Bayesian networks and mutual information for fault diagnosis of industrial systems

Abstract : The purpose of this article is to present and evaluate the performance of a new procedure for industrial process diagnosis. This method is based on the use of a bayesian network as a classifier. But, as the classification performances are not very efficient in the space described by all variables of the process, an identification of important variables is made. This feature selection is made by computing the mutual information between each process variable and the class variable. The performances of this method are evaluated on the data of a benchmark problem: the Tennessee Eastman Process. Three kinds of faults are taken into account on this complex process. The objective is to obtain the minimal recognition error rate for these 3 faults. Results are given and compared with results of other authors on the same data.
Type de document :
Communication dans un congrès
Workshop on Advanced Control and Diagnosis (ACD'06), 2006, Nancy, France. 2006
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00517013
Contributeur : Sylvain Verron <>
Soumis le : lundi 13 septembre 2010 - 13:43:01
Dernière modification le : lundi 5 février 2018 - 15:00:08
Document(s) archivé(s) le : jeudi 30 juin 2011 - 13:26:57

Fichier

verron06b.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00517013, version 1

Collections

Citation

Sylvain Verron, Teodor Tiplica, Abdessamad Kobi. Bayesian networks and mutual information for fault diagnosis of industrial systems. Workshop on Advanced Control and Diagnosis (ACD'06), 2006, Nancy, France. 2006. 〈inria-00517013〉

Partager

Métriques

Consultations de la notice

146

Téléchargements de fichiers

79