New Features for Fault Diagnosis by Supervised Classification

Abstract : The purpose of this article is to present a method for industrial process diagnosis. We are interested in fault diagnosis considered as a supervised classification task. The interest of the proposed method is to take into account new features (and so new informations) in the classifier. These new features are probabilities extracted from a Bayesian network comparing the faulty observations to the normal operating conditions. The performances of this method are evaluated on the data of a benchmark example: the Tennessee Eastman Process. Three kinds of fault are taken into account on this complex process. We show on this example that the addition of these new features allows to decrease the misclassification rate.
Type de document :
Communication dans un congrès
18th Mediterranean Conference on Control and Automation (MED'10), 2010, Marrakech, Morocco. 2010
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00517034
Contributeur : Sylvain Verron <>
Soumis le : lundi 13 septembre 2010 - 14:06:18
Dernière modification le : lundi 5 février 2018 - 15:00:08
Document(s) archivé(s) le : mardi 14 décembre 2010 - 02:49:31

Fichier

verron10e.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00517034, version 1

Collections

Citation

Sylvain Verron, Teodor Tiplica, Abdessamad Kobi. New Features for Fault Diagnosis by Supervised Classification. 18th Mediterranean Conference on Control and Automation (MED'10), 2010, Marrakech, Morocco. 2010. 〈inria-00517034〉

Partager

Métriques

Consultations de la notice

105

Téléchargements de fichiers

91