Distance Rejection in a Bayesian Network for Fault Diagnosis of Industrial Systems

Abstract : The purpose of this article is to present a method for industrial process diagnosis with bayesian network. The interest of the proposed method is to combine a discriminant analysis and a distance rejection in a bayesian network in order to detect new types of fault. The performances of this method are evaluated on the data of a benchmark example: the Tennessee Eastman Process. Three kinds of fault are taken into account on this complex process. The challenging objective is to obtain the minimal recognition error rate for these three faults and to obtain sufficient results in rejection of new types of fault.
Type de document :
Communication dans un congrès
16th Mediterranean Conference on Control and Automation (MED'08), 2008, Ajaccio, France. 2008
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00517024
Contributeur : Sylvain Verron <>
Soumis le : lundi 13 septembre 2010 - 13:54:07
Dernière modification le : lundi 13 septembre 2010 - 20:57:26
Document(s) archivé(s) le : mardi 14 décembre 2010 - 02:47:42

Fichier

verron08a.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00517024, version 1

Collections

Citation

Sylvain Verron, Teodor Tiplica, Abdessamad Kobi. Distance Rejection in a Bayesian Network for Fault Diagnosis of Industrial Systems. 16th Mediterranean Conference on Control and Automation (MED'08), 2008, Ajaccio, France. 2008. 〈inria-00517024〉

Partager

Métriques

Consultations de la notice

99

Téléchargements de fichiers

81