_max_nb_calls (threshold for the number of calls to inline) 
• Variable post_inlining_max_nb_stmts (threshold for the body size to inline) 
• Variable post_inlining_mode (style of inlining) 
• Variable post_inlining_renaming (to rename the parameters) 
• Variable post_s2c_flags (flags passed to s2c) 

3.1.22 Pretty-printing - Additional   porky   post-processing  

Generation of the resulting compile-time specialized program in C text format. 

An optional, additional post-processing transformation using porky may be performed. For example, 
porky can be used to perform some copy propagation on the specialized program. The invocation 
pattern of porky is as follows. 

scc -.spd file.cts.c file.cts.spd
porky post_porky_flags file.cts.spd file.cts.porky_spd
cp file.cts.c file.tempo.c
s2c post_s2c_flags file.cts.porky_spd file.cts.c

As may be seen above, the original Tempo specialization is kept in file file.tempo.c. 

See also: 
• porky   (assorted code transformations) 

3.1.23 Run-time specializer generation
Generation  of  the  run-time specializer.  The generated  rts.o file  is  to  be linked to  the  original 
application in order to generate specialized programs at execution time. The name of the function to 
call to do so (i.e., the dedicated specializer) is in the rts.h header file.
See also: 

• Run-time specialization   (User manual) 

3.1.24 `C specializer generation
Generation of a run-time specializer as `C (i.e., tick C) input file. 

Note that this functionality is unstable. 

RT n° 0390



74 R. Marlet

3.2 Files

Tempo operates on files that are all in the same directory (or in an architecture-dependent sub-directory).  
Furthermore,  they  all  share  the  same  file  name  prefix.  For  example,  if  the  program  to  specialize  is 
/home/jake/spec/power.c, all files are read and generated in the directory /home/jake/spec/. 
Starting from the file power.c, Tempo also reads power.config.sml and generates, e.g., power.at 
and power.cts.c. 

3.2.1 Tempo File Suffixes
Below is the list of all Tempo file suffixes and their description. 

actx.c 
Abstract functions for modeling: 

• the context of the program before the entry point is called, 
• external functions called in the program, 
• the context of the program after the entry point is called. 

It is a legal C file, optionally provided by the user.
See also: 

• Specifying the analysis context   
• Suif parsing   

actx.spd 
Suif internal format for the actx.c file abstract syntax.
This is an intermediate file, hidden by default to the user. It is not generally useful unless the user is 
wondering what exactly Suif has done to his file.
See also: 

• Specifying the analysis context   
• Suif parsing   (producer) 
• Suif abstract syntax generation   (consumer) 

actx.st 
Textual tree representation for the Suif abstract syntax of the actx.c file.
It is an intermediate file, hidden by default to the user. It is not generally useful to the user.
See also: 

• Suif abstract syntax generation   (producer) 
• Tempo abstract syntax generation   (consumer) 

actx.suif.c 
C text format of the Suif representation for the actx.c file.
It  is  an  intermediate  file.  It  enables  one  to  check whether  Suif  performed any (generally  minor) 
transformation to the original program.
See also: 

• Suif abstract syntax generation   (producer) 

alias.as 
Program  annotated  with  alias  information,  i.e.,  set  of  possible  target  locations  for  each  pointer  
dereference.
It is an intermediate file, hidden by default to the user.

INRIA



Tempo Specializer Documentation 75

See also: 
• Alias analysis   (producer) 
• Indirect call elimination   (consumer) 

as 
Tempo abstract syntax for the merging of the original program and, possibly, the actx.c file.
It is an intermediate file, hidden by default to the user.
See also: 

• Tempo abstract syntax generation   (producer) 
• Early pre-processing   (consumer) 

at 
at.color 
at.html 

Program annotated with actions.
This generated file is the final result of all the analysis phases. The color (or  html) file shows a 
program annotated with actions represented as colors. If the user is not satisfied with the degree of  
specialization, or would like to better understand the stages of the analysis that led to those action 
annotations, the color files associated with the bta or eta2 can be helpful. 
See also: 

• Action analysis   (producer) 
• Compile-time specializer generation   (consumer) 
• Run-time specializer generation   (consumer) 

bta.as 
bta.color 
bta.html 

Program annotated with binding-time values.
Note that some functions may appear duplicated due to polyvariance.
See also: 

• Binding-time analysis   (producer) 
• Evaluation-time analysis (1)   (consumer) 

c 
Original C source of the program to specialize.
This file must be provided by the user.
See also: 

• Limitations   
• Suif parsing   (consumer) 

config.sml 
Configuration and information for analysis and specialization.
This file must be provided by the user. It is a legal SML file. It is read before running any Tempo 
phase. It is used to define program-specific variables. In particular, the definition of the SML variable  
entry_point is required. Here is an example:

entry_point := "foo(S,D)";
static_locations := ["u","v","str.a"];
external_functions := EVALUATE(["bar"]);
post_inlining := true ;
post_inlining_mode := FLAT;

RT n° 0390



76 R. Marlet

See also: 
• Tempo variables   

cts.c 
cts.h 
cts.tempo.c 

Compile-time specialized program.
The cts.c file is the final result of compile-time specialization. The cts.h file is used to reduce the 
size of the cts.c file, in case there are many declarations.
This file is overwritten if, after compile-time specialization, an  additional post-processing phase is 
requested.  In  that  case,  the  result  of  the  original  specialization  is  saved  with  the  name 
cts.tempo.c.
See also: 

• Threshold for declaration ellipsis   (variable max_decls_size) 
• Additional   porky   post-processing   (producer) 
• Specialized program pretty-printing   (producer) 

ctspec 
An executable form of a compile-time specializer; it consists of 

• an action tree to be interpreted (file ctspec.o), 
• the generic action interpreter (library file libctcg.a), 
• static fragments to be computed (file ev.o), 
• a function setting the initial specialization context (file sctx.o), 
• possibly, user libraries (see variable ctcg_ldlibs). 

See also: 
• Compile-time specializer compilation   (producer) 
• Compile-time specialization   (consumer) 

ctspec.C 
Actions to be performed by the compile-time specializer.
This is a C++ file (because the compile-time specializer, i.e., the action interpreter, is written in C++). 
It contains all the dynamic fragments (in abstract syntax form) to rebuild; names of functions to call to 
evaluate static expressions (found in file ev.c); and, the actions to perform.
See also: 

• Compile-time specializer generation   (producer) 
• Compile-time specializer compilation   (consumer) 

decl.h 
Type and global variable declarations found in the program.
Sometimes programs have numerous of declarations because many header files are included. Parsing 
inlines all the include directives. In order not to obscure the visualization of analyzed files, when 
the global declarations are to numerous, they are all removed and replaced by the include directive 
referring to decl.h.
See also: 

• Threshold for declaration ellipsis   (variable max_decls_size) 

ds.c 
Data specializer.
This experimental feature is not fully operational. It has been left undocumented. You may peek into  
the generated code to get some inspiration.

INRIA



Tempo Specializer Documentation 77

eta1.as 
eta1.color 
eta1.html 

Program where some static expressions have been turned into dynamic expressions because they occur 
in a dynamic context  and do not correspond to representable  values (i.e.,  pointers,  structures and 
arrays).
See also: 

• Evaluation-time analysis (1)   (producer) 
• Evaluation-time analysis (2)   (consumer) 

eta2.as 
eta2.color 
eta2.html 

Program where static definitions of variables with dynamic uses have been turned static and dynamic, 
or dynamic only if those variables have no static use.
Note that some functions may get duplicated due to polyvariance.
See also: 

• Evaluation-time analysis (2)   (producer) 
• Flattening of S&D calls   (consumer) 

ev.c 
Code fragments to be evaluated during compile-time specialization.
See also: 

• Compile-time specializer generation   (producer) 
• Compile-time specializer compilation   (consumer) 

flsret.as 
flsret.color 
flsret.html 

Program where functions with a dynamic body and static returns have been rewritten as void functions 
performing a side effect on a fresh ``return variable''.
The corresponding transformation makes explicit the return sensitivity. It simplifies the specialization 
actions.
See also: 

• Flattening of static returns   (producer) 
• Flattening of static     &     dynamic calls   (consumer) 

flsd.as 
flsd.color 
flsd.html 

Program with flat static & dynamic calls.
The corresponding transformation just simplifies the specialization actions.
See also: 

• Flattening of static     &     dynamic calls   (producer) 
• Late pre-processing   (consumer) 

gram 
Grammar representing all possible specializations of the program.
This file is generated for information only. See also: 

RT n° 0390



78 R. Marlet

• Run-time specializer generation   (producer) 

nofp.as 
Program with function pointers turned into explicit calls.
The corresponding transformation enables Tempo to work on a smaller subset of C. The switches 
that make calls explicit are turned back into indirect function pointer calls during the action analysis.
See also: 

• Action analysis   (back transformation) 
• Indirect call elimination   (producer) 
• Side-effect analysis   (consumer) 

nogoto.as 
Program with gotos turned into conditionals and loops.
The corresponding transformation enables Tempo to work on a smaller and structured subset of C.
See also: 

• Goto elimination   (producer) 
• Alias analysis   (consumer) 

postproc.as 
Post-processed specialized program.
The corresponding transformation does some code clean-up, some simple optimizations not related to 
specialization, and some re-sugaring.
See also: 

• Post-processing   (producer) 
• Specialized program pretty-printing   (consumer) 

preproc1.as 
preproc1.c 

Program with early pre-processing.
The corresponding transformation performs inlining of functions with multiple returns. It is used to 
get better results for run-time specialization, until run-time inlining is fully implemented.
See also: 

• Early pre-processing   (producer) 
• Goto elimination   (consumer) 

preproc2.as 
preproc2.color 
preproc2.html 

Program with late pre-processing.
The corresponding transformation performs inlining of functions with single returns. It is used to get 
better results for run-time specialization, until run-time inlining is fully implemented.
See also: 

• Late pre-processing   (producer) 
• Action analysis   (consumer) 

rawcts.as 
rawcts.c 

Raw output of the compile-time specializer.
By default, only the  rawcts.as file is generated. Use the variable  output_mode or command 
as2c to visualize the C text version of this file.

INRIA



Tempo Specializer Documentation 79

See also: 
• Compile-time specialization   (producer) 
• Post-processing   (consumer) 

rts.h 
rts.o 

Run-time specializer.
The generated rts.o file is the final result of the run-time specialization phase. The user may link it 
with his original application in order to generate specialized programs at execution time. The name of  
the function to call to do so (i.e., the dedicated specializer) is in the rts.h header file.
See also: 

• Run-time specializer generation   (producer) 
• [[[run-time specialization]]] (User manual) 

rtspec.c 
rtspec.o 

Generating extension (i.e., template assembler and hole filler).
The function defined in this file assembles pre-compiled templates (i.e., the dynamic slice of the code) 
according to the specialization actions. It also plugs into the templates the result of evaluating the  
static expressions.
See also: 

• Run-time specializer generation   (producer) 

rtstc.c 
rtstc.h 

Run-time specializer as a `C input file. 
Note that this functionality is unstable
See also: 

• `C specializer generation   (producer) 

sctx.c 
Compile-time specialization context.
This is a legal C file that must be provided by the user. It must contain the definition of a function  
named  set_specialization_context().  This  function  initializes  globals  and  entry-point 
parameters declared as static at the analysis phase.
See also: 

• Compile-time specializer compilation   (consumer) 
• Compile-time specialization   (caller) 

sctx.h 
Header file for the compile-time specialization context.
This file is automatically generated. Do not attempt to edit it. It makes the connection between the  
store (file ev.c) and the setting of the specialization context (file sctx.c).
See also: 

• Compile-time specializer generation   (producer) 
• Compile-time specializer compilation   (consumer) 

se.as 
Program with side-effect annotations.
The corresponding transformation records in each function signature the set of non-local variables that 

RT n° 0390



80 R. Marlet

are read or written.
See also: 

• Side-effect analysis   (producer) 
• Binding-time analysis   (consumer) 

spd 
Suif internal format for the c file abstract syntax.
This is an intermediate file, hidden by default to the user. It is not generally useful unless the user is 
wondering what exactly Suif has done to his file.
See also: 

• Suif parsing   (producer) 
• Suif abstract syntax generation   (consumer) 

st 
Textual tree representation for the Suif abstract syntax of the c file.
It is an intermediate file, hidden by default. It is not generally useful to the user.
See also: 

• Suif abstract syntax generation   (producer) 
• Tempo abstract syntax generation   (consumer) 

suif.c 
C text format of the Suif representation for the c file.
It  is  an  intermediate  file.  The  user  may  check  whether  Suif  performed  any  (generally  minor) 
transformation to the original program.
See also: 

• Suif abstract syntax generation   (producer) 

temp.c 
temp.o 

Code templates for run-time specialization.
This file contains the templates that represent the dynamic operations of the code to specialize at run 
time.
See also: 

• Run-time specializer generation   (producer) 

temp.d 
Symbolic description of the template holes used for run-time specialization.
This file lists each template name of the program to specialize and the symbolic address of its holes.
This intermediate file is hidden by default to the user. It is the input of the  tcc template compiler, 
together with the temp.o file. The output of tcc is the temp.i file.
See also: 

• Run-time specializer generation   (producer) 

temp.i 
Physical description of the template holes used for run-time specialization.
This file lists each template name of the program to specialize and the relative address of its holes.
This intermediate file is hidden by default to the user. It is the output of tcc, that makes explicit the 
symbolic description of code templates found in the temp.d file.
See also: 

• Run-time specializer generation   (producer) 

INRIA



Tempo Specializer Documentation 81

3.2.2 Tempo File types
Here is the list of all file types manipulated by Tempo. 

.as 
Concise form of the abstract syntax used by Tempo to represent programs. It includes alias, side-
effect, and binding-time information. 

.at 
Concise form of the abstract syntax used by Tempo to represent action-annotated programs. 

.C 
C++ file. 

.c 
C file. 

.color 
MIME text/enriched format of annotations on a program. It  can be viewed using emacs' enriched  
mode. (See the variable viewer.) 

.d 
Symbolic description of code templates for run-time specialization. 

.gram 
Grammar representing all possible specializations of a program. 

.H 
C++ header file. 

.h 
C header file. 

.html 
HTML representation of the annotations of a program. (See variable viewer.) 

.i 
Physical description of code templates for run-time specialization. 

.o 
Object file obtained by compilation of a C or C++ file. 

.sml 
SML file. (Most parts of Tempo are implemented in SML but the only SML files that the user should 
ever see are the config.sml and the .tempo.sml files). 

.spd 
Suif internal abstract syntax representation of a program. 

.st 
Tempo representation of the Suif abstract syntax for a program. 

3.2.3 Other Files
Here are other files (not suffixes) relevant to Tempo. 

.tempo.sml 
If the user has a .tempo.sml file in his home directory (that is the full name, not just an file 
extension),  it  is  loaded when tempo (the  Shell  command,  not  the  SML function)  is  run.  This 
enables the user to customize standard settings. The file is loaded only once.
See also: 

• Tempo SML top-level variables   

RT n° 0390

http://suif.stanford.edu/suif/suif.html


82 R. Marlet

• File: file  .config.sml     (per-program configuration file) 

3.3 Commands

In the Tempo environment, there are two kinds of commands: 

• Shell-level commands   (to run the Tempo system or a Suif tool) 
• Tempo SML top-level commands   (e.g., to run a specialization phase) 

The Tempo SML top-level commands are the most commonly used in practice. We consider each kind in 
turn. 

3.3.1 Shell-Level Commands
All  the  shell-level  commands  that  follow are  available  in  the  Tempo distribution  for  any  of  supported 
platforms. In practice, the user only needs to run the tempo command; all other commands are implicitly 
run from the Tempo top-level. 

tempo 
Run the Tempo Top Level. This is interactive SML top level where all of the Tempo functionalities 
have been pre-loaded. When it is started, the user should see something that looks like this (the output  
of the system is in bold face): 

mingus% tempo
Running Tempo on SunOS-5
TEMPO Version 1.191, 03/24/98, Copyright (c) IRISA/INRIA-Universite de 
Rennes
val it = () : unit
- 

The architecture name is that of the current machine. The version number and creation date depend on 
when Tempo was built (not when it was installed). The ``-'' sign is the prompt character. 

See also: 
• Tempo top-level commands   
• SML environment   

porky 
snoot 
s2c 
s2st 
scc 

See the Suif manual page 

3.3.2 Tempo Top-Level Commands
Here are the Tempo commands that the user can type at the Tempo SML top-level. 

INRIA



Tempo Specializer Documentation 83

See also: 

• Shell command tempo (for running the system) 
• SML environment   (for SML commands) 

an file 

Running analyses. Starting from file  .c  , run all the analysis phases and generate a file  .at   file. 
The string argument file must be a name without any path or extension, e.g., "power". 
Example: 

an "power"; 
Note that this is actually an abbreviation for: tempo file "c" "at". 

as2c file.as
 

Generation of C text from abstract syntax format. This command reads file.as, which must be 
a valid Tempo abstract syntax file (see the suffix ``.as''), and writes it in C text format into file.c. 
The string argument must be a name with the ``.as'' extension, e.g., "power.bta.as". 
Example: 

as2c "power.rawcts.as"; (* generate power.rawcts.c *) 

cd directory
 

Changing working directory. Tempo operates on files that are all in the same directory (or in an 
architecture-dependent sub-directory). This command changes the working directory of Tempo. It also 
changes the current working directory (in the shell sense) of the SML top-level. (This could have an 
impact in case of explicit I/O.) The string argument  directory may be absolute or relative. The 
working directory may also be changed using the SML variable wd. 
Example: 

cd "/home/jake/spec/power/"; 
cd "../rpc"; 

cs file
 

Generation of compile-time specializer. Tempo operates on files that are all in the same directory (or 
in an architecture-dependent sub-directory). Starting from the action file  file  .at  ,  this command 
generates the compile-time specializer file  .ctspec.C  . The string argument file must be a name 
without any path or extension, e.g., "power".
Example: 

cs "power"; 
Note that this is actually an abbreviation for: tempo file "at" "ctspec". 

ds file 

Generation of a data specializer. Data specialization mostly is implemented in Tempo. But it is still 
experimental  and  has  been left  documented.  Starting from the action  file  file  .at  ,  this  command 
generates the data specializer file  .ds.c  . The string argument file must be a name without any path 
or extension, e.g., "power".
Example: 

ds "power"; 
Note that this is actually an abbreviation for: tempo file "at" "ds". 

RT n° 0390



84 R. Marlet

freeze_points file 

Listing  of  static  locations  turned  dynamic. This  command  analyses  file  .bta.as   for 
variables/fields declared to be static in file  .config.sml   which are ``frozen'' (i.e., which become 
dynamic)  and  print  the  function  in  which  they  become  dynamic.  This  can  be  some  help  in 
``debugging'' BTA results in large files.
Warning: static assignments under dynamic control cause the variable/field to become dynamic in the 
function containing the dynamic control, not the function containing the assignment. 
Example: 

freeze_points "power"; 
See also: 

• Command tempo (to generate file.bta.as) 
• Variable output_mode (to dump file.bta.as) 

print_config file 

Printing of configuration variables. Command print_config returns (and displays) the values 
of Tempo configuration variables. If the string argument  file is the empty string, then the current 
state  is  returned.  If  file is  not  empty,  it  must  be  a  name without  any  path  or  extension,  e.g.,  
"power";  it  then  returns  the  configuration  that  would  be  used  when  loading  the 
file  .config.sml   file. 
Example: 

print_config ""; 
print_config "power"; 

rs file 

Generation  of  a  run-time  specializer. Starting  from  the  action  file  file  .at  ,  command  rs 
generates the run-time specializer file  .rts.o  . The string argument file must be a name without 
any path or extension, e.g., "power". 
Example: 

rs "power"; 
Note that this is actually an abbreviation for: tempo file "at" "rts.o". 

rts_compact_inline ()
rts_inlining ()
rts_optimized_inlining_one_pass ()
rts_optimized_inlining_two_passes ()

Instruction for additional inlining in the runtime specializer. These commands are experimental 
and undocumented.  
See also: 

• Early pre-processing   (Reference Manual) 
• Late pre-processing   (Reference Manual)
• Variable rts_do_inline  
• Variable rts_do_not_inline

 
sp file 

Performing specialization. Starting from the specializer file  .ctspec.C  , command sp generates 

INRIA



Tempo Specializer Documentation 85

the compile-time specialized program  file  .cts.c  .  The string argument  file must be a name 
without any path or extension, e.g., "power". 
Example: 

sp "power"; 
Note that this is actually an abbreviation for: tempo file "ctspec.C" "cts". 

tempo file start_extension end_extension 

Running phases. Starting from file.start_extension, command tempo runs all the required 
phases to produce file.end_extension. The string argument file must be a name without any 
path or extension,  e.g.,  "power".  The  start_extension and  end_extension strings may qualify an 
actual file without mentioning a specific type extension, e.g., "bta" (same as "bta.as"), "at". 
Example: 

tempo "power" "bta" "at"; 
tempo "power" "at" "cts"; 

3.4 Variables

Tempo can be configured with two kinds of user variables: 

• Shell-level variables   (to define paths) 
• Tempo SML top-level variables   (to parameterize specialization) 

As is the case for commands, the SML variables are the most commonly used in practice. We consider each  
kind in turn. 

3.4.1 Shell-Level Variables
In the following description of variables, we denote by $TEMPOHOME the installation directory of Tempo, 
even though such a Shell variable is not visible to the user. The user does not have to know this directory 
(apart from the need to run the tempo command) as the other paths are relative to this one. 

TEMPOWORK    (default: "")  

Starting  working  directory. This  Shell  variable  controls  the  initializing  of  the  Tempo  working 
directory. If the string is empty (the default), the starting working directory is the directory where the  
tempo Shell command is invoked. If the string is not empty, the working directory is initialized to the  
directory specified by the string. 

See also: 
• Command: cd 
• Variable: wd 

TEMPOSUIFHOME    (default: "")  

Tempo-Suif main directory. This variable can be used to override the default setting of Suif variable 
SUIFHOME (performed by the tempo shell-level command) in order to run Suif commands other than 
those provided with Tempo. (You will most likely never need to do this.) Be careful though that the 

RT n° 0390



86 R. Marlet

s2st command will not be found outside of the distribution of Tempo. 

See also: 
• Suif Variable: SUIFHOME   (Suif main directory) 
• Suif Command: s2st   (Suif abstract syntax printer) 

See also: 

• Suif Variable: MACHINE   (target architecture) 
• Suif Variable: SUIFHOME   (Suif main directory) 
• Suif Variable: SUIFPATH   (Suif path to binaries) 

3.4.2 Tempo SML Top-Level Variables
The following SML variables may be set at the SML top-level or in the SML files. A few of them are still 
undocumented. Some names may seem strange; this is for historical reasons... 

See also: 

• Command: print_config 
• Using SML Variables   
• Using SML Files   
• SML environment   

arch_dep_dir    (default: "current platform architecture") 

Directory for RT architecture dependent files. Architecture-dependent files generated during run-
time specialization phases are stored in a sub-directory of the current working directory that is named 
after  this  variable.  The default  value is set  when the session is open,  depending on the platform 
architecture  on  which  Tempo  is  running.  Possible  default  values  are  the  same  as  for  variable 
architecture. 

architecture    (default: "current platform architecture") 

Current  architecture. This  variables  stores,  for  internal  purposes,  the  name  of  the  platform 
architecture on which Tempo is running. It should not be altered by the user. Possible values are: 

"SunOS-4" 
Sun OS 4.1 

"SunOS-5" 
Sun OS 5.5, i.e., Solaris 2.5 

"Linux-2" 
Linux on PC 

compiler    (default: "") 

C Compiler for compile-time and run-time specialization. This variable specifies which compiler 
to use to compile the compile-time specializer and the template binaries. The default value "" means 
that gcc will be used. 

INRIA



Tempo Specializer Documentation 87

See also: 
• Run-time specializer generation   phase 

csd    (default: "$TEMPOHOME/ctcg") 

Compile-time  specializer  internal  directory. This  is  the  path  to  the  compile-time  specializer 
internals (library and header files). In practice, it should not be altered by the user. 

ctcg_cflags     (default: "")  
ctcg_ldflags    (default: "")  
ctcg_ldlibs     (default: "") 

Compilation flags for the CT specializer. Those string variables allow additional flags to be passed 
to the compilation of the compile-time specializer: 

• ctcg_cflags is  given  to  the  compiler  when  compiling  CT  specializer  files,  i.e., 
file  .ctspec.C  , file  .ev.C  , file  .sctx.c  .

• ctcg_ldflags is  given  to  the  linker  when  linking  the  above  files  (together  with  the 
specializer library libctcg.a), e.g., "-L/home/jake/lib".

• ctcg_ldlibs is  given  to  the  linker  to  specify  additional  libraries,  e.g.,  "foo.o 
/home/bob/lib/bar.o -lsupermath".  Note  that  the object  files,  if  any,  must  be 
specified before any libraries.

See also: 
• Compile-time specializer generation   phase 

cts_flags    (default: "") 

Flags for the CT specializer. This variables is given on the command line that calls the compile-time 
specializer. Known flags of the CT specializer are: 

-norec 
Tells the CT specializer that the program does not contains recursive calls, enabling a faster 
code generation. 

Note that the -norec option is unsafe. 

default_cts_bufsize    (default: 5M) 

Buffer size for the CT specializer. This integer variable specifies the size in bytes of the buffer used 
by the compile-time specializer to store the specialized functions. The value of this variable cannot be 
assigned by the user. 

ds_mode    (default: false) 

Data specialization mode. Undocumented flag. 

RT n° 0390



88 R. Marlet

dummy_entry_point_name    (default:"dummy_entry_point") 

Name for dummy entry point. This variable provides the name for the dummy entry point, which is 
created  when  there  exist  a  set_specialization_context() or  a 
set_post_analysis_context() function in the .actx.c file. 

entry_point    (no default value) 

Specialization entry-point. This variable specifies both the function entry point in a program (i.e., the 
original C file) and the binding times of its arguments. The value is a string that mimics the entry point 
function  call,  e.g.,  "power(D,S)". Possible  values  are  function(arguments) where 
arguments is a (possibly empty) list of the following items: 

S 
Static argument. 

D 
Dynamic argument. 

_ 
Undefined or composite (i.e., non-scalar) argument. 

An  error  is  reported  if  the  number  of  arguments  of  function specified  by  the  variable 
entry_point is not the same as the number of arguments of the actual function in the program. 

For the time being, Tempo is restricted to a single entry point and binding-time information definition.

Note that there is no default value for this variable. Not only must it be defined explicitly by the user,  
but also the definition must appear in the config.sml file. Setting it at the top-level has no effect. 
This restriction is to prevent unwanted ``side-effects'' when specializing several programs in the same 
Tempo session. 

See also: 
• Variable static_locations (binding time of globals and structures) 
• Variable external_functions (binding time of external functions) 
• Analysis context file actx.c (more precise binding times) 
• Specifying the analysis context   (User manual) 

explicit_cts_bufsize    (default: NONE) 

Buffer size for the CT specializer. At the moment, the compile-time specializer requires the size of 
the  specialization  buffer  to  be  specified.  The  explicit_cts_bufsize enables  the  user  to 
override the default buffer size. Possible values are: 

NONE 
The default buffer size value is used. The current default value is given by the SML variable 
default_cts_bufsize.  (Note that,  unlike other  Tempo SML variable,  the  user cannot 
modify  this  variable  as  its  value  is  not  a  reference.)  The  current  default  size  is  5M,  i.e.,  
5000 * 1024 bytes. 

SOME size 
The specified integer size (in bytes) is used. 

INRIA



Tempo Specializer Documentation 89

explode_compound_data_strings    (default: false) 

String initialization control. The C subset treated by Tempo does not include initializations. As a 
result, Tempo rebuilds explicit assignments for all initializations, including compound data. As a string 
is seen as an array of characters, one explicit assignment is introduced for each array cell, i.e., each 
character  in  the  string.  This  variable  permits  such  initializations  to  be  performed  in  one  single 
statement using C function strcpy(). For example, the following initialization: 

char my_array[3] = "hi";

is rewritten as 

char my_array[3];
my_array[0] = 'h';
my_array[1] = 'i';
my_array[2] = '\0';

when explode_compound_data_strings is true. 

Initializations are in this more compact form 

char my_array[3];
strcpy(my_array,"hi");

when explode_compound_data_strings is false. Note that this variable does not affect other 
kinds of compound data initializations. 

external_functions    (default: EVALUATE[]) 

Binding time of external functions. This variable specifies whether external  functions should be 
evaluated  if  possible  (i.e.,  all  arguments  are  static)  at  specialization  time  or  should  always  be 
residualized (regardless of the arguments). In practice, the former case is often used for calling library  
functions  and  the  latter  for  preventing  I/O  side-effects  at  specialization  time  (such  as  printing).  
Possible values are: 

EVALUATE [functions] 
All  external  functions whose name appears in the string list  functions can be called at 
specialization time if their arguments are available (i.e., static). The other external functions are 
considered  dynamic  and  are  always  residualized.  In  particular,  EVALUATE[] forces  the 
residualization of all external functions.

RESIDUALIZE [functions] 
All  external  functions  whose  name  appears  in  the  string  list  functions are  always 
residualized. The other external functions can be called at specialization time if their arguments  
are available (i.e., static). In particular, RESIDUALIZE[] enables all external functions of the 
program to be called at specialization time, when possible.

See also: 
• Analysis context file actx.c (abstract description of the behavior of external functions) 
• Variable residualize_all_icalls (binding time of external indirect calls) 

RT n° 0390



90 R. Marlet

• Specifying the analysis context   (User manual) 

extra_rts    (default: false) 

Size of run-time specialized functions. This is an UNSTABLE feature. When this variable is true, 
building  a  run-time  specializer  generates  an  extra  function.  This  functions  returns  the  size  of  a  
specialized function (it has the same interface as the run-time specializer generated along) instead of a  
pointer to it. This only used to satisfy curiosity and fill tables in papers. 

The funny things are that you have to set arch_dep_dir to ".", and that the generated files are 
named file.rts.sh and file.rts.so. 

gnumake    (default: machine dependent) 

Path for gnu tools. This is an internal variable, set via the tempo shell-level command, that need not 
be altered by the user. 

keep_headers    (default: true) 

Controlling  whether information about read/written/etc.  variables  is  included in the  at file. 
When this variable is true, the information about read/written/etc. variables is kept in the  at file. 
When  this  variable  is  false,  this  information  is  removed.  Note  that  this  flag  is  different  than 
verbose_headers, which only affects the color files, although if there is no such information in 
the  at file,  it  won't  appear  in  the  at.color file  either,  regardless  of  the  value  of 
verbose_headers. Setting this flag to false is useful to cut down the size of the at file, either to  
save disk space or to make it quicker to read by the cs and rs commands. 

lift_all    (default: false) 

Controlling the lifting of pointer values for run-time specialization. 

true 
The ETA allows all pointer values to be lifted. 

false 
The ETA disallows pointer values to be lifted. 

lift_global    (default: false) 

Controlling the lifting of global pointer values. 

true 
Setting variable lift_global to true only causes pointers to globals to be lifted. This kind of 
pointer values represents a safe set of pointer values to lift. 

false 
It disallows pointers to globals to be lifted. 

live_locations    (default: []) 

Definition of the locations which are live after the end of the program. 

INRIA



Tempo Specializer Documentation 91

Live locations refer to locations that are live at the end of the program being specialized. This can  
happen during modular-oriented specialization, when the program is extracted from a larger program 
and then reinserted after specialization. 

The variable is a list of strings (location names). A location may be: 
• A global scalar variable, e.g., "foo". 
• A structure field. The notation is then  structure_type.field, e.g.,  point.x where 

point is  the  name  of  a  structure  type  (as  given  by  the  declaration  struct point 
{...}), not an instance of that type. This restriction is due to the monovariance of the BTA 
on structures. 

See also: 
• Variable static_locations (syntax and restrictions on locations)
• File actx.c (fine analysis context description)
• Structure Mono/polyvariance   
• User manual 

max_decls_size    (default: 100) 

Threshold for declarations ellipsis. If the number of global declarations (for types, variables and 
functions),  at  the  beginning  of  the  file  is  greater  than  the  integer  max_decls_size,  then  the 
declarations are hidden in all intermediate C files generated by Tempo (even color files) and can be 
found in  a  separate  file  suffixed  by  .decl.h.  The  declarations  are  replaced  by  an  explanation 
comment and an include directive. 

Similarly, for the compile-time specialized file .cts.c, if there are more declarations than the limit 
specified by max_decl_size, the declarations are put in a file suffixed by .cts.h and replaced 
by an include directive. 

max_width    (default: 78) 

Maximum width of the line for printing code. This variable is used for line wrapping when pretty-
printing C code. 

memoize_aliases    (default: true) 

Aliases memoized. This variable tells whether alias analysis results should be memoized at call sites. 
Experiments  on  some  large  files  have  shown  that  the  alias  analysis  can  be  much  faster  with 
memoization (from more than 3 hours down to a quarter of an hour). 

This flag is for internal purposes. 

See also: 
• Alias analysis   phase 

minimize_holes    (default: false) 

The number of holes in the run-time specialized program is minimized.  A static variable in a 
dynamic context does not lead to any performance improvement from run-time specialization. A hole 

RT n° 0390



92 R. Marlet

is generated for such a term. It can be useful to minimize the number of such holes to promote reuse of 
values stored in registers in the run-time specialized code. 

true 
Number of holes is minimized. 

false 
Number of holes is not minimized. 

output_mode    (default: COLOR) 

Control of the intermediate files to generate. This variable specifies which intermediate files to 
generate when running Tempo phases. Possible values are: 

CONCISE 
No (unnecessary) intermediate files are generated. 

COLOR 
Only colored intermediate files are generated (see the variable viewer  )  . 

FULL 
All intermediate files are generated. 

FILES suffixes 
Generation of files limited to the target of the last phase and the files specified by their suffixes 
in the string list suffixes, e.g., FILES ["eta2.color","rawcts.c"]. 

override_remove_compound_data    (default: false) 

Remove residualized compound data assignments. 

poly_structs    (default: "POLY_STRUCTS[]") 

Mono/polyvariance of structures. This variable specifies whether (some) structures should be treated 
with monovariance or polyvariance, with respect to alias, side-effect and binding-time information, 
i.e., if the information should be merged for all instances of a given structure type (less precise but 
faster analysis) or computed for each structure instance (more precise but slower analysis). Possible  
values are:
 
MONO_STRUCTS[structnames]

All structures  whose name appears  in the string list  structnames are  treated monovariantly. 
Other structures are treated polyvariantly. 

POLY_STRUCTS[structnames]
All structures whose name appears in the string list structnames are treated polyvariantly. Other 
structures are treated monovariantly. 

Warning: This feature is operational only if variable struct_version is appropriately set. 

See also:
• Variable: struct_version 

porky_flags    (default:  "-unused-types -ucf-opt -for-bound -no-index-mod -no-
empty-fors -no-empty-table -control-simp -fold -globalize") 

INRIA



Tempo Specializer Documentation 93

Flags for  porky. This  string variable  permits  additional  flags  to  be passed on to  porky when 
updating spd files just after parsing. The invocation pattern of porky is as follows. 

porky porky_flags file.spd file.porky_spd 
In case the value of the variable is altered, the user must make sure to keep the -globalize flag as 
it turns static variables (in the C sense, i.e., local variables that retain their value between successive 
function  calls)  into  global  variables;  the  C subset  treated  by  Tempo does  not  handle  such  static  
variables. 

See also: 
• Suif environment   
• Command porky 
• Suif parsing   
• Variable scc_flags 

post_clean_up    (default: true) 

Clean-up in post-processing is enabled. This variable tells whether clean-up should be performed 
during the post-processing, i.e., 

• Removal of unused labels, 
• Removal of empty blocks and lines, 
• Flattening of simply nested blocks. 

post_common_subexpression    (default: true) 

Unfolding  of  expressions  in  consecutive  assignments  in  post-processing.. This  variable  tells 
whether unfolding of expressions in consecutive assignments should be performed during the post-
processing, i.e., whether a piece of code : 

x1 = e1; 
x2 = e2; /* x1 occurs in e2 */ 

should be turned into : 
x2 = e2[x1 <- e1]; 

warning : this transformation can be performed only if the clean up flag is activated. 

post_dead_code    (default: true) 

Dead-code elimination in the post-processing. This variable tells whether dead-code elimination 
should be performed during the post-processing. Because dead-code elimination is quite buggy at the 
moment, this is turned off by default. 

post_do_inline    (default: []) 

Inlining in post-processing is forced. This variable holds a list of strings corresponding to function 
names.  If inlining is  enabled, it  is  performed (at  least)  on all  these functions,  regardless of other  
inlining filter flags. 

See also: 
• Variable post_inlining (to enable inlining) 

post_do_not_inline    (default: []) 

RT n° 0390



94 R. Marlet

Inlining in post-processing is prevented. This variable holds a list of strings that are function names. 
Even if inlining is  enabled, it is never performed on all those functions, regardless of other inlining 
filter flags. 

See also: 
• Variable post_inlining (to enable inlining) 

post_inlining    (default: false) 

Inlining in post-processing is enabled. This variable tells whether inlining should be performed. (In 
this version of Tempo, functions returning a value are not inlined). Whether inlining of a given call 
actually takes place also depends on the total number of calls to this function and the size of its body. 

See also: 
• Variable post_inlining_max_nb_calls (threshold for the number of calls) 
• Variable post_inlining_max_nb_stmts (threshold for the body size) 

post_inlining_max_nb_calls    (default: 5) 

Number of calls threshold for inlining. If the number of calls to a function is greater than  this 
variable, then the function is not inlined. 

See also: 
• Variable post_inlining (to enable inlining) 

post_inlining_max_nb_stmts    (default: 25) 

Body size threshold for inlining. If the number of statements in the body of a function is greater than 
this variable, then the function is not inlined. 

See also: 
• Variable post_inlining (to enable inlining) 

post_inlining_mode    (default: BLOCK) 

Style of inlining. This variable specifies the ``style'' of inlining. Possible values are: 

BLOCK 
Inline functions as blocks: the body structure of the inlined function is retained. 

FLAT 
Inlined functions are flattened: the body of the inlined function is merged into the list of the  
statements of the calling procedure. 

See also: 
• Inlining (User manual) 

post_inlining_renaming    (default: true) 

Renaming of the parameters of inlined functions. In order to perform inlining, three operations are 

INRIA



Tempo Specializer Documentation 95

performed in the calling function. 
• Declarations for the callee formals are inserted. 
• Before the inlined call, assignments are inserted: the formals of the callee are assigned to the 

actual arguments provided by the caller. 
• The inlined call is replaced by a copy of the body of the callee. 

This can cause problem when the formal is of array type, as it is not possible in C to assign an array.  
(An array is a kind of constant pointer variable). 

The possible values of post_inlining_renaming are: 

true 
Renaming of all the parameters of a function before inlining so that they do not conflict with the 
actual arguments that are passed. 

false 
This renaming is not performed. 

Note that  setting  post_inlining_renaming to  false can cause bugs. If your program  has 
functions with parameters of pointer type and arguments of array type, the arrays is not referenced 
correctly once the function is inlined. 

This flag is for internal purposes. 

See also: 
• Inlining (User manual) 

post_porky    (default: false) 

Additional  post-processing  after  CT specialization. The  variable  indicates  whether,  on  top  of 
Tempo post-processing, an additional post-processing using porky should be performed. Even if this 
variable  is  set  to  true,  no  additional  post-processing  is  performed  if  the  variable 
post_porky_flags is set to the empty string. 

See also. 
• Suif   
• Command porky 
• Post-processing   phase 
• Additional   porky   post-processing   phase 
• Variable post_porky_flags (to parameterize additional post-processing) 

post_porky_flags    (default: "-ucf-opt -unused-syms")  
post_s2c_flags    (default: "-omit-header") 

Flags  for  additional  post-processing  after  CT  specialization. Those  variables  are  used  to 
parameterize an  extra    porky   pass   after CT specialization, if  requested. See the description of the 
additional   porky   post-processing   phase for the invocation pattern. Common porky options include: 

-dead-code 
Simple dead-code elimination. 

-Dblocks 

RT n° 0390



96 R. Marlet

Blocks created from inlining functions are dismantled. 
-ucf-opt 

Simple optimization on unstructured control flow (branches and labels). 
-unused-syms 

Removal  of  symbols  that  are  never  referenced and have  no  external  linkage,  or  that  have  
external linkage but are not defined in this file (i.e., no function body or variable definition). 

See also: 
• Suif   
• Command porky 
• Additional   porky   post-processing   phase 

post_start_inlining_func    (default: []) 

Call-graph regions for performing inlining. This variable holds a list of strings which correspond to 
function names. Inlining is performed only ``below'' those functions in the call-graph. In other words,  
no inlining is performed on the functions that  may eventually  call  those that  are specified in the 
post_start_inlining_func variable. 

In particular, when this list is empty, there are no restriction on where inlining begins. In this case,  
inlining is allowed everywhere in the call-graph. 

Note that this specification is overridden by the effect of the following variables: 
• post_inlining   (to enable inlining) 
• post_do_inline   (to force inlining) 
• post_do_not_inline   (to prevent inlining) 
• post_inlining_max_nb_calls   (threshold for the number of calls) 
• post_inlining_max_nb_stmts   (threshold for the body size) 

post_transform    (default: true) 

Control  over  algebraic  simplifications  during  post-processing. If  true,  some  algebraic 
simplifications are performed during post-processing, e.g. addition to 0, multiplication by 0 or 1, etc. 

pre_common_subexpression    (default: true) 

This  variable  has  the  same  meaning  as  the  corresponding  post-processing  variable 
post_common_subexpression. 

pre_do_inline    (default: [])  
pre_do_not_inline    (default: [])  
pre_inlining_max_nb_calls    (default: 5)  
pre_inlining_max_nb_stmts    (default: 25)  
pre_inlining_mode    (default: BLOCK)  
pre_inlining_renaming    (default: true)  
pre_start_inlining_func    (default: []) 

Pre-inlining variables. Those variables are parameters for pre-inlining occurring during early and late 
pre-processing. They have the same meaning as the corresponding post-processing variables (starting 

INRIA



Tempo Specializer Documentation 97

with a ``post_'' prefix rather than `` pre_''). 

See also: 
• Early pre-processing   phase 
• Late pre-processing   phase 
• Variable pre_inlining_time 

pre_inlining_time    (default: NEVER) 

Pre-inlining time. The goal of the pre-processing phase is to perform function inlining. It is split into 
two phases, one  early and one  late. Each phase can be ignored or forced depending on the variable 
pre_inlining_time. Possible values are: 

NEVER 
No inlining performed during either of the pre-processing phases. 

EARLY 
Inlining limited to the first, early pre-processing phase. All specified functions, whether with a 
single return or with multiple returns, are inlined. 

LATE 
Inlining only during the second,  late pre-processing phase. Only functions with single returns 
are inlined in this phase. Functions with multiple returns are not inlined and a warning is issued.  
This  is  because  the  inlining  of  this  kind  of  functions  introduces  gotos  which  cannot  be 
eliminated at this stage. 

AUTO 
Functions with multiple returns are inlined in the early pre-processing phase and functions with 
single returns are inlined in the late pre-processing phase. 

In most cases, since pre-inlining makes the code less readable, the user wants (in case pre-inlining is  
really required) to use the AUTO value. This hides pre-inlining as much as possible, i.e., delay it in the 
course of the analysis phases. 

Note  that  pre-inlining  can  be  useful  only  when  doing  run-time  specialization.  For  compile-time 
specialization, the inlining that occurs during the post-processing is sufficient. When inlining during  
run-time specialization is implemented, pre-inlining at both pre-processing stages will disappear. 

See also: 
• Early pre-processing   
• Goto elimination   
• Late pre-processing   

print_dir_in_html_title    (default: false) 

Path in HTML title is displayed. This variable specifies whether the full path of the file should be 
displayed as a title in HTML generated files. Possible values are: 

true 
The full path, e.g., /home/jake/spec/power.eta2.html is included. 

false 
Only the name of the file, e.g., power.eta2.html is included. 

RT n° 0390



98 R. Marlet

rebuild_compound_data    (default: false) 

Reconstruction of initializations. This variables enables the reconstruction of initialized scalar (for 
the moment) variables during post-processing. This has not much be tested, hence the default value. 

reentrant_rts    (default: true) 

Controlling the allocation strategy of the specialization buffer for run-time specialization.  For 
run-time specialization, the buffer where specialized functions are recorded can either be global or  
local. In the former case, a unique specialization buffer is used for any specialization; this buffer is  
allocated statically. As a result, one specialization replaces a previously specialized function. In the 
latter case, many specialization functions can be used at the same time. A new buffer is thus allocated  
dynamically each time a specialization is triggered. This feature is essential  when the function to 
specialize is recursive or when multiple specialized versions are needed at a given time. Regardless of  
the strategy,  the run-time specializer always returns the address  where the specialized function is  
stored. 

Possible values for this variable are: 

true 
A new specialization buffer is allocated for each specialization. 

false 
A unique specialization buffer, statically allocated, is used for any specialization. 

Note: Unlike the compile-time specializer, the run-time specializer does not perform a memoization of 
the  functions  previously  specialized.  As  a  consequence,  recursive  specialization  with  previous 
specialized values cause the specializer not to terminate. For example, backward branches in a byte-
code interpreter. 

remote_target    (default: "") 

Enabling the compilation of the templates and the run-time specializer to be performed on a 
remote machine. This variable can be set to a remote machine to define where the compilation of the 
templates and the run-time specializer should occur. This functionality is typically used to perform the 
analyses on a fast machine and to run the machine-dependent tasks on the target machine. This is 
implemented using rsh; the variable should thus be set to a valid machine name. 

Note that this facility assumes that there is a shared file system between the machines used. 

residualize_all_icalls    (default: true) 

Binding time of external indirect calls. This variable specifies whether indirect external function 
calls  can  be  evaluated  if  possible  (i.e.,  the  function  pointer  and  the  arguments  are  static)  at 
specialization time or should always be residualized (independently of arguments). Possible values 
are: 

true 
Residualization of all indirect external calls at specialization-time. 

false 
Evaluation of indirect external calls at specialization-time whenever possible. 

INRIA



Tempo Specializer Documentation 99

See also: 
• Variable external_functions (binding time of external functions) 
• Indirect-call elimination   phase 

rsd    (default: "$TEMPOHOME/rtcg") 

Run-time specializer internal directory. This is the path to the run-time specializer internals (library 
and template compiler). In practice, it should not be altered by the user. 

rts_buffer_size    (default: 20000) 

Size of the specialization buffer for the run-time specializer. 

rts_compiler_options    (default: "-O0") 

Setting the compiler options for the run-time specializer. Variable  rts_compiler_options 
defines the compiler options to be used for the compilation of the run-time specializer. Unlike the  
templates,  the run-time specializer can be compiled without any restriction as to the optimization 
level. Optimizing the run-time specializer mainly impacts the static computations of the program to 
specialize. 

rts_do_inline    (default: []) 
rts_do_not_inline    (default: []) 

Inlining after runtime specialization. List of function names can be provided to instruct the runtime 
specializer to perform additional inling. It presently only is effective for Sparc. Pentium support is not 
fully implemented. In any case, this is still an experimental feature.

See also: 
• Early pre-processing   (Reference Manual) 
• Late pre-processing   (Reference Manual)
• Command rts_compact_inline 
• Command rts_inlining 
• Command rts_optimized_inlining_one_pass 
• Command rts_optimized_inlining_two_passes 

s2c_flags    (default: "") 

Flags for s2c and s2st. This variable can be used to provide options to s2c and s2st when 
producing file  .st   and file  .st   files. 

See also: 
• Suif Environment   
• Suif Command: s2c 
• Suif Command: s2st 
• Suif abstract syntax generation   

scc_flags    (default: "") 

RT n° 0390



100 R. Marlet

Flags for scc. This string variable allows additional flags to be passed on to  scc when parsing C 
files (program and analysis context) in order to produce spd files. The invocation pattern of scc is as 
follows. 

scc scc_flags -.spd file.c 
Typical flags are -Ipath to specify the directory in which to find include files, and -D and -U to 
specify the values of C preprocessor variables. 

See also: 
• Suif   
• Command scc 
• Suif parsing   
• Variable porky_flags 

sh_command    (default: "") 

Shell setting. This string variable represents a command to be put in front of each Shell escape that 
Tempo  runs  to  perform  parsing,  compilation,  specialization  and  additional  post-processing.  It  is 
mainly used to set Shell variables, e.g., 

sh_command := "
  SPE_FLAGS=\"-DSPECIALISATION\";
  CHORUS=/udd/pe/chorus/ClassiX1.1/sr;
  CHORUSFLAGS=\"-DCOMPAQ386 -DKERNEL -DMULTI_IOM
     -I$CHORUS/chorus_3.5\" ";

Common specifications include paths and cpp variable definitions for parsing. 

specialized_entry_point_name    (default: "") 

Name of CT-specialized entry point. The compile-time-specialized entry point function is named 
after the content of this variable. If it is the empty string, the name of the specialized entry point  
function will be generated automatically. 

static_locations    (default: []) 

Initial static locations. This variable specifies which locations should initially be treated as static by 
the  BTA  analysis  (apart  from  entry  point  arguments  which  are  specified  using  variable  
entry_point). All other locations are assumed dynamic. 

The variable is a list of strings (location names). A location may be: 
• A global scalar variable, e.g., "foo". 
• A structure field. The notation is then  structure_type.field, e.g.,  point.x where 

point is  the  name  of  a  structure  type  (as  given  by  the  declaration  struct point 
{...}), not of an instance of that type. This restriction is due to the monovariance of the 
BTA on structures. 

Note  that,  at  the  moment,  it  is  not  possible  to  use  a  type  name  that  has  been  created  with  the 
typedef construct. Only the structure name that follows the keyword struct in the declaration of 
the  structure  can  be  used.  If  there  is  no  name  following the  keyword  struct (an  anonymous 
structure), Suif generates one automatically (named __tmp_structn where n is some number). It 
is very dangerous to rely on Suif to choose any particular name for this structure. For now, whenever 

INRIA



Tempo Specializer Documentation 101

possible, the user is encouraged to modify the source file to give explicit names for such anonymous 
structures. In any case, an error is reported if the location does not exist. 

See also: 
• Variable entry_point (binding time of arguments of the entry point) 
• Variable external_functions (binding time of external functions) 
• Analysis context file actx.c (more precise binding times) 
• Specifying the analysis context   (User manual) 
• Structure Mono/polyvariance   (User Manual)

struct_version    (default: MONO) 

Structure polyvariance. This variable indicates whether structure polyvariance is active or not. or 
not, with respect to alias, side-effect and binding-time information, i.e., if the information should be 
merged for all instances of a given structure type (less precise but faster analysis) or computed for 
each structure instance (more precise but slower analysis). Possible values are:

MONO
Consider structure monovariance only. Use robust code. 

POLY
Possibly analyse structures with polyvariance, depending on variable  poly_structs.  Use 
experimental code.
 

See also: 
• Binding-time analysis   (producer)
• Variable: poly_structs 

 
templates_compiler_options    (default: "-O0") 

Setting  the  compiler  options  for  the  templates. Variable  templates_compiler_options 
defines  the  compiler  options  to  be  used  for  the  compilation  of  the  templates  used  for  run-time 
specialization. 

Note that, in our experience, templates can be optimized up to  "-O2". Further optimization levels 
interfere with our template strategy.

trim_specialized_func_ids    (default: "false") 

Trimming  of  specialized  functions  names. Specialized  functions  have  funny  names  like 
_Gfoo_1_2_3(). When set to true, names look like foo_3(). 

verbose_aliases    (default: true) 

Alias information displayed. This variable specifies whether alias information should be included as 
comments when displaying the program as (possibly colored) C text files. Possible values are: 

true 
Alias information (possible values for pointer dereference) displayed in generated program text 
files, i.e., c and colored files (either color or html). 

RT n° 0390



102 R. Marlet

false 
This information is omitted. 

Example: 

get_addr(&a[1])

int get_addr(int *x)
{
  return *x/* a[] */;  /* alias information in comments */
}

Note  that  alias  information  is  always  removed  from  the  cts.C file,  unless  the 
verbose_aliases_in_specializations flag is set. 

See also: 
• Visualization of analysis information   

verbose_aliases_in_specializations    (default: false) 

Alias information displayed in specialized files. This variable specifies whether alias information 
should be mentioned when displaying the specialized program as a C text file. The alias information is 
not generally meaningful as the alias information is not re-computed on the specialized file but only 
``inherited'' from the original program via specialization reconstructions. However, some users rely on 
it to ``guess'' what specialization did. This should not be encouraged; the  action file, as well as the 
BTA and ETA files, contain the right information to predict specialization. Possible values are: 

true 
Alias information (possible values for pointer dereference) is displayed. 

false 
This information is omitted. 

Note that variable verbose_aliases must be set to true for alias information to be maintained 
in the specialized program file. 

verbose_callsig    (default: true) 

Polyvariance index is displayed. When displaying program as (possibly colored) C text files, this 
variable says whether an index should be displayed next to function calls and definitions in order to 
differentiate between different polyvariant binding-time instances. A function call or definition looks 
like this: fun/*37*/(arg1,arg2). 

Note that both the BTA and the ETA may introduce different polyvariant instances; the resulting index 
differs from one analysis to the another. In other words, the index is only meaningful for a given file 
and should not be compared with indices in other files (whether previous or subsequent in the flow of  
phases). It does not differentiate either between the BTA and the ETA polyvariance: both  kinds of 
polyvariance are ``merged''. Possible values are: 

true 
Polyvariance index displayed in comment just after a function name at definition and call site. 

INRIA



Tempo Specializer Documentation 103

false 
This information is omitted. 

See also: 
• Visualization of analysis information   

verbose_headers    (default: true) 

Signature information is displayed. This variable specifies if function signature information should 
be mentioned when displaying program as (possibly colored) C text files. Possible values are: 

true 
Signature information is  displayed in generated program text  files,  i.e.,  c and colored files 
(either color or html). It includes side-effects of the function with associated binding times, 
as well as evaluation-time information. 

false 
This information is omitted. 

Example: 

int get_addr(int *x) 
/* 
 binding times of read non_locals: a
 residual non-locals in: a
*/
{
  return *x/* a[] */;
}

The signature follows in comments just after the function definition header. 

See also: 
• Visualization of analysis information   

verbose_rts    (default: false) 

Verbose generation of run-time specializer. When set to true, prints all the commands that build a 
run-time specializer. 

viewer    (default: emacs) 

Viewer target for colored files. This variable specifies the format (and name) of colored files when 
displaying program as C text files. Possible values are: 

emacs 
MIME text/enriched format (see Suffix   .color  ) 

html 
HTML format (see Suffix   .html  ) 

wd    (default: ".") 

RT n° 0390



104 R. Marlet

Working directory. Tempo operates on files that are all in the same directory (or in an architecture-
dependent sub-directory). This variable contains the path of the current working directory. 

See also: 
• Command cd (to change the working directory of the SML top-level as well) 
• Introduction to section on Tempo files 
• Variable arch_dep_dir (sub-directory for architecture-dependent RT files) 

MAIN  TUTOR  USER  REF  INSTALL  FAQ  LIMIT  BUGS  SML  SUIF  DEMO  CONTRIB 

.....

INRIA



Tempo Specializer Documentation 105

 

4 > Tempo — Installation Manual

• The Tempo Specializer system 
• Requirement   
• Available platforms   
• Content   
• Installation procedure   
• Emacs installation issues   

MAIN  TUTOR  USER  REF  INSTALL  FAQ  LIMIT  BUGS  SML  SUIF  DEMO  CONTRIB 

4.1 The Tempo Specializer system

Tempo is an partial evaluator for C programs. The system consists of: 

• A kernel (written in SML/NJ), that implements all the analyses and basic transformations (except  
specialization itself) and that sequences all phases. 

• A  library  (written  in  C++)  for  compile-time  specialization which  performs  source-to-source 
specialization actions.

• A template compiler (written in C) that prepares the assembly of object code templates for run-time 
specialization.

• A "front-end" (part of the Suif compiler) that handles the parsing of C and some additional source-
to-source transformations. 

The last official release of Tempo dates February 11th, 2003.

4.2 Requirements

You  first  need  to  have  Standard  ML of  New  Jersey  (SML/NJ)  installed.  It  can  be  downloaded  from 
http://www.smlnj.org/.

Note however that using Tempo with recent versions of SML will result in a "bad magic number" error. As a 
workaround,  please  use  SML/NJ  version  110.0.7.  This  now  old  version  can  be  downloaded  from 
http://www.smlnj.org/dist/release/110.0.7/.

Tempo might work with a little more recent version of SML/NJ though, but this one will work for sure and, 
as explained in the SML Environment description, this has no impact on the performance of specialization 
itself.

Besides SML/NJ, the following tools must be installed on the machine for doing runtime specialization: 

RT n° 0390

http://www.smlnj.org/dist/release/110.0.7/
http://www.smlnj.org/


106 R. Marlet

• gcc (or a slightly modified version of lcc) 
• gmake 
• objdump 

No special tool is required for compile-time specialization, except a C/C++ compiler. 

4.3 Available Platforms

The system runs on the following platforms: 

• Sun OS 4.1 
• Sun OS 5.5, i.e. Solaris 2.5 
• Linux on PC 

The system used to perform poorly on PC/Linux as we were relying on an old version of SML/NJ (see the  
SML Environment). However, only analysis and post-processing are affected, not compile-time nor run-time 
specialization themselves.

4.4 Content

The distribution for, e.g., SunOS 4 contains the following directories. 

• tempo :   Root directory 
• tempo/bin/tempo : Script that runs the Tempo top level 
• tempo/bin/ARCH/tempo :   Tempo top-level binary 
• tempo/ctcg/... :   Compile-time specializer header files 
• tempo/ctcg/ARCH/libctcg.a : Compile-time specialization library 
• tempo/rtcg/tcc/ARCH/tcc :   Template compiler 
• tempo/rtcg/rts/ARCH/... :   Run-time specializer files 
• tempo/demos/... :   Demos directory 
• tempo/doc :   Documentation directory 
• tempo/suif/MACHINE/bin/... :   Suif binaries 
• tempo/suif/MACHINE/solib/... :   Dynamic libraries (Linux only) 
• tempo/emacs/... : Emacs files for visualizing color-annotated files 

where ARCH and MACHINE are among one of the following couples. 

ARCH MACHINE 

SunOS-4 sparc-sun-sunos4 

SunOS-5 sparc-sun-sunos4 

Linux-2 i386-linux 

There is no special reason why there are two different names for the same thing, just history of existing 
systems... 

INRIA



Tempo Specializer Documentation 107

4.5 Installation Procedure

The distribution files are named  tempoN.NNN_ARCH.tar.gz.  There is one such file for each  ARCH 
platform: 

• SunOS 4.1: SunOS-4 
• SunOS 5.1: SunOS-5 
• Linux on PC: Linux-2 

Each distribution contains all the required files. In order to install Tempo for different platforms at the same  
time, follow the installation procedure starting from the same root directory; appropriate sub-directories will  
be created. 

The installation process is as follows: 

1. Choose the location of your installation: 

mv tempoN.NNN_ARCH.tar.gz INSTALL_DIR
cd INSTALL_DIR

2. Extract the distribution: 

gunzip tempoN.NNN_ARCH.tar.gz
tar xf tempoN.NNN_ARCH.tar

3. Add INSTALL_DIR/tempo/bin to your path. 
4. Modify  the  tempo script  in  the  directory  INSTALL_DIR/tempo/bin so  that  SML_PATH 

specifies the path used to invoke SML. This should include both the directory containing SML and 
the SML command itself, not just the directory. 

You can now start Tempo by running the command tempo. 

To view the color annotated files produced by Tempo under certain versions of Emacs (19.34 and potentially  
other  versions including XEmacs,  see  the  detailed section for  more details),  it  is  necessary to load the 
format-patch elisp file from the .emacs file: 

• insert the line (load "/myDir/tempo/work/format-patch") in your .emacs This and 
other  Emacs-related  installation  issues  (potential  problems)  is  thoroughly  described  the  detailed 
section on Emacs installation. 

4.6 Emacs Installation Issues

Two problems are known to occur when using Emacs to view ".color" files (MIME Enriched format) 
generated by Tempo: 

1. Color file loading failing with a "Wrong type argument" error (or in some cases loading but 
displaying without certain color annotations). 

2. Color file filling messing up the program. 

This section describes the proper installation procedures for circumventing these problems. 

RT n° 0390



108 R. Marlet

4.6.1 Loading / Coloring Failure
Loading of color files may fail  with a "Wrong type argument" error; in some cases loading may 
succeed but without displaying certain color annotations. 

There exist a temporary patch to fix this for certain versions of Emacs: 

• With Emacs 19.30 and lower, we have observed no problems. Thus, the patch should not be needed 
for such installations. 

• With Emacs 19.34, the color files cannot be loaded. When loading a color file, Emacs generates a 
"Wrong type argument" error, and does not display the colored file. In some cases, the file will load,  
but not all the annotations will display correctly. Thus, the patch is needed for such installations. 

• We have not thoroughly tested higher version of Emacs. (Emacs 20.2.4 seems to be OK though.) If  
Emacs cannot load the color files produced by Tempo, the patch is needed, and will probably work. 

• Certain versions of X-Emacs display similar problems, and should thus use the patch. 

To use the patch, in the following line in your .emacs file. 

• under Emacs: 

(load "INSTALL_DIR/tempo/emacs/format-patch")

• under X-Emacs 

(load "INSTALL_DIR/tempo/emacs/format-patch-xemacs")

The patch is necessary because the enriched mode (used for displaying enriched MIME color files under  
Emacs) was updated between versions 19.30 and 19.34 of Emacs. The updated version no longer supports 
multiple color overlays for the same text. The support of multiple overlays (and the selection of "innermost" 
as the visible overlay for a piece of text) worked well with a recursive-descent way of generating colored 
files. For this reason, Tempo generates color files that have overlapping color overlays. This causes some 
versions of Emacs to generate an error when the color file is loaded, or simply to not display the appropriate 
colors. 

The patch consists of a single elisp file that contains the appropriate functions from the standard encriched 
mode from version 19.30 of Emacs. When the file is loaded, the appropriate functions are replaced with the  
compatible,  older  (and more tolerant)  versions.  The patch is  needed only as  long as the the color files  
generated  by Tempo have  overlapping  overlay annotations.  However,  most  color  files  don't  have these  
overlaps. 

4.6.2 Automatic Filling
The color files generated by Tempo are sometimes inadvertently filled: all spaces and indentation is reduced  
to single spaces and lines are wrapped as if they were ordinary text (rather than part of a program), making  
the program unreadable. 

The (temporary) solution is to disable automatic filling. For this, add the following line in your .emacs file. 

(setq enriched-fill-after-visiting nil)

INRIA



Tempo Specializer Documentation 109

To restore automatic filling, do: 

(setq enriched-fill-after-visiting 'ask)

MAIN  TUTOR  USER  REF  INSTALL  FAQ  LIMIT  BUGS  SML  SUIF  DEMO  CONTRIB 

.....

RT n° 0390



110 R. Marlet

 

5 > Tempo — FAQ

• Goal and conventions 

• The Tempo top level   
• Properties of global variables   
• Properties of parameters and local variables   
• Properties of array cells and structure and union fields   
• Specialization of a module   

• Calling context   
• Returning context   
• External functions   
• Global variables   
• The names of the specialized functions   

• Running the Analysis   
• Compile-time specialization   
• Run-time specialization   
• Visualization   

MAIN  TUTOR  USER  REF  INSTALL  FAQ  LIMIT  BUGS  SML  SUIF  DEMO  CONTRIB 

5.1 Goal and conventions

The Tempo FAQ keeps track of the Frequently Asked Questions from Tempo developers and users. 

We follow the convention that unless specified otherwise, all references below can be found in the  User 
Manual, except references marked "Variable:" and "File:", which can be found in the Reference Manual. 

5.2 The Tempo top level

What does the "=" prompt mean?

In the SML top level, every command has to be terminated with a semicolon. "=" indicates that 
the semicolon was not provided. 

When I run the tempo command, nothing happens.

The tempo SML command requires three arguments, the name of the file (without the .c 

INRIA



Tempo Specializer Documentation 111

extension),  the name of the starting phase,  and the name of the ending phase. Because the 
tempo function is curried, if you leave off one of the arguments, a partially-applied function is 
returned. 

See also: The SML Top Level, Using SML commands

What files are needed at minimum to specialize a program?

The  C  source  file  (file.c)  and  the  SML  file  containing  configuration  information 
(file.config.sml). The specialization context file initializing the static parameters of the 
program (file.sctx.c) is needed for compile-time specialization. The SML file containing 
configuration information must at least define the entry_point variable. 

See also: Specifying the Program to Specialize 
Entry Point and Binding Times For Its Arguments 
Variable: entry_point
File: .c
File: .config.sml
File: .sctx.c 

Why doesn't ~ work to specify the path of a file or directory?

This is a "feature" of Tempo. Use the complete path name when changing directories. When you 
are in the directory of the program to specialize, just the file name is sufficient. 

See also: Specifying the Program to Specialize 

How can I specify an include path for the analysis phase and for the specialization phase?

Any flags can be provided to Suif (the parser used for the analyses) using the scc_flags 
variable.  Any  flags  can  be  added  to  the  compilation  of  the  specializer  using  the 
ctcg_cflags variable. 

See also: Variable: scc_cflags
Variable: porky_flags
Variable: ctcg_cflags 

How can I set my preferences (e.g.  viewer := html rather than  emacs) once and for all  
rather than explicitly at each Tempo session?

Create a file named .tempo.sml in your home directory (that is the full name, not just an 
file extension); it will be loaded each time you run the the tempo top level. 

See also: File: .tempo.sml 

RT n° 0390



112 R. Marlet

How do I get out of Tempo?

Type control-D (i.e. end-of-file character).

5.3 Properties of global variables

What are the initial binding times of global variables?

Uninitialized global variables are dynamic by default. Initialized global variables are static by 
default.  Global  variables can be declared static explicitly using the static_locations 
variable. 

See also: Binding Time of Global Variables 
Variable: static_locations 

What are the initial alias properties of global variables?

By default, it is assumed that there are no alias relationships among global variables. Aliases  
can be specified using the set_analysis_context() function in the .actx.c file. 

See also: Specifying Complex Analysis Contexts 
File: .actx.c 

5.4 Properties of parameters and local variables 

Why does a local variable have bottom binding time?

A local variable has binding time bottom until it is assigned. 

See also: Colored Files 

When does a parameter become a local variable?

If a parameter value is static and its address is used at runtime, the parameter is suppressed and 
a local variable is allocated. Take for example the following program: 

void proc2(int *p)
{
  show(p);
}

void proc1(int c)
{

INRIA



Tempo Specializer Documentation 113

  proc2(&c);
}

void entry()
{
  proc1(1);
}

Here, show() is an external function: it can not be called at specialization time. There is  
no .actx.c file, so by default this function does not access the value stored at its parameter  
address. 

The value of c is static. So the parameter c could be suppressed. On the other hand, the 
address of c is dynamic. So the parameter c should be residualized. In order to reconcile 
both  aspects,  the  parameter c  is  suppressed  and  a  local  variable c  is  introduced  in 
proc1() (where its address is needed). The specialized code looks like: 

static void proc2(int *p)
  {
    show(p);
  }

static void proc1()
  {
    int c;

    proc2(&c);
  }

extern void entry()
  {
    proc1();
  }

See also: Evaluation-time analysis (1)   (Reference Manual) 
Evaluation-time analysis (2)   (Reference Manual) 

5.5 Properties of array cells and structure and union fields 

After the assignment a[3] = 0, why is a[3] still dynamic?

In Tempo, all array cells have the same binding time. Thus if any cell is dynamic, they are all  
dynamic, even after a static assignment to a particular cell. 

See also: Array Monovariance 
Binding Time of Arrays 
Composite Locations and Binding Times 

RT n° 0390



114 R. Marlet

After the assignment s.x = 0, why is s.x still dynamic?

In Tempo, there is only one binding time description for all instances of a structure or union of a 
given type. Because just assigning the field of one instance to a static value does not ensure that 
the corresponding field of all instances has a static value, the binding time remains dynamic. 

See also: Structure Mono/polyvariance 
Binding Time of Structures and Unions 
Composite Locations and Binding Times 

Even though there is no assignment of an array cell (or structure or union field) to a dynamic  
value, why are all the array cells (or structure or union fields) dynamic?

In Tempo, all locations are considered dynamic, unless specified otherwise (except initialized 
scalar variables). This includes the content of arrays and the fields of structures and unions. 

See also: Variable: static_locations
Binding Time of Global Variables 
Binding Time of Arrays 
Binding Time of Structures and Unions 

Where does the __tmp_struct1 structure type come from?

SUIF introduces  names  of  this  form when  an  anonymous  structure  type  is  defined  in  the 
program. It is not safe to rely on Suif to choose a particular name for a particular structure. 

See also: Anonymous Structures or Unions 

If s  is  the  name of  a  structure  with  field x  , why isn't s.x  a valid  entry  in  the  list 
static_locations ?

The entry in the static_locations list uses the type name rather than the name of a 
particular instance, because of structure monovariance. 

See also: Structure Mono/polyvariance 
Binding Time of Structures and Unions 

If str is the name of a structure type declared using typedef, why isn't str.x a valid  
entry in the list static_locations ?

Typedefs  are  eliminated  by  Suif.  The  entry  for  a  structure  or  union  field  in  the 
static_locations list has to be the name of the structure or union type, followed by 
"dot", followed by the name of the desired field. 

See also: Restrictions on Typedef 
Binding Time of Structures and Unions 

INRIA



Tempo Specializer Documentation 115

Variable: static_locations 

If str is the type of a structure or union, and x is a field of str having structure or union 
type, why is it an error to include str.x in the list static_locations ?

Structures as a whole do not have a static binding time. Instead, the individual fields should be 
specified to be static. 

See also: Locations 
Nested Structures and Unions 

5.6 Specialization of a module

Tempo may be applied to only part of a complete application. In this situation it may be necessary to specify 
extra information about the context in which the specialized code will be invoked, about functions called 
from the  code  to  specialized,  and  about  the  context  following  the  invocation  of  the  specialized  code.  
Furthermore, the specialized code needs to be reintegrated into the application. 

5.6.1 Calling context

How can the binding times of values pointed to by global variables or entry-point parameters be  
specified?

By default, pointed values have the same binding time as the pointer. A different binding time 
can be specified using the set_analysis_context() function in the .actx.c file. 

See also: Specifying Complex Analysis Contexts 
Binding Times of Parameters Passed By Reference 
File: .actx.c 

How can alias relationships among global variables or entry-point parameters be specified?

Aliases can be specified using the set_analysis_context() function in the .actx.c 
file. 

See also: Specifying Complex Analysis Contexts 
Initial Alias Relation 
File: .actx.c 

RT n° 0390



116 R. Marlet

5.6.2 Returning context

The code to be specialized contains a static assignment to a global variable. When the variable is  
used in the application after the specialized code is called, how can I force the assignment to be  
residualized?

The  variable live_locations  allows  one  to  specify  what  locations  are  used  in  the 
application after the call to the specialized code. More complex relationships can be specified 
using the set_post_analysis_context() function in the .actx.c file. 

See also: Live Locations After The Entry Point 
Variable: live_locations
Specifying Complex Analysis Contexts 
File: .actx.c 

5.6.3 External functions

When are external function calls residualized?

An external function call is residualized when any of the arguments are dynamic. An external  
function  call  is  also  residualized  when the external_functions  variable  is  set  to  a 
RESIDUALIZE  list  including  the  name  of  the  function,  or  when  the 
external_functions variable is set to an EVALUATE list not including the name of the 
function. By default, all external functions are residualized. 

See also: Variable: external_functions
Binding Time of External Function Calls 
Variable: residualize_all_icalls
Binding Time of External Indirect Function Calls 

When are external function calls evaluated?

An external function call is never evaluated when any of the arguments are dynamic. When all  
of  the  arguments  are  static,  an  external  function  call  is  evaluated  if  the  
external_functions variable is set to an EVALUATE list including the name of the 
function, or when the external_functions variable is set to a RESIDUALIZE list not 
including the name of the function. Note that the decision whether all the arguments are static 
depends on just the argument values, not on values the arguments may point to. 

See also: Variable: external_functions
Binding Time of External Function Calls 
Variable: residualize_all_icalls
Binding Time of External Indirect Function Calls 

INRIA



Tempo Specializer Documentation 117

How is the definition of an evaluated external function obtained?

Evaluated  external  functions  have  to  be  linked  in  with  the  specializer.  Libraries  and  files 
defining external functions can be specified using the ctcg_ldlibs variable. 

See also: Variable: ctcg_ldlibs

How can the effect of an external function on binding times be specified?

By default, an external call is assumed to have no effect on binding times. Binding-time effects  
can be specified using an abstract definition of the function in the .actx.c file. 

See also: Abstract Function 
Behavior of External Functions 

How can the effect of an external function on aliases be specified?

By default,  an  external  call  is  assumed  to  have  no  effect  on  aliases.  Alias  effects  can  be 
specified using an abstract definition of the function in the .actx.c file. 

See also: Abstract Function 
Behavior of External Functions 

How can a location be made static in the .actx.c file?

A location can be made static by just assigning it to a constant, or to a global variable declared 
in the .actx.c file and specified as static using the static_locations variable. 

See also: Variable: static_locations
Dummy Static Location 

How can a location be made dynamic in the .actx.c file?

A location can be made dynamic just assigning it to a global variable declared in the .actx.c 
file or by assigning it to the result of a residualized external function call. 

See also: Dummy Dynamic Location 

How can aliases be described in the .actx.c file?

Alias relationships between variables can be described using the addresses of variables declared 
in the .actx.c file. A collection of aliases for a single location can be specified using a 
sequence of if statements. 

See also: Initial Alias Relation 

RT n° 0390



118 R. Marlet

Pointer to a Set of Locations 

How can memory allocation by external functions be modeled?

Memory allocation can be modeled by defining an abstract function that returns a pointer to 
some data structure defined in the .actx.c file. 

See also: Named Memory Cells 
Modeling Dynamic Memory Allocation 
Limitations concerning casts   (Limitations)

5.6.4 Global variables

During specialization, variables declared in the specialized program don't seem to communicate  
with variables declared in the rest of the application.

In this implementation of the specializer, global names are renamed during specialization. This  
can  cause  problems  if  they  are  are  referenced  externally  during  specialization,  because  
references in already-compiled code will not be renamed appropriately. A solution is to include 
the .sctx.h file in all of the files of the application, and recompile the entire application at  
specialization time, rather than using existing .o files. 

See also: Identifier Naming In Compile-Time Specialization   (Limitations)
File: .sctx.h 

5.6.5 The names of the specialized functions

Will  the  names of  specialized functions conflict  with the  names of  existing functions in  the  
original application?

All specialized functions except the specialized entry point are declared as static, so they 
are not visible from any other file. 

See also: Specifying Several Entry Points 

What is the name of the specialized entry point?

A fresh name is chosen for the specialized entry point by default. The name can be specified 
using the variable specialized_entry_point_name. 

See also: Specifying Several Entry Points 
Variable: specialized_entry_point_name 

INRIA



Tempo Specializer Documentation 119

5.7 Running the Analysis

My analysis takes a lot of time to compute? Do I have to always re-run it from scratch?

As long as your source files (".c" and ".actx.c") and configuration file (".config.sml") do not 
change, you can always restart from some already generated intermediate file (suffixed ".as")  
The an command runs the whole sequence of analysis phases, starting from the C files. But 
you may use the tempo top-level command to run only a fraction of thoses analyses. 

See also: Command: tempo
Variable: output_mode

5.8 Compile-time specialization

How are the values of the static parameters and globals provided before specialization?

Static variables are initialized using the .sctx.c file 

See also: Compile-Time Specialization
File: .sctx.c 

Why are there unbound variables when compiling the .sctx.c file?

Tempo changes the names of some variables.  Thus,  the .sctx.c  file must  #include the 
.sctx.h to perform the renaming. 

See also: Compile-Time Specialization
File: .sctx.h 

What does it mean when the specializer just sits there, doing nothing?

Perhaps your program is in an infinite loop (see also Static Loops Containing Dynamic Exits in 
the Known Bugs collection), or perhaps there is too much specialization being performed. If a 
single  static  value  varies  a  lot,  you  may  end  up  creating  many  very  similar  specialized 
functions. In this case it may be useful to make some static values dynamic, to perform less  
specialization. 

See also: Turn a Location Dynamic 

RT n° 0390



120 R. Marlet

What does it mean when there is a lot of garbage collection during specialization?

Once you see messages about garbage collection, specialization has successfully completed, and 
Tempo is performing postprocessing. Probably your specialized program is just very large. In 
this case it may be useful to make some static values dynamic, to perform less specialization. 

See also: Turn a Location Dynamic 

What does it mean if my static parameters are initialized to zero or to some strange random  
values?

Initialization  of  the  static  parameters  is  specified  by  a  user-written  function 
set_specialization_context() in a file suffixed .sctx.c . A common error is to 
set the local variables of this function, not their pointer values (i.e. not the static arguments of 
the entry point). 

See also: Invocation of a Compile-Time Specializer
Common Errors in Setting Specialization Contexts

What does it mean if there is a bus error, segmentation fault, or illegal instruction error during  
specialization?

If the error does not come rapidly when specialization starts, it may mean that the specialized 
code  has  exceeded  the  allocated  buffer  size.  A larger  buffer  can  be  requested  using  the 
explicit_cts_bufsize variable. 

If the error comes rapidly when specialization starts, it is likely that some data structure is not 
properly initialized (see Common Errors in Setting Specialization Contexts). Alternatively, there 
may be an error in your program. You can use the debugger gdb by compiling the specializer 
files with the -g option (specified by adding -g to the value of ctcg_cflags). Errors 
are likely to occur in the .ev.c file. Each function in this file contains a comment indicating 
the name of the function in the source program that it comes from. 

See also: Common Errors in Setting Specialization Contexts
Variable: explicit_cts_bufsize
Variable:   ctcg_cflags  
File: .ev.c 

How can I see the result of the specialization before post-processing?

The result of raw specialization is dumped into the file  .rawcts.as   file. It is not turned 
into C text by default as it is post-processed right away. To view it as C text, type this command 
at the top level. 

as2c "file.rawcts.as";

INRIA



Tempo Specializer Documentation 121

The  corresponding file  .rawcts.c   will  be  generated  in  the  working  directory. 
Alternatively, you may also set variable output_mode. 

See also: Command: as2c   (generation of C text from abstract syntax format)
Variable: output_mode   (control of the intermediate files to generate)

Is there any way to specify that a single function should always be inlined and no other function  
should ever  be  inlined,  without  saying do_not_inline  and listing the names of  all  the  
functions?

The SML variable post_do_inline is bound to a list of functions that must be inlined. The 
SML variable  post_do_not_inline  is  bound  to  a  list  of  functions  that  must  not  be 
inlined. But setting  post_do_inline to a list of function names does not does not mean 
that no other functions will be inlined. Similarly setting post_do_not_inline to a list of 
function names does not mean that all other functions will be inlined. Instead the inlining of  
functions  is  controlled  by  the  variables  post_inlining_max_nb_stmts  and 
post_inlining_max_nb_calls . These integer variables are the thresholds at which to 
stop inlining functions not explicitly included in the  post_do_inline list. Thus to inline 
the function "foo", but no other functions, set the flags as follows: 

post_inlining := true;
post_do_inline := ["foo"];
post_inlining_max_nb_stmts := 0;
post_inlining_max_nb_calls := 0;

Note  that  no  inlining  happens,  regardless  of  the  value  of  post_do_inline  if 
post_inlining is set to false.

If you want the calls within "foo" to be inlined as well, use the following settings: 

post_inlining := true;
post_do_inline := ["foo"];
post_start_inlining_func := ["foo"];

Variable start_inlining_func specifies the function at which inlining begins. Function 
calls not directly or indirectly within these functions are not inlined. inlining, and stops any 
functions outside the branch of the function(s) specified from being inlined. 

See also: Post-processing 
Variable: post_do_inline
Variable: post_do_not_inline
Variable: post_inlining
Variable: post_inlining_max_nb_calls
Variable: post_inlining_max_nb_stmts
Variable: post_inlining_mode
Variable: post_inlining_renaming
Variable: post_start_inlining_func 

RT n° 0390



122 R. Marlet

5.9 Run-time specialization

Once the run-time specializer is created, how is it used in the application?

The run-time specializer is invoked with the list of values for the static arguments. The result is  
a pointer to a specialized function that takes as inputs the values of the rest of the arguments. 

See also: Invocation of a Run-Time Specializer

The run-time specializer is generated in an architecture-dependent directory; how do I know its  
name, how can I change it?

All architecture-dependent files are generated, starting from in the working directory, in a sub-
directory given by variable arch_dep_dir.  If  you want it  to be written in  the working 
directory instead, you may assign arch_dep_dir to ".". 

See also: Variable: arch_dep_dir

How can multiple specializations of a single function be created?

By default, the run-time specializer allocate new buffer space each time the specializer is called  
and for each function. Other buffer manipulation strategies can be implemented by the user. The 
reentrant flag can be set to false to instruct the specializer to use a single buffer to store the 
specialized code. Subsequent specializations overwrite previous specializations. 

See also: Recursive and Multiple Run-Time Specializations
Variable: reentrant_rts 

What does a segmentation fault during run-time specialization mean?

If  the  segmentation  fault  occurs  during  specialization,  as  opposed  to  when  running  the 
specialized program, the problem might be that the program is recursive. If the program is  
recursive, the reentrant_rts flag must be set to true. 

See also: Recursive and Multiple Run-Time Specializations
Variable: reentrant_rts 

5.10 Visualization

Why does emacs give an error when loading color files?

There is a problem with the enriched mode of emacs version 19.34. A patch is available, as  
described in the installation manual. 

INRIA



Tempo Specializer Documentation 123

See also: Emacs installation issues   (Installation Manual) 

Why are some of the color annotations missing when viewing the color files under emacs?

There is a problem with the enriched mode of emacs version 19.34. A patch is available, as  
described in the installation manual. 

See also: Emacs installation issues   (Installation Manual)

Why are lines being wrapped when viewing color files under emacs?

The enriched mode of emacs will sometimes automatically perform filling at a specific width. 
The solution is to turn off filling, as described in the installation manual. 

See also: Emacs installation issues   (Installation Manual)

Why does my color file have lots of strange annotation when I view it under emacs?

The enriched mode of emacs will sometimes fail to display the file. Reloading the file normally 
solves the problem. 

Why don't the color files look like the source program?

Several  transformations  are  performed on  the  source  program by Suif  and  by  Tempo.  For 
example, Suif breaks up complex conditions, rewrites all  pointer dereferences to apply to a  
single variable, and rewrites all loops as do-while loops. Early phases of Tempo eliminate gotos 
and indirect function calls. 

See also: Parsing   (Reference Manual) 
Indirect call elimination   (Reference Manual) 
Goto elimination   (Reference Manual) 
Anonymous Structures or Unions 
Display of Alias information 
Pointers to Strings and Arrays 

How can I get rid of all the comments in the color files?

Alias  comments  can  be  eliminated  by  setting verbose_aliases  variable  to  false. 
Function-header comments can be eliminated by setting verbose_headers  variable  to 
false. 

See also: Variable: verbose_aliases
Variable: verbose_headers
Variable: verbose_callsig

RT n° 0390



124 R. Marlet

Variable: verbose_aliases_in_specializations 

What do the colors mean?

There is a legend at the top that describes the meaning of each color. 

See also: Visualization of Colored Files

What happened to the variable declarations?

If  there  are  more  global  variable  declarations  than  the  threshold  specified  by  the  variable 
max_decls_size, the variable declarations are put in a .decl.h file. 

See also: Variable: max_decls_size
File: .decl.h 

How do I print a color file in emacs?

M-x ps-print-buffer-with-faces 

Prints the current buffer on the current printer. 

M-1 M-x ps-print-buffer-with-faces 

Prompts for the name of a file where to save a postscript version (with colors) of the 
current buffer. 

M-x eval-expression 

(ps-print-buffer-with-faces "file.ps") 

Saves a postscript version (with colors) of the current buffer into file.ps. 

MAIN  TUTOR  USER  REF  INSTALL  FAQ  LIMIT  BUGS  SML  SUIF  DEMO  CONTRIB 

.....

INRIA



Tempo Specializer Documentation 125

 

6 > Tempo — Limitations

Caution: The limitations listed in this document are not meant to be exhaustive. 

• Missing Features   
• Input language   
• Aliases and casts   
• Mutually recursive structure declarations   
• Binding-time imprecision due to goto elimination   
• Identifier naming in compile-time specialization   
• Multiple compile-time specialization   
• Run-time specialization   

• Preservation of the Semantics   
• Off-line partial evaluators   
• Naming of identifiers   
• Initializations   
• Run-time specialization   

• Improvements Gained by Specialization   
• (Ex-)plans for the Future   

MAIN  TUTOR  USER  REF  INSTALL  FAQ  LIMIT  BUGS  SML  SUIF  DEMO  CONTRIB 

6.1 Missing Features

Some features are missing in Tempo. Though some of them are still challenges, others are just due to a  
(relative) lack of manpower.

6.1.1 Limitations of the Input Language
Though Tempo internally works on a small C subset, it accepts most ANSI C constructions. However, the 
following constructs are not handled: 

• Bit fields, 
• Switch (with 4 cases or more), 
• Functions with a variable number of arguments.
• Non local jumps (setjmp/longjmp)

Suif automatically rewrites switches with at most 3 cases into a cascade of ifs. Switches with 4 cases 
or more have to be manually rewritten into a cascade of ifs.

RT n° 0390



126 R. Marlet

6.1.2 Limitations on Aliases and Casts
For the time being, in order to guarantee that the alias analysis will produce correct results, the following 
rules should be obeyed: 

1. Pointer arithmetic can only be applied to pointers pointing to the contents of an array. (A warning is 
raised.)

2. The only scalar that can be cast to a pointer is  0, i.e. the pointer  NULL pointer. (A fatal error is 
raised: Tempo stops.)

3. Casting a pointer to a pointer is allowed only if the pointed objects are scalars. (A pointer is a scalar.) 
A warning is raised when the target type is not a pointer to a scalar.

4. If a pointer to a structure or union is cast to another pointer type it should be considered ``opaque''  
(i.e. not dereferenced, neither for reading nor writing) until it is cast back into the original type. 

All cast restrictions apply to unions that are used as casts, i.e. when an object is stored in the union under a  
certain name (and type) and retrieved under another name. 

Some of these limitations are due to the monovariance of the  alias analysis, others to the lack of a store 
model in Tempo. (Locations rely on names rather than physical, even abstract, memory.) You may want to 
check out the experimental structure polyvariance though. 

In  order  to  express  non-opaque  casts  between  structure  types  (as  may  be  needed  for  object-oriented 
programming), consider modeling them explicitly as abstract functions in the actx.c analysis context file. 

For the analysis to be correct, Tempo has to know all the possible aliases of locations if they have an impact  
on the semantics. This can also specified using the actx.c analysis context file. 

6.1.3 Mutually Recursive Structure Declarations
Tempo doesn't give an error if there is mutual recursion among structure declarations. However side-effect  
analysis just might not collect as many read/written non-locals as it should. Self recursion is OK though.

6.1.4 Binding-Time Imprecision Due to Goto elimination
Tempo  rewrites  gotos  using  a  combination  of  new  variables,  conditionals,  while  loops,  breaks,  and 
continues, using an algorithm developed by Ana Erosa and Laurie Hendren at McGill University (described 
in ACAPS Technical Memo 76). The conditionals introduced by the goto elimination can interfere with each 
other causing binding-time problems. Consider the following program: 

int if_test(int S, int D)
{
  int x,y;

  if (S > 32) goto L33;
  x=150;
  if (D > 32) goto L38;
  y=100;
  goto L38;
L33:
  x=200;

INRIA



Tempo Specializer Documentation 127

L38:
  return x + y;
}

This program corresponds to the following program without conditionals:

int if_test(int S, int D)
{
  int x,y;

  if (S <= 32) {
    x = 150;
    if (D <= 32) {
      y = 100;
    }
  else x = 200;
  return x + y;
}

Suppose we specialize these programs with S static and D dynamic. In the second case, S should be static, 
because it is not assigned within the dynamic conditional. In the first program, the goto elimination moves 
what should be the else branch of a static conditional, i.e. the assignment of x to 200, inside of the dynamic 
conditional. This behavior is shown by the following at.color (or  at.html file). (If this document is 
printed in black and white, this example will not tell you much.)

extern int if_test_1/*0*/(int S, int D)  {
    int goto1_L33;
    int goto1_L38;
    int x;
    int y;

    goto1_L33 = 0;
    goto1_L38 = 0;
    goto1_L33 = 32 < S;
    if (! goto1_L33)
      {
        x = 150;
      }

    if (goto1_L33 || 32 >= D)
      {
        if (! goto1_L33)
          {
            y = 100;
            goto1_L38 = 1;
          }

        if (! goto1_L38)
          {
            goto1_L33 = 0;
            x = 200;
          }

      }
    goto1_L38 = 0;
    return x + y;
  }

RT n° 0390



128 R. Marlet

The slightly more complicated program below, exhibits similar behavior.

int if_test(int S, int D)
{
  int x,y;

  if (S > 32) goto L33;
  x=150;
  if (D > 32) goto L27;
  y=100;
  goto L38;
L27:
  y=45;
  goto L38;
L33:
  x=200;
L38:
  return x + y;
}

Here the lines below label L27 correspond to the else branch of the inner dynamic conditional statement. In 
this case, the else branch of the outer conditional is not actually placed within the inner conditional, but  
dynamic tests of goto variables are placed around the code, making x again dynamic: 

extern int if_test_1/*0*/(int S, int D)  {
    int goto1_L27;
    int goto1_L33;
    int goto1_L38;
    int x;
    int y;

    goto1_L27 = 0;
    goto1_L33 = 0;
    goto1_L38 = 0;
    if (32 >= S)
      {
        x = 150;
        if (32 >= D)
          {
            y = 100;
            goto1_L38 = 1;
          }
        if (! goto1_L38)
          {
            goto1_L27 = 0;
            y = 45;
            goto1_L38 = 1;
          }
      }

    if (! goto1_L38 && ! goto1_L38)
      {
        goto1_L33 = 0;
        x = 200;
      }

INRIA



Tempo Specializer Documentation 129

    goto1_L38 = 0;
    return x + y;
  }

Essentially the problem is that because else branches are not introduced by the goto elimination, dynamic 
tests are introduced to jump over the else branch of the static conditional in all cases that can result from 
taking its then branch.

The PORKY_DEFAULTS and PORKY_PRE_DEFAULTS phases of Suif rearrange goto statements in a way 
that can also be detrimental to binding times. In many cases, these options can be turned off (which is the  
default for this version of Tempo), but in some cases  porky will not work if these phases have not been 
performed.

6.1.5 Identifier Naming In Compile-Time Specialization
In the implementation of the compile-time specializer for this version of Tempo, global names are renamed 
during specialization.  This  can cause problems if  they are  external,  or  are  referenced externally  during 
specialization.

The renaming of global variables is controlled by the .sctx.h file, which for the global variable var 
might contain a definition akin to: 

#define var _store.var

As long as the .sctx.h file is included into all C files used by the specializer, this works fine. However, 
if the program slice being specialized is part of a larger set of object files that are linked together, problems 
may occur. Specifically, object files that are not recompiled into the specializer will all  refer to var , 
whereas those files that were recompiled will refer to _store.var. If the specializer depends upon side 
effects from other parts of the program to var, it is likely to fail.

One solution is to only give Tempo the relevant program slice during analysis, and then give it the whole 
program during  specialization.  This  allows  any redefinitions  in  the  sctx.h file  to  take  effect  without 
incurring a large overhead (unless the program is very large). Of course, this only works if source code is 
available for the whole program, and may require some minor rewriting of the program. Other alternative  
solutions include referencing such variables through functions or to copy their value when the specialization 
starts.

This problem was planed to be removed in a future version, by avoiding any renaming of variables during  
specialization.

6.1.6 Limitations on Multiple Compile-Time Specialization
There  is  no  specific  support  for  multiple  compile-time  specialization.  In  particular,  when  linking 
simultaneously different specializations, redundant definitions may appear. They must be removed by hand.  
Similarly, useless declarations may occur. 

Note that identifiers are renamed by compile-time specialization. Global identifier are prefixed with  _G, 
local identifiers are prefixed with _L (or _Y for nested block declarations) and the name of the function they 
belong to. 

RT n° 0390



130 R. Marlet

6.1.7 Limitations to Run-Time Specialization
At the moment, the run-time specializer does not support: 

• Store management in rebuilt conditionals 
• Management of specializations, i.e. no memoization or memory reuse 

This may not preserve the semantics of the run-time specialized function (see below). 

Only gcc and a slightly modified version of lcc can be used for constructing a run-time specializer; see 
variable compiler. 

Also,  the runtime inlining  has  been implemented for  Sparc  and partly  for  Pentium,  but  this  is  still  an 
experimental (and undocumented) feature. 

6.2 Limitations on the Preservation of the Semantics

While a program transformer ideally always preserves the semantics of programs, this might not always be 
the case with Tempo, in very limited cases though!

6.2.1 Limitations Common to Off-Line Partial Evaluators
As is  the  case  for  most  off-line  partial  evaluator,  Tempo will  blindly  evaluate  all  static  expression.  In 
particular, 

• Tempo is stuck if a static expression loops. If that expression happens to be dead code (remember  
that this is undecidable), Tempo will loop whereas the original program terminates. 

• If a static expression raises an error (like division by zero), Tempo's behavior is unpredictable but  
probably wrong. 

6.2.2 Naming of Identifiers
Tempo does not  check that  the  identifiers  that  it  creates  do not  already exist.  Uncommon suffixes  and  
counters seem to do the trick in most cases. However, theoretically, a name clash is possible. 

6.2.3 Initializations
Other limitations are due to the transformations that Tempo performs in order to work on a smaller C subset. 
In particular, definitions of global variables of scalar type are turned into assignments in the entry point 
function to facilitate analysis. At the same time, the initializer is removed from the variable declaration,  
which may be a problem if the variable is actually used in some other files. 

6.2.4 Limitations to Run-Time Specialization
As mentioned  above, there is no store management in the run-time specialization.  This can produce an  
incorrect result from run-time specialization. A conditional statement is annotated ``rebuild'' when the test is 

INRIA



Tempo Specializer Documentation 131

dynamic by there is code that can be evaluated during specialization in one of the branches. In compile-time 
specialization,  when specializing  each  branch  the store  is  initialized  to  the  store  that  existed  just  after 
specializing the conditional test. Thus the static side-effects in one branch have no influence on the other  
branch. This is not the case for run-time specialization. In run-time specialization the store that exists at the  
end of specializing the first branch is the store that is used to specialize the second branch. This strategy can 
lead to wrong results, as illustrated by the following example:

Original program Wrong specialization Correct specialization

x=1;
if(Dyn)
{
  x=2;
  f(x);
}
else
{
  g(x);
}

if(Dyn)
{
  f(2);
}
else
{
  g(2);
}

if(Dyn)
{
  f(2);
}
else
{
  g(1);
}

Note that no warning will be issued. If such a situation is spotted, one possible workaround is to prevent 
speculative evaluation by turning dynamic the dangerous side-effects. 

Another effect of the lack of store management is that there is no memoization of the current store when  
specializing a function. This is in contrast with compile-time specialization that able to recognize that a  
function has already been specialized (or is being specialized) and to yield a call to that specialized function 
rather than invoking the specializer anew. As a result, run-time specialization may loop if the specialized  
function is recursive. This is typically the case when specializing interpreters with backward jumps. There 
are workarounds though; see Recursive and Multiple Run-Time Specializations in the User's Manual. 

6.3 Limitations on the Improvements Gained by Specialization

Partial evaluation is not magic. There are several reasons why the specialized program could be worse that  
the original one. In particular, 

• As is the case for most program transformations, even though it respects the operational semantics,  
specialization may alter the cache's behavior. This can have large (positive or negative) impact on 
modern architectures.

• Cache impact is important in particular for loop unrolling. As Tempo blindly evaluates any  static 
expression, it will unroll all static loops, whether large or small. Not only the program can be much 
bigger, but the instruction cache behavior can be very bad.

• Initializations are turned into explicit assignments so that Tempo can work on a smaller C subset.  
While theoretically less efficient (execution time and program size), this has not been a problem in 
practice in our examples.

RT n° 0390



132 R. Marlet

6.4 (Ex-)plans for the Future

The following features had been being considered for the next releases of Tempo. Some had already been  
implemented in large part and being used internally, although they did not make it into a released version.  
They are listed in order of release (ex-)likelihood. 

1. Switch (full support, instead of the rewriting into a cascade of ifs for switches with less than 4 cases)

2. Inlining at run time [implemented for Sparc, mostly for Pentium, still experimental]

3. User-refined memory management (compile-time specialization) 

4. Data specialization [implemented, but still experimental]

5. More efficient compile-time specialization 

6. Structure (and union) polyvariance [implemented, but still experimental]

7. Better handling of casts

MAIN  TUTOR  USER  REF  INSTALL  FAQ  LIMIT  BUGS  SML  SUIF  DEMO  CONTRIB 

..... 

INRIA



Tempo Specializer Documentation 133

7 > Tempo — Known Bugs

• Recursive entry point 
• Mutually recursive structure declarations   
• Static loops containing dynamic exits    
• Return in conditionals   

MAIN  TUTOR  USER  REF  INSTALL  FAQ  LIMIT  BUGS  SML  SUIF  DEMO  CONTRIB 

7.1 Recursive Entry Point

Because of dark implementation details, the action analysis may produce wrong annotations if the entry  
point is recursive (actually when there is mutual recursion). The workaround is to encapsulate the recursive 
entry point in a (non-recursive) function. 

7.2 Mutually Recursive Structure Declarations

Tempo doesn't give an error if there is mutual recursion among structure declarations. However side-effect  
analysis just might not collect as many read/written non-locals as it should. Self recursion is OK though. 

7.3 Static loops containing dynamic exits

Static loops containing dynamic conditionals which exit  the loop with a  dynamic  break, return,  or 
continue,  will  generate  a  specialization whose semantics  is  not  equivalent  to the  original  code.  The 
problem arises from the analysis not capturing the dynamic conditions which exit the loop. For example,  
consider the following loop. 

for( n = 0; n < 5; n++ )
{
  if (Dyn)
    return Stat;
  *side_effect++;
}

Because the loop is static, the  side_effect variable will be incremented 5 times during specialization 
even if the dynamic Dyn condition exits the loop, say, after 3 iterations. 

For the same reason, Tempo will loop forever during specialization inside infinite static loops  containing 
dynamic conditionals that exit the loop. E.g., 

RT n° 0390



134 R. Marlet

do
{
  if (Dyn)
    return Stat;
  Something;
}
while (1);

The workaround is to change the loop conditional in order to take into account the dynamic control. In the 
following example, the loop condition becomes dynamic because it is side-effected under dynamic control. 

exit = 1;
do
{
  if (Dyn)
  {
    exit = 0;
    return Stat;
  }
  Something;
}
while (exit);

Another approach is to explicitly force a dynamic conditional, and manually restore the static value in the 
residualized program. For example, 

do
{
  if (Dyn)
    return Stat;
  Something;
}
while (dyn_exit);

Variable dyn_exit must then be set to 1 in the specialized program. 

Of course, the loop will not be evaluated away since it is has become dynamic. 

7.4 Return in conditionals

If there is a return in the branch of a conditional, then you might also need returns in other branches.

MAIN  TUTOR  USER  REF  INSTALL  FAQ  LIMIT  BUGS  SML  SUIF  DEMO  CONTRIB 

..... 

INRIA



Tempo Specializer Documentation 135

8 > Tempo — SML Environment

• Use of SML in Tempo 
• Documentation   

MAIN  TUTOR  USER  REF  INSTALL  FAQ  LIMIT  BUGS  SML  SUIF  DEMO  CONTRIB 

8.1 Use of SML in Tempo

The Tempo Specializer is mainly built in Standard ML (SML). The user interacts with the Tempo system 
through an interactive top level that encapsulates all functionalities. In practice, the user does not need to  
know much about SML (see SML Top Level in the User's Manual). 

This release of Tempo works with version 110.0.7 of SML of New Jersey. This is quite an old version. See  
the installation instruction for additional details. Information regarding this version of SML/NJ can be found 
at http://www.smlnj.org/dist/release/110.0.7/.

Tempo might work with a little more recent version of SML/NJ though, but version 110.0.7 will work for 
sure, and getting the latest SML version is not crucial for using Tempo anyway. Releases of Tempo relying 
on older version of SML/NJ used to performs very badly on PC. However, only analysis and post-processing 
used to be affected, not compile-time nor run-time specialization performance themselves.

8.2 Documentation

If you want to know more about SML in order to built more complex interaction with Tempo, the following 
documents should provide you with some information. 

• An introduction to Standard ML by Bob Harper 
• SML User's guide
• SML/NJ Base environment, System modules, Library, Release notes of version 110.0.7
• Various tools:

CML, Debugger, eXene, Info, makeml, ML-Lex, ML-Yacc, ML-Twig, Profile, SourceGroup 

Other valuable SML information can be obtained form the SML/NJ web site (http://www.smlnj.org/). 

MAIN  TUTOR  USER  REF  INSTALL  FAQ  LIMIT  BUGS  SML  SUIF  DEMO  CONTRIB 

..... 

RT n° 0390

http://www.smlnj.org/
http://www.smlnj.org/dist/release/110.0.7/


136 R. Marlet

9 > Tempo — Suif Environment

• Use of Suif in Tempo 
• Commands   

• porky   
• s2c   
• s2st   
• scc   
• snoot   

• Variables   
• MACHINE   
• SUIFHOME   
• SUIFPATH   
• TEMPOSUIFHOME   

MAIN  TUTOR  USER  REF  INSTALL  FAQ  LIMIT  BUGS  SML  SUIF  DEMO  CONTRIB 

9.1 Use of Suif in Tempo

The front-end of Tempo relies on the  Suif compiler, developed at  Standford University. Tempo uses Suif 
only for parsing and doing simple source-to-source transformations.

This version of Tempo relies on version 1.1.2 of Suif. (A port on version 2.0 had been planed.) See the suif  
web pages for additional details (http://suif.stanford.edu/suif/).

9.2 Commands

In practice, the user only needs to run the tempo command; all other Suif commands are run indirectly from 
the Tempo top-level. 

porky 

Assorted  code  transformations. In  practice,  the  user  does  not  have  to  invoke  this  command 
explicitly; it is run when needed through Tempo SML top-level commands. 

See also:
• porky   manual 
• Suif parsing   
• Additional post-processing   
• Variable: porky_flags 

INRIA

http://suif.stanford.edu/suif/suif1/docs/man_porky.1.html
http://suif.stanford.edu/suif/
http://www.stanford.edu/
http://suif.stanford.edu/suif/


Tempo Specializer Documentation 137

• Variable: post_porky_flags 

scc 

Suif compiler driver program. In practice, the user does not have to invoke this command explicitly; 
it is run when needed through Tempo SML top-level commands. 

See also:
• scc   manual 
• Suif parsing   
• Additional post-processing   
• Variable: scc_flags 

snoot 

Translate pre-processed C to SUIF. In practice, the user does not have to invoke this command 
explicitly; it is run by the scc shell command. 

See also:
• snoot   manual 
• Suif parsing   

s2c 
Convert a SUIF file to C. This tool is used to translate the Suif abstract syntax tree (in spd format) 
into a C text representation. In practice, the user does not have to invoke this command explicitly; it is 
run when needed through Tempo SML top-level commands. 

In ANSI C, an uninitialized variable is implicitly set to 0 (NULL).  So,  s2c removes the useless 
initialization to 0. In order to feed Tempo with the original source C file, we have patched the orginial,  
distributed s2c so that it keeps variable initializations to zero. Thus we can know that the variable is  
static as, by default, uninitialized variables are dynamic.

See also:

• s2c   manual 
• Suif parsing   
• Additional post-processing   

s2st 

Suif abstract syntax printer. This tool is  used to translate the Suif  abstract  syntax tree (in  spd 
format) into a representation readable by Tempo (in st format). In practice, the user does not have to 
invoke this command explicitly; it is run when needed through Tempo SML top-level commands.

This commands is behaves exactly as  s2c (in particular, it accepts the same options) except that it 
displays a textual tree representation of the Suif abstract syntax instead of C text.

In ANSI C, an uninitialized variable is implicitly set to 0 (NULL).  So,  s2c removes the useless 

RT n° 0390

http://suif.stanford.edu/suif/suif1/docs/man_s2c.1.html
http://suif.stanford.edu/suif/suif1/docs/man_snoot.1.html
http://suif.stanford.edu/suif/suif1/docs/man_scc.1.html


138 R. Marlet

initialization to 0. In order to feed Tempo with the original source C file, we have patched the orginial,  
distributed s2c so that it keeps variable initializations to zero. Thus we can know that the variable is  
static as, by default, uninitialized variables are dynamic.

As s2c, s2st keeps variable initializations to zero (see s2c entry above).

See also:
• s2c   manual 
• Suif abstract syntax generation   

9.3 Variables

Below are shell variables used by Suif. Except TEMPOSUIFHOME, you do not have to set them explicitly as 
the Tempo top level run by the tempo shell-level command will set them automatically for you.

MACHINE 

Target Architecture. This variable is set automatically to one of the following possible values: 
• i386-linux 
• sparc-sun-sunos4 

At the moment, we use to SunOS4-Solaris compatibility package. That is why a case like  sparc-
sun-sunos5 does not exist.

SUIFHOME 

Suif main directory. This variable is set to $TEMPOHOME/suif where TEMPOHOME is the name of 
the installation directory of Tempo.

SUIFPATH 

Path to binaries. This variable is set to $SUIFHOME/$MACHINE/bin.

TEMPOSUIFHOME 

Tempo-Suif main directory. This variable can be used to override the default setting of Suif variable 
SUIFHOME (performed by the tempo shell-level command) in order to run Suif commands other than 
those provided with Tempo. Be careful though that s2st will not be found outside of the distribution 
of Tempo (see s2st above).

MAIN  TUTOR  USER  REF  INSTALL  FAQ  LIMIT  BUGS  SML  SUIF  DEMO  CONTRIB 

..... 

INRIA

http://suif.stanford.edu/suif/suif1/docs/man_s2c.1.html


Tempo Specializer Documentation 139

10 > Tempo — Demos

A set of demos is provided with Tempo, in the distribution files. 

10.1 Basic

• power: a simple basic example to start with. 

10.2 Binding time

• context-sens: illustrates context-sensitivity of BTA. 
• flow-sens: illustrates flow-sensitivity of BTA. 
• Interpret: simple imperative interpreters. 
• return-sens: illustrates return-sensitivity of BTA. 

10.3 Interpretation

• new_printpower: a print with simple formating.
• Interpret: simple imperative interpreters. 

 

10.4 System

• bpf: this code is derived from the Stanford/CMU enet packet filter (on SunOS5 only).
• rpc: Sun RPC implementation (on SunOS5 only). 

10.5 Numerical

• cubic_splines: Glueck's cubic splines computation. 
• matmult: matrix product. 
• romberg: performs Romberg integration. 
• computes the Chebitchev function. 
• FFT: the Fast Fourier Transformation. 

Most of  these directories  have a read-only sub-directory  Source containing the required files.  See the 
README files for more information. 

MAIN  TUTOR  USER  REF  INSTALL  FAQ  LIMIT  BUGS  SML  SUIF  DEMO  CONTRIB 

..... 

RT n° 0390



140 R. Marlet

11 > Tempo — History and Contributions

• History 
• Contributions and Contributors   

MAIN  TUTOR  USER  REF  INSTALL  FAQ  LIMIT  BUGS  SML  SUIF  DEMO  CONTRIB 

11.1 History

(by Charles Consel) 

Partial evaluation is a program transformation approach which is applicable to a large class of programming 
languages. Although this simple statement is well-accepted in the community, for many years, most research 
efforts focused on the partial evaluation of prototype languages, instead of widely used languages. As a 
result, until recently, the potentials of partial evaluation had mainly been demonstrated on toy examples. This 
situation often led to consider partial evaluation as a minor topic considering the lack of impact it had as a  
technique (or tool) on other research areas. 

The need to go beyond a specific programming language in studying partial evaluation became clear to me 
when I arrived at Oregon Graduate Institute in 1992 and started collaborating with a group of operating 
system  researchers,  led  by  Calton  Pu  and  Jonathan  Walpole.  Surprisingly,  they  were  interested  in  
investigating the use of partial evaluation in an operating system. Since I was then working on a partial  
evaluator for pure Scheme programs (Schism), I naturally attempted to promote functional programming for  
this project (later named Synthetix). In fact, soon enough, we realized that a functional language would lead 
us,  not  only  to  work  on  partial  evaluation  problems  raised  by  operating  systems,  but  also  to  address 
implementation problems of functional languages (some of these issues have been studied by the Fox project 
at CMU). 

As a consequence, we decided to use a language whose implementation fulfilled the basic requirements of 
operating systems so as to focus our effort on the partial evaluation aspects of the study --- not the language  
design and implementation aspects.  In this context,  the C language seemed a natural choice. Because a 
language like C is widely used, the design and implementation of a partial evaluator could be attacked from  
a new viewpoint: instead of guessing interesting problems, the partial evaluator could be developed with 
some practical goals in mind. Indeed, the variations in designing and implementing a partial evaluator are  
boundless; as a tool, what makes a good partial evaluator is its usefulness. That is, it should offer a set of  
features that enables it to successfully handle practical situations. Because various domains require various 
features,  and  given  my undergoing  collaboration  in  operating  system,  I  initially  restricted  my study  to 
systems programs. 

In fact, targeting a particular domain brought up a lot of new and challenging problems that I could not have 
come up with by myself. In my opinion, the most interesting problem which came up certainly was the need  
to specialize programs at run time. This need arose when we studied the specialization of the Unix file  
system. The idea was to use specialization values which are only available when a file is opened, that is at  
run time. There were clear opportunities for specialization but the technology only permitted programs to be 

INRIA



Tempo Specializer Documentation 141

specialized  at  compile  time.  This  situation  later  led  a  student  and  myself  to  develop  a  template-based 
approach to perform specialization at run time. 

When I arrived at Irisa in 1993, my immediate goal was to start the design and development of a partial  
evaluator for C. In fact, it took more than a year of preliminary study to actually launch the project. The 
design and development of Tempo started in 1994. The group of people working on Tempo, besides myself,  
then  included  Luke  Hornof,  François  Noël,  Jacques  Noyé  and Nic  Volanschi.  Later  Gilles  Muller  and 
Renaud Marlet joined the team. Gilles Muller brought his expertise in operating systems to make Tempo's 
features suitable for the needs of systems programs. He lead the work aimed at specializing the Sun RPC. 
Renaud  Marlet  brought  his  expertise  in  programming  languages  and  software  engineering.  He  studied 
software  architectures  in  the  context  of  partial  evaluation.  Besides,  he  organized  and  made  major  
contributions to the development of Tempo. 

The partial evaluation principles and techniques developed in the context of simple languages like a pure 
version of Scheme represented a valuable basis on which our partial evaluator for C could rely. In fact, our 
approach  aimed  at  applying  the  basic  design  and  implementation  techniques  developed  for  Schism.  It  
seemed obvious to me that there was nothing in principle which would forbid the re-use of this work. Of  
course, other aspects were completely unexplored territory. These aspects mainly included the imperative  
features C (most notably pointers), and the features specific to the systems programs. 

The first  successful specialization of an existing real-size application occurred in January 1997 with the 
specialization of the XDR layers of the Sun RPC. Other notable successful applications since then include 
GAL (a  domain-specific  language  for  video  device  drivers)  and,  featuring  run-time  specialization,  the 
specialization  of  some  system  layers  in  the  Chorus  IPC  and  the  PLAN-P on-the-fly  compiler  (Active 
Network language for application protocols). 

The first Tempo workshop was organized on March 16-18, 1998. This successful spring school gathered 24 
academic and industrial participants. 

This workshop was the prelude to Tempo's first release. The original name, which was just Tempo, had to be 
changed to Tempo Specializer because of existing registered trade marks. 

Tempo Specializer was first released in April 1998 to the participants of the workshop, as well as to other  
people that had shown earlier interest to our work. A broader distribution was done in June 1998. The binary 
version of Tempo has been made available without any restrictions as of July 2000. 

11.2 Contributions and Contributors

Here is the list of people that had the most important impact on the first versions of Tempo (1994-2000) as 
well as their main contributions and their position at that time. These lists of people and contributions are 
incomplete. Also, Tempo actually was the result of many group discussions. 

Philippe Boinot, PhD student 
• Run-time specialization for Linux/Pentium 

Sandrine Chirokoff, PhD student 
• Indirect call elimination 
• Data specialization 

Charles Consel, professor (Tempo visionary and inexhaustible source of inspiration)
• Project leader 

RT n° 0390



142 R. Marlet

• General architecture of Tempo 
• Direction and insight provider 

Rémi Douence, post-doc 
• Integration of structure polyvariance (partial) 
• Maintenance 

Ronan Gaugne, post-doc 
• Improvements in evaluation-time analysis 
• Maintenance 

Luke Hornof, former PhD student (Btaman)
• Binding-time analysis 
• Evaluation-time analysis 

Julia Lawall, post-doc, then visiting associate professor at Oberlin College, research associate at Brandeis  
University, and then at University of Copenhagen (sharp as a blade, sweet as marshmallow)

• Side-effect analysis 
• Better goto elimination 
• Zillions of improvements all over Tempo 
• Thorough user (numerical algorithms, graphics, specialization of Java) 
• Documentation 

Renaud Marlet, research associate (dogged as a wart, pitiless for developers)
• Technical supervision 
• Abstract models for specialization context and external functions 
• Documentation 
• Many improvements all over Tempo 

Gilles Muller, research associate (torrent of ideas, after decryption :-)
• Demanding and leading user (in particular for the RPC specialization) 

François Noël, PhD student 
• Run-time specialization 

Jacques Noyé, research associate (the Gustave Eiffel of Tempo)
• General architecture of Tempo 
• Alias analysis 
• Binding-time analysis 
• Evaluation-time analysis 
• Action analysis 

Alan Sayle, programmer (the hard-working bug fixer)
• Development and maintenance 

Scott Thibault, PhD student (can't stop him)
• Goto elimination 
• Recursion in compile-time specializer 

INRIA



Tempo Specializer Documentation 143

• Many improvements for the run-time specialization 
• Thorough user (GAL, PLAN-P, various interpreters) 
• Many other contributions all over Tempo 

Eugen-Nicolae Volanschi, a.k.a. Nic, PhD student 
• Compile-time specializer 
• Extensive user (Chorus IPC) 

I accept all consequences regarding the side comments above — Renaud. 

MAIN  TUTOR  USER  REF  INSTALL  FAQ  LIMIT  BUGS  SML  SUIF  DEMO  CONTRIB 

..... 

RT n° 0390



144 R. Marlet

Table of Contents

  Tempo Specializer Documentation................................................................................................................. 3
1 >  Tempo — Tutorial..................................................................................................................................... 4

1.1  Program Specialization.........................................................................................................................4
1.2  Partial Evaluation................................................................................................................................. 5
1.3  What is Tempo ?................................................................................................................................... 5

Features............................................................................................................................................. 5
Distribution....................................................................................................................................... 5
A Prototype, Not A Product............................................................................................................... 6

1.4  Guided Tour of Tempo..........................................................................................................................6
1.5  Running Tempo.................................................................................................................................... 6
1.6  Configuring The Analysis..................................................................................................................... 7

1.6.1  Working Directory........................................................................................................................ 7
1.6.2  Function To Specialize and Specialization Context...................................................................... 7
1.6.3  Visualizer......................................................................................................................................7

1.7  Running The Analysis.......................................................................................................................... 8
1.7.1  Binding-Time Analysis................................................................................................................. 9
1.7.2  Evaluation-Time Analysis.......................................................................................................... 10
1.7.3  Action Analysis.......................................................................................................................... 10

1.8  Building a Compile-Time Specializer.................................................................................................11
1.9  Running a Compile-Time Specializer................................................................................................. 12
1.10  Building a Run-Time Specializer......................................................................................................14
1.11  Using a Run-Time Specializer.......................................................................................................... 14

2 >  Tempo — User's Manual......................................................................................................................... 16
2.1  Running Tempo.................................................................................................................................. 17

2.1.1  Running the Analysis..................................................................................................................17
2.1.2  Building a Compile-Time Specializer.........................................................................................18
2.1.3  Running a Compile-Time Specializer......................................................................................... 19
2.1.4  Building a Run-Time Specializer................................................................................................19
2.1.5  SML Top Level...........................................................................................................................20

Using SML Variables...................................................................................................................... 20
Using SML Commands................................................................................................................... 21
Using SML Files............................................................................................................................. 22

2.1.6  Running Tempo In Batch Mode..................................................................................................22
2.1.7  Running Tempo Under Emacs.................................................................................................... 22

2.2  Modular Specialization....................................................................................................................... 23
2.2.1  Concepts..................................................................................................................................... 23
2.2.2  Installation of a Specialized Function......................................................................................... 25

Specialized Application................................................................................................................... 25
Dynamic Testing............................................................................................................................. 25
Guards............................................................................................................................................. 25
Specialized Functions Cache........................................................................................................... 25

2.3  The Analyses and Their Precision.......................................................................................................26
2.3.1  Memory Model........................................................................................................................... 26
2.3.2  Alias Analysis............................................................................................................................. 28
2.3.3  Side-Effect Analysis................................................................................................................... 28
2.3.4  Binding-Time Analysis............................................................................................................... 29
2.3.5  Evaluation-Time Analysis.......................................................................................................... 29

2.4  Configuring the Analyses................................................................................................................... 30

INRIA



Tempo Specializer Documentation 145

2.4.1  Specifying the Program to Specialize......................................................................................... 31
2.4.2  Entry Point and Binding Times For Its Arguments..................................................................... 31

Specifying Several Entry Points...................................................................................................... 32
2.4.3  Binding Time of Global Variables.............................................................................................. 32
2.4.4  Binding Time of Arrays.............................................................................................................. 32
2.4.5  Binding Time of Structures and Unions......................................................................................33

Structures and Unions Fields........................................................................................................... 33
Nested Structures and Unions......................................................................................................... 34
Anonymous Structures or Unions................................................................................................... 34
Restrictions on Typedef................................................................................................................... 34

2.4.6  Binding Time of External Function Calls................................................................................... 35
2.4.7  Binding Time of External Indirect Function Calls...................................................................... 36
2.4.8  Behavior of External Functions.................................................................................................. 37

Example.......................................................................................................................................... 38
Providing Abstract Functions.......................................................................................................... 39
Modeling Dynamic Memory Allocation..........................................................................................39
Safety of Abstract Functions........................................................................................................... 40
Standard Tricks for Specifying Aliases and Binding Times.............................................................41
Dummy Dynamic Location............................................................................................................. 41
Dummy Static Location.................................................................................................................. 41
Turn a Location Dynamic................................................................................................................41
Pointer to a Set of Locations........................................................................................................... 41

2.4.9  Specifying Complex Analysis Contexts......................................................................................42
Binding Times of Parameters Passed By Reference........................................................................ 43
Pointers to Structures or Unions...................................................................................................... 43
Pointers to Scalars........................................................................................................................... 44
Pointers to Strings and Arrays......................................................................................................... 44
Initial Alias Relation....................................................................................................................... 45
Live Locations After The Entry Point............................................................................................. 46

2.5  Visualization....................................................................................................................................... 48
2.5.1  Colored Files.............................................................................................................................. 48
2.5.2  Text For Alias information..........................................................................................................49
2.5.3  Colors For Binding-Time and Evaluation-Time Information......................................................50

Blue color: Static............................................................................................................................. 50
Red color: Dynamic........................................................................................................................ 50
Pink color: Static & Dynamic......................................................................................................... 51
Pale blue color: Structure................................................................................................................ 51
Black color: Bottom........................................................................................................................ 51

2.5.4  Colors For Actions......................................................................................................................51
Blue color: Evaluate........................................................................................................................ 51
Green color: Reduce........................................................................................................................ 52
Orange color: Rebuild..................................................................................................................... 52
Red color: Identity...........................................................................................................................52
Pale blue color: Structure................................................................................................................ 52
Pink color: Evaluate & Residualize................................................................................................. 52

2.5.5  Function Polyvariance (a.k.a. Context Sensitivity)..................................................................... 52
2.5.6  Function Call Site....................................................................................................................... 53
2.5.7  Function Definition.................................................................................................................... 53
2.5.8  Function Signature..................................................................................................................... 54
2.5.9  Entry-Point Signature................................................................................................................. 55

2.6  Compile-Time Specialization............................................................................................................. 55

RT n° 0390



146 R. Marlet

2.6.1  Construction of a Compile-Time Specializer.............................................................................. 56
2.6.2  Invocation of a Compile-Time Specializer................................................................................. 56

Common Errors in Setting Specialization Contexts........................................................................ 57
2.7  Run-Time Specialization.................................................................................................................... 59

2.7.1  Construction of a Run-Time Specializer..................................................................................... 59
2.7.2  Invocation of a Run-Time Specializer........................................................................................ 60
2.7.3  Recursive and Multiple Run-Time Specializations..................................................................... 60

3 >  Tempo — Reference Manual...................................................................................................................63
3.1  Phases................................................................................................................................................. 63

3.1.1  Phases Synopsis..........................................................................................................................63
Analysis Phases............................................................................................................................... 64
Compile-Time Specialization Phases.............................................................................................. 65
Run-Time Specialization Phases..................................................................................................... 65

3.1.2  Description of the Phases........................................................................................................... 66
3.1.3  Parsing........................................................................................................................................ 66
3.1.4  Suif abstract syntax generation................................................................................................... 67
3.1.5  Tempo abstract syntax generation...............................................................................................67
3.1.6  Early pre-processing................................................................................................................... 68
3.1.7  Goto elimination......................................................................................................................... 68
3.1.8  Alias analysis.............................................................................................................................. 68
3.1.9  Indirect call elimination (a.k.a. function pointer elimination).....................................................69
3.1.10  Side-effect analysis...................................................................................................................70
3.1.11  Binding-time analysis (a.k.a. BTA)...........................................................................................70
3.1.12  Evaluation-time analysis (1) (a.k.a. ETA 1).............................................................................. 71
3.1.13  Evaluation-time analysis (2) (a.k.a. ETA 2).............................................................................. 71
3.1.14  Flattening of static returns (a.k.a. Flattening 1)........................................................................ 71
3.1.15  Flattening of static & dynamic calls (a.k.a. Flattening 2)......................................................... 71
3.1.16  Late pre-processing.................................................................................................................. 72
3.1.17  Action analysis......................................................................................................................... 72
3.1.18  Compile-time specializer generation........................................................................................ 72
3.1.19  Compile-time specializer compilation...................................................................................... 72
3.1.20  Compile-time specialization..................................................................................................... 72
3.1.21  Post-processing.........................................................................................................................72
3.1.22  Pretty-printing - Additional porky post-processing...................................................................73
3.1.23  Run-time specializer generation............................................................................................... 73
3.1.24  `C specializer generation.......................................................................................................... 73

3.2  Files.................................................................................................................................................... 74
3.2.1  Tempo File Suffixes....................................................................................................................74
3.2.2  Tempo File types........................................................................................................................ 81
3.2.3  Other Files.................................................................................................................................. 81

3.3  Commands..........................................................................................................................................82
3.3.1  Shell-Level Commands.............................................................................................................. 82
3.3.2  Tempo Top-Level Commands.....................................................................................................82

3.4  Variables............................................................................................................................................. 85
3.4.1  Shell-Level Variables..................................................................................................................85
3.4.2  Tempo SML Top-Level Variables............................................................................................... 86

4 >  Tempo — Installation Manual............................................................................................................... 105
4.1  The Tempo Specializer system......................................................................................................... 105
4.2  Requirements.................................................................................................................................... 105
4.3  Available Platforms.......................................................................................................................... 106
4.4  Content............................................................................................................................................. 106

INRIA



Tempo Specializer Documentation 147

4.5  Installation Procedure....................................................................................................................... 107
4.6  Emacs Installation Issues.................................................................................................................. 107

4.6.1  Loading / Coloring Failure....................................................................................................... 108
4.6.2  Automatic Filling...................................................................................................................... 108

5 >  Tempo — FAQ...................................................................................................................................... 110
5.1  Goal and conventions....................................................................................................................... 110
5.2  The Tempo top level......................................................................................................................... 110

What does the "=" prompt mean?.................................................................................................. 110
When I run the tempo command, nothing happens........................................................................110
What files are needed at minimum to specialize a program?......................................................... 111
Why doesn't ~ work to specify the path of a file or directory?.......................................................111
How can I specify an include path for the analysis phase and for the specialization phase?..........111
How can I set my preferences (e.g. viewer := html rather than emacs) once and for all rather than 

explicitly at each Tempo session?........................................................................................111
How do I get out of Tempo?.......................................................................................................... 112

5.3  Properties of global variables........................................................................................................... 112
What are the initial binding times of global variables?..................................................................112
What are the initial alias properties of global variables?............................................................... 112

5.4  Properties of parameters and local variables .................................................................................... 112
Why does a local variable have bottom binding time?.................................................................. 112
When does a parameter become a local variable?......................................................................... 112

5.5  Properties of array cells and structure and union fields ....................................................................113
After the assignment a[3] = 0, why is a[3] still dynamic?............................................................. 113
After the assignment s.x = 0, why is s.x still dynamic?................................................................. 114
Even though there is no assignment of an array cell (or structure or union field) to a dynamic value, 

why are all the array cells (or structure or union fields) dynamic?...................................... 114
Where does the __tmp_struct1 structure type come from?............................................................ 114
If s is the name of a structure with field x , why isn't s.x a valid entry in the list static_locations ?

............................................................................................................................................ 114
If str is the name of a structure type declared using typedef, why isn't str.x a valid entry in the list 

static_locations ?................................................................................................................. 114
If str is the type of a structure or union, and x is a field of str having structure or union type, why is 

it an error to include str.x in the list static_locations ?.........................................................115
5.6  Specialization of a module................................................................................................................115

5.6.1  Calling context..........................................................................................................................115
How can the binding times of values pointed to by global variables or entry-point parameters be 

specified?............................................................................................................................ 115
How can alias relationships among global variables or entry-point parameters be specified?.......115

5.6.2  Returning context..................................................................................................................... 116
The code to be specialized contains a static assignment to a global variable. When the variable is 

used in the application after the specialized code is called, how can I force the assignment to 
be residualized?................................................................................................................... 116

5.6.3  External functions..................................................................................................................... 116
When are external function calls residualized?..............................................................................116
When are external function calls evaluated?..................................................................................116
How is the definition of an evaluated external function obtained?................................................ 117
How can the effect of an external function on binding times be specified?................................... 117
How can the effect of an external function on aliases be specified?.............................................. 117
How can a location be made static in the .actx.c file?................................................................... 117
How can a location be made dynamic in the .actx.c file?.............................................................. 117
How can aliases be described in the .actx.c file?........................................................................... 117

RT n° 0390



148 R. Marlet

How can memory allocation by external functions be modeled?...................................................118
5.6.4  Global variables........................................................................................................................ 118

During specialization, variables declared in the specialized program don't seem to communicate 
with variables declared in the rest of the application........................................................... 118

5.6.5  The names of the specialized functions.................................................................................... 118
Will the names of specialized functions conflict with the names of existing functions in the original 

application?......................................................................................................................... 118
What is the name of the specialized entry point?...........................................................................118

5.7  Running the Analysis........................................................................................................................ 119
My analysis takes a lot of time to compute? Do I have to always re-run it from scratch?.............119

5.8  Compile-time specialization............................................................................................................. 119
How are the values of the static parameters and globals provided before specialization?.............119
Why are there unbound variables when compiling the .sctx.c file?............................................... 119
What does it mean when the specializer just sits there, doing nothing?.........................................119
What does it mean when there is a lot of garbage collection during specialization?.....................120
What does it mean if my static parameters are initialized to zero or to some strange random values?

............................................................................................................................................ 120
What does it mean if there is a bus error, segmentation fault, or illegal instruction error during 

specialization?..................................................................................................................... 120
How can I see the result of the specialization before post-processing?.........................................120
Is there any way to specify that a single function should always be inlined and no other function 

should ever be inlined, without saying do_not_inline and listing the names of all the 
functions?............................................................................................................................ 121

5.9  Run-time specialization.................................................................................................................... 122
Once the run-time specializer is created, how is it used in the application?..................................122
The run-time specializer is generated in an architecture-dependent directory; how do I know its 

name, how can I change it?................................................................................................. 122
How can multiple specializations of a single function be created?................................................122
What does a segmentation fault during run-time specialization mean?......................................... 122

5.10  Visualization................................................................................................................................... 122
Why does emacs give an error when loading color files?..............................................................122
Why are some of the color annotations missing when viewing the color files under emacs?........123
Why are lines being wrapped when viewing color files under emacs?..........................................123
Why does my color file have lots of strange annotation when I view it under emacs?..................123
Why don't the color files look like the source program?............................................................... 123
How can I get rid of all the comments in the color files?.............................................................. 123
What do the colors mean?............................................................................................................. 124
What happened to the variable declarations?.................................................................................124
How do I print a color file in emacs?............................................................................................ 124

6 >  Tempo — Limitations........................................................................................................................... 125
6.1  Missing Features...............................................................................................................................125

6.1.1  Limitations of the Input Language............................................................................................125
6.1.2  Limitations on Aliases and Casts.............................................................................................. 126
6.1.3  Mutually Recursive Structure Declarations.............................................................................. 126
6.1.4  Binding-Time Imprecision Due to Goto elimination................................................................ 126
6.1.5  Identifier Naming In Compile-Time Specialization.................................................................. 129
6.1.6  Limitations on Multiple Compile-Time Specialization.............................................................129
6.1.7  Limitations to Run-Time Specialization................................................................................... 130

6.2  Limitations on the Preservation of the Semantics............................................................................. 130
6.2.1  Limitations Common to Off-Line Partial Evaluators................................................................ 130
6.2.2  Naming of Identifiers............................................................................................................... 130

INRIA



Tempo Specializer Documentation 149

6.2.3  Initializations............................................................................................................................ 130
6.2.4  Limitations to Run-Time Specialization................................................................................... 130

6.3  Limitations on the Improvements Gained by Specialization.............................................................131
6.4  (Ex-)plans for the Future.................................................................................................................. 132

7 >  Tempo — Known Bugs......................................................................................................................... 133
7.1  Recursive Entry Point....................................................................................................................... 133
7.2  Mutually Recursive Structure Declarations...................................................................................... 133
7.3  Static loops containing dynamic exits...............................................................................................133
7.4  Return in conditionals.......................................................................................................................134

8 >  Tempo — SML Environment................................................................................................................ 135
8.1  Use of SML in Tempo...................................................................................................................... 135
8.2  Documentation................................................................................................................................. 135

9 >  Tempo — Suif Environment..................................................................................................................136
9.1  Use of Suif in Tempo........................................................................................................................ 136
9.2  Commands........................................................................................................................................136
9.3  Variables........................................................................................................................................... 138

10 >  Tempo — Demos.................................................................................................................................139
10.1  Basic............................................................................................................................................... 139
10.2  Binding time................................................................................................................................... 139
10.3  Interpretation.................................................................................................................................. 139
10.4  System............................................................................................................................................ 139
10.5  Numerical....................................................................................................................................... 139

11 >  Tempo — History and Contributions................................................................................................... 140
11.1  History............................................................................................................................................ 140
11.2  Contributions and Contributors.......................................................................................................141

RT n° 0390



Centre de recherche INRIA Bordeaux – Sud Ouest
Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex (France)

Centre de recherche INRIA Grenoble – Rhone-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier
Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq

Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopole de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex

Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Ile-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur

INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-0803

http://www.inria.fr/

	Tempo Specializer Documentation
	1 > Tempo — Tutorial
	1.1 Program Specialization
	1.2 Partial Evaluation
	1.3 What is Tempo ?
	Features
	Distribution
	A Prototype, Not A Product

	1.4 Guided Tour of Tempo
	1.5 Running Tempo
	1.6 Configuring The Analysis
	1.6.1 Working Directory
	1.6.2 Function To Specialize and Specialization Context
	1.6.3 Visualizer

	1.7 Running The Analysis
	1.7.1 Binding-Time Analysis
	1.7.2 Evaluation-Time Analysis
	1.7.3 Action Analysis

	1.8 Building a Compile-Time Specializer
	1.9 Running a Compile-Time Specializer
	1.10 Building a Run-Time Specializer
	1.11 Using a Run-Time Specializer

	2 > Tempo — User's Manual
	2.1 Running Tempo
	2.1.1 Running the Analysis
	2.1.2 Building a Compile-Time Specializer
	2.1.3 Running a Compile-Time Specializer
	2.1.4 Building a Run-Time Specializer
	2.1.5 SML Top Level
	Using SML Variables
	Using SML Commands
	Using SML Files

	2.1.6 Running Tempo In Batch Mode
	2.1.7 Running Tempo Under Emacs

	2.2 Modular Specialization
	2.2.1 Concepts
	2.2.2 Installation of a Specialized Function
	Specialized Application
	Dynamic Testing
	Guards
	Specialized Functions Cache


	2.3 The Analyses and Their Precision
	2.3.1 Memory Model
	2.3.2 Alias Analysis
	2.3.3 Side-Effect Analysis
	2.3.4 Binding-Time Analysis
	2.3.5 Evaluation-Time Analysis

	2.4 Configuring the Analyses
	2.4.1 Specifying the Program to Specialize
	2.4.2 Entry Point and Binding Times For Its Arguments
	Specifying Several Entry Points

	2.4.3 Binding Time of Global Variables
	2.4.4 Binding Time of Arrays
	2.4.5 Binding Time of Structures and Unions
	Structures and Unions Fields
	Nested Structures and Unions
	Anonymous Structures or Unions
	Restrictions on Typedef

	2.4.6 Binding Time of External Function Calls
	2.4.7 Binding Time of External Indirect Function Calls
	2.4.8 Behavior of External Functions
	Example
	Providing Abstract Functions
	Modeling Dynamic Memory Allocation
	Safety of Abstract Functions
	Standard Tricks for Specifying Aliases and Binding Times
	Dummy Dynamic Location
	Dummy Static Location
	Turn a Location Dynamic
	Pointer to a Set of Locations

	2.4.9 Specifying Complex Analysis Contexts
	Binding Times of Parameters Passed By Reference
	Pointers to Structures or Unions
	Pointers to Scalars
	Pointers to Strings and Arrays
	Initial Alias Relation
	Live Locations After The Entry Point


	2.5 Visualization
	2.5.1 Colored Files
	2.5.2 Text For Alias information
	2.5.3 Colors For Binding-Time and Evaluation-Time Information
	Blue color: Static
	Red color: Dynamic
	Pink color: Static & Dynamic
	Pale blue color: Structure
	Black color: Bottom

	2.5.4 Colors For Actions
	Blue color: Evaluate
	Green color: Reduce
	Orange color: Rebuild
	Red color: Identity
	Pale blue color: Structure
	Pink color: Evaluate & Residualize

	2.5.5 Function Polyvariance (a.k.a. Context Sensitivity)
	2.5.6 Function Call Site
	2.5.7 Function Definition
	2.5.8 Function Signature
	2.5.9 Entry-Point Signature

	2.6 Compile-Time Specialization
	2.6.1 Construction of a Compile-Time Specializer
	2.6.2 Invocation of a Compile-Time Specializer
	Common Errors in Setting Specialization Contexts


	2.7 Run-Time Specialization
	2.7.1 Construction of a Run-Time Specializer
	2.7.2 Invocation of a Run-Time Specializer
	2.7.3 Recursive and Multiple Run-Time Specializations


	3 > Tempo — Reference Manual
	3.1 Phases
	3.1.1 Phases Synopsis
	Analysis Phases
	Compile-Time Specialization Phases
	Run-Time Specialization Phases

	3.1.2 Description of the Phases
	3.1.3 Parsing
	3.1.4 Suif abstract syntax generation
	3.1.5 Tempo abstract syntax generation
	3.1.6 Early pre-processing
	3.1.7 Goto elimination
	3.1.8 Alias analysis
	3.1.9 Indirect call elimination (a.k.a. function pointer elimination)
	3.1.10 Side-effect analysis
	3.1.11 Binding-time analysis (a.k.a. BTA)
	3.1.12 Evaluation-time analysis (1) (a.k.a. ETA 1)
	3.1.13 Evaluation-time analysis (2) (a.k.a. ETA 2)
	3.1.14 Flattening of static returns (a.k.a. Flattening 1)
	3.1.15 Flattening of static & dynamic calls (a.k.a. Flattening 2)
	3.1.16 Late pre-processing
	3.1.17 Action analysis
	3.1.18 Compile-time specializer generation
	3.1.19 Compile-time specializer compilation
	3.1.20 Compile-time specialization
	3.1.21 Post-processing
	3.1.22 Pretty-printing - Additional porky post-processing
	3.1.23 Run-time specializer generation
	3.1.24 `C specializer generation

	3.2 Files
	3.2.1 Tempo File Suffixes
	3.2.2 Tempo File types
	3.2.3 Other Files

	3.3 Commands
	3.3.1 Shell-Level Commands
	3.3.2 Tempo Top-Level Commands

	3.4 Variables
	3.4.1 Shell-Level Variables
	3.4.2 Tempo SML Top-Level Variables


	4 > Tempo — Installation Manual
	4.1 The Tempo Specializer system
	4.2 Requirements
	4.3 Available Platforms
	4.4 Content
	4.5 Installation Procedure
	4.6 Emacs Installation Issues
	4.6.1 Loading / Coloring Failure
	4.6.2 Automatic Filling


	5 > Tempo — FAQ
	5.1 Goal and conventions
	5.2 The Tempo top level
	What does the "=" prompt mean?
	When I run the tempo command, nothing happens.
	What files are needed at minimum to specialize a program?
	Why doesn't ~ work to specify the path of a file or directory?
	How can I specify an include path for the analysis phase and for the specialization phase?
	How can I set my preferences (e.g. viewer := html rather than emacs) once and for all rather than explicitly at each Tempo session?
	How do I get out of Tempo?

	5.3 Properties of global variables
	What are the initial binding times of global variables?
	What are the initial alias properties of global variables?

	5.4 Properties of parameters and local variables 
	Why does a local variable have bottom binding time?
	When does a parameter become a local variable?

	5.5 Properties of array cells and structure and union fields 
	After the assignment a[3] = 0, why is a[3] still dynamic?
	After the assignment s.x = 0, why is s.x still dynamic?
	Even though there is no assignment of an array cell (or structure or union field) to a dynamic value, why are all the array cells (or structure or union fields) dynamic?
	Where does the __tmp_struct1 structure type come from?
	If s is the name of a structure with field x , why isn't s.x a valid entry in the list static_locations ?
	If str is the name of a structure type declared using typedef, why isn't str.x a valid entry in the list static_locations ?
	If str is the type of a structure or union, and x is a field of str having structure or union type, why is it an error to include str.x in the list static_locations ?

	5.6 Specialization of a module
	5.6.1 Calling context
	How can the binding times of values pointed to by global variables or entry-point parameters be specified?
	How can alias relationships among global variables or entry-point parameters be specified?

	5.6.2 Returning context
	The code to be specialized contains a static assignment to a global variable. When the variable is used in the application after the specialized code is called, how can I force the assignment to be residualized?

	5.6.3 External functions
	When are external function calls residualized?
	When are external function calls evaluated?
	How is the definition of an evaluated external function obtained?
	How can the effect of an external function on binding times be specified?
	How can the effect of an external function on aliases be specified?
	How can a location be made static in the .actx.c file?
	How can a location be made dynamic in the .actx.c file?
	How can aliases be described in the .actx.c file?
	How can memory allocation by external functions be modeled?

	5.6.4 Global variables
	During specialization, variables declared in the specialized program don't seem to communicate with variables declared in the rest of the application.

	5.6.5 The names of the specialized functions
	Will the names of specialized functions conflict with the names of existing functions in the original application?
	What is the name of the specialized entry point?


	5.7 Running the Analysis
	My analysis takes a lot of time to compute? Do I have to always re-run it from scratch?

	5.8 Compile-time specialization
	How are the values of the static parameters and globals provided before specialization?
	Why are there unbound variables when compiling the .sctx.c file?
	What does it mean when the specializer just sits there, doing nothing?
	What does it mean when there is a lot of garbage collection during specialization?
	What does it mean if my static parameters are initialized to zero or to some strange random values?
	What does it mean if there is a bus error, segmentation fault, or illegal instruction error during specialization?
	How can I see the result of the specialization before post-processing?
	Is there any way to specify that a single function should always be inlined and no other function should ever be inlined, without saying do_not_inline and listing the names of all the functions?

	5.9 Run-time specialization
	Once the run-time specializer is created, how is it used in the application?
	The run-time specializer is generated in an architecture-dependent directory; how do I know its name, how can I change it?
	How can multiple specializations of a single function be created?
	What does a segmentation fault during run-time specialization mean?

	5.10 Visualization
	Why does emacs give an error when loading color files?
	Why are some of the color annotations missing when viewing the color files under emacs?
	Why are lines being wrapped when viewing color files under emacs?
	Why does my color file have lots of strange annotation when I view it under emacs?
	Why don't the color files look like the source program?
	How can I get rid of all the comments in the color files?
	What do the colors mean?
	What happened to the variable declarations?
	How do I print a color file in emacs?


	6 > Tempo — Limitations
	6.1 Missing Features
	6.1.1 Limitations of the Input Language
	6.1.2 Limitations on Aliases and Casts
	6.1.3 Mutually Recursive Structure Declarations
	6.1.4 Binding-Time Imprecision Due to Goto elimination
	6.1.5 Identifier Naming In Compile-Time Specialization
	6.1.6 Limitations on Multiple Compile-Time Specialization
	6.1.7 Limitations to Run-Time Specialization

	6.2 Limitations on the Preservation of the Semantics
	6.2.1 Limitations Common to Off-Line Partial Evaluators
	6.2.2 Naming of Identifiers
	6.2.3 Initializations
	6.2.4 Limitations to Run-Time Specialization

	6.3 Limitations on the Improvements Gained by Specialization
	6.4 (Ex-)plans for the Future

	7 > Tempo — Known Bugs
	7.1 Recursive Entry Point
	7.2 Mutually Recursive Structure Declarations
	7.3 Static loops containing dynamic exits
	7.4 Return in conditionals

	8 > Tempo — SML Environment
	8.1 Use of SML in Tempo
	8.2 Documentation

	9 > Tempo — Suif Environment
	9.1 Use of Suif in Tempo
	9.2 Commands
	9.3 Variables

	10 > Tempo — Demos
	10.1 Basic
	10.2 Binding time
	10.3 Interpretation
	10.4 System
	10.5 Numerical

	11 > Tempo — History and Contributions
	11.1 History
	11.2 Contributions and Contributors

	Table of Contents

