Fault diagnosis of industrial systems with bayesian networks and mutual information

Abstract : The purpose of this article is to present two new methods for industrial process diagnosis. These two methods are based on the use of a bayesian network. An identification of important variables is made by computing the mutual information between each variable of the system and the class variable. The performances of the two methods are evaluated on the data of a benchmark example: the Tennessee Eastman Process. Three kinds of fault are taken into account on this complex process. The challenging objective is to obtain the minimal recognition error rate for these three faults. Results are given and compared on the same data with those of other published methods.
Type de document :
Communication dans un congrès
European Control Conference (ECC'07), 2007, Kos, Greece. 2007
Liste complète des métadonnées

Littérature citée [35 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00517021
Contributeur : Sylvain Verron <>
Soumis le : lundi 13 septembre 2010 - 13:50:52
Dernière modification le : lundi 13 septembre 2010 - 20:57:50
Document(s) archivé(s) le : mardi 14 décembre 2010 - 02:47:22

Fichier

verron07c.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00517021, version 1

Collections

Citation

Sylvain Verron, Teodor Tiplica, Abdessamad Kobi. Fault diagnosis of industrial systems with bayesian networks and mutual information. European Control Conference (ECC'07), 2007, Kos, Greece. 2007. 〈inria-00517021〉

Partager

Métriques

Consultations de la notice

118

Téléchargements de fichiers

168