L. H. Chiang, E. L. Russell, and R. D. Braatz, Fault detection and diagnosis in industrial systems, 2001.
DOI : 10.1007/978-1-4471-0347-9

W. A. Shewhart, Economic control of quality of manufactured product, 1931.

H. Hotelling, Multivariate quality control, Techniques of Statistical Analysis, pp.111-184, 1947.

E. J. Jackson, Multivariate quality control, Communications in Statistics - Theory and Methods, vol.60, issue.2, pp.2657-2688, 1985.
DOI : 10.1080/03610928508829069

B. R. Bakshi, Multiscale PCA with application to multivariate statistical process monitoring, AIChE Journal, vol.36, issue.7, pp.1596-1610, 1998.
DOI : 10.1002/aic.690440712

M. Kano, K. Nagao, S. Hasebe, I. Hashimoto, H. Ohno et al., Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem, Computers & Chemical Engineering, vol.26, issue.2, pp.161-174, 2002.
DOI : 10.1016/S0098-1354(01)00738-4

J. Macgregor and T. Kourti, Statistical process control of multivariate processes, Control Engineering Practice, vol.3, issue.3, pp.403-414, 1995.
DOI : 10.1016/0967-0661(95)00014-L

B. Wise and N. Gallagher, The process chemometrics approach to process monitoring and fault detection, Journal of Process Control, vol.6, issue.6, pp.329-348, 1996.
DOI : 10.1016/0959-1524(96)00009-1

R. L. Mason, N. D. Tracy, and J. C. Young, Decomposition of T 2 for multivariate control chart interpretation, Journal of Quality Technology, vol.27, issue.2, pp.99-108, 1995.

V. N. Vapnik, The Nature of Statistical Learning Theory, 1995.

T. Cover and P. Hart, Nearest neighbor pattern classification, Machine Learning, pp.21-27, 1967.
DOI : 10.1109/TIT.1967.1053964

J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, 1988.

E. Charniak, Bayesian networks without tears, AI Magazine, vol.12, issue.4, pp.50-63, 1991.

F. V. Jensen, An introduction to Bayesian Networks, 1996.

P. Langley, W. Iba, and K. Thompson, An analysis of bayesian classifiers, National Conference on Artificial Intelligence, 1992.

P. Domingos and M. J. Pazzani, Beyond independence: Conditions for the optimality of the simple bayesian classifier, International Conference on Machine Learning, 1996.

I. Inza, P. Larranaga, B. Sierra, R. Etxeberria, J. Lozano et al., Representing the behaviour of supervised classification learning algorithms by Bayesian networks, Pattern Recognition Letters, vol.20, issue.11-13, pp.11-13, 1999.
DOI : 10.1016/S0167-8655(99)00095-1

Y. Yang and G. I. Webb, Discretization for naive-Bayes learning: managing??discretization bias and variance, Machine Learning, vol.41, issue.1, 2003.
DOI : 10.1007/s10994-008-5083-5

C. Chow and C. Liu, Approximating discrete probability distributions with dependence trees Information Theory, IEEE Transactions on, vol.14, issue.3, pp.462-467, 1968.

M. Sahami, Learning limited dependence bayesian classifiers, Second International Conference on Knowledge Discovery in Databases, 1996.

D. Geiger and D. Heckerman, Knowledge representation and inference in similarity networks and Bayesian multinets, Artificial Intelligence, vol.82, issue.1-2, pp.45-74, 1996.
DOI : 10.1016/0004-3702(95)00014-3

I. Kononenko, Semi-naive bayesian classifier, EWSL-91: Proceedings of the European working session on learning on Machine learning, pp.206-219, 1991.
DOI : 10.1007/BFb0017015

C. E. Shannon, A Mathematical Theory of Communication, Bell System Technical Journal, vol.27, issue.3, pp.379-423, 1948.
DOI : 10.1002/j.1538-7305.1948.tb01338.x

A. Perez, P. Larranaga, and I. Inza, Supervised classification with conditional Gaussian networks: Increasing the structure complexity from naive Bayes, International Journal of Approximate Reasoning, vol.43, issue.1, pp.1-25, 2006.
DOI : 10.1016/j.ijar.2006.01.002

T. M. Cover, Learning in pattern recognition NY: Methodologies of Pattern Recognition, 1969.

J. Downs and E. Vogel, A plant-wide industrial process control problem, Computers & Chemical Engineering, vol.17, issue.3, pp.245-255, 1993.
DOI : 10.1016/0098-1354(93)80018-I

N. Ricker, Decentralized control of the Tennessee Eastman Challenge Process, Journal of Process Control, vol.6, issue.4, pp.205-221, 1996.
DOI : 10.1016/0959-1524(96)00031-5

U. Kruger, Y. Zhou, and G. Irwin, Improved principal component monitoring of large-scale processes, Journal of Process Control, vol.14, issue.8, pp.879-888, 2004.
DOI : 10.1016/j.jprocont.2004.02.002

L. Chiang, E. Russell, and R. Braatz, Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis, Chemometrics and Intelligent Laboratory Systems, vol.50, issue.2, pp.243-252, 2000.
DOI : 10.1016/S0169-7439(99)00061-1

L. Chiang, M. Kotanchek, and A. Kordon, Fault diagnosis based on Fisher discriminant analysis and support vector machines, Computers & Chemical Engineering, vol.28, issue.8, pp.1389-1401, 2004.
DOI : 10.1016/j.compchemeng.2003.10.002

A. Kulkarni, V. Jayaraman, and B. Kulkarni, Knowledge incorporated support vector machines to detect faults in Tennessee Eastman Process, Computers & Chemical Engineering, vol.29, issue.10, pp.2128-2133, 2005.
DOI : 10.1016/j.compchemeng.2005.06.006

P. Lyman and C. Georgakis, Plant-wide control of the Tennessee Eastman problem, Computers & Chemical Engineering, vol.19, issue.3, pp.321-331, 1995.
DOI : 10.1016/0098-1354(94)00057-U

K. P. Murphy, The bayes net toolbox for matlab, Computing Science and Statistics : Proceedings of Interface, 2001.