R. Isermann, Fault Diagnosis Systems An Introduction from Fault Detection to Fault Tolerance, 2006.

L. H. Chiang, E. L. Russell, and R. D. Braatz, Fault detection and diagnosis in industrial systems, 2001.
DOI : 10.1007/978-1-4471-0347-9

D. H. Stamatis, Failure Mode and Effect Analysis : FMEA from Theory to Execution, 2003.

B. S. Dhillon, Reliability,Quality,and Safety for Engineers, 2005.
DOI : 10.1201/9780203006139

R. J. Patton, P. M. Frank, and R. N. Clark, Issues of Fault Diagnosis for Dynamic Systems, 2000.
DOI : 10.1007/978-1-4471-3644-6

V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri, and E. K. Yin, A review of process fault detection and diagnosis, Computers & Chemical Engineering, vol.27, issue.3, pp.327-346, 2003.
DOI : 10.1016/S0098-1354(02)00162-X

C. Douglas and . Montgomery, Introduction to Statistical Quality Control, Third Edition, 1997.

J. A. Westerhuis, S. P. Gurden, and A. K. Smilde, StandardizedQ-statistic for improved sensitivity in the monitoring of residuals in MSPC, Journal of Chemometrics, vol.35, issue.4, pp.335-349, 2000.
DOI : 10.1002/1099-128X(200007/08)14:4<335::AID-CEM579>3.0.CO;2-F

E. J. Jackson, Multivariate quality control, Communications in Statistics - Theory and Methods, vol.60, issue.2, pp.2657-2688, 1985.
DOI : 10.1080/03610928508829069

M. Kano, K. Nagao, S. Hasebe, I. Hashimoto, H. Ohno et al., Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem, Computers & Chemical Engineering, vol.26, issue.2, pp.161-174, 2002.
DOI : 10.1016/S0098-1354(01)00738-4

N. Vladimir and . Vapnik, The Nature of Statistical Learning Theory, 1995.

A. Aizerman, E. Braverman, and L. Rozoner, Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control, pp.821-837, 1964.

V. Finn and . Jensen, An introduction to Bayesian Networks, 1996.

N. Friedman, D. Geiger, and E. M. Goldszmidt, Bayesian network classifiers, Machine Learning, vol.29, issue.2/3, pp.131-163, 1997.
DOI : 10.1023/A:1007465528199

L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and Regression Trees, 1993.

R. L. Mason, N. D. Tracy, and J. C. Young, Decomposition of T 2 for multivariate control chart interpretation, Journal of Quality Technology, vol.27, issue.2, pp.99-108, 1995.

J. Li, J. Jin, and J. Shi, Causation-based t 2 decomposition for multivariate process monitoring and diagnosis, Journal of Quality Technology, vol.40, issue.1, pp.46-58, 2008.

S. Verron, T. Tiplica, and A. Kobi, Réseaux bayésiens pour l'identification de variables hors-contrôle. 5` eme Conférence Internationale Francophone d'Automatique, 2008.

J. J. Downs and E. F. Vogel, A plant-wide industrial process control problem, Computers & Chemical Engineering, vol.17, issue.3, pp.245-255, 1993.
DOI : 10.1016/0098-1354(93)80018-I

N. L. Ricker, Decentralized control of the Tennessee Eastman Challenge Process, Journal of Process Control, vol.6, issue.4, pp.205-221, 1996.
DOI : 10.1016/0959-1524(96)00031-5

L. H. Chiang, M. E. Kotanchek, and A. K. Kordon, Fault diagnosis based on Fisher discriminant analysis and support vector machines, Computers & Chemical Engineering, vol.28, issue.8, pp.1389-1401, 2004.
DOI : 10.1016/j.compchemeng.2003.10.002

P. R. Lyman and C. Georgakis, Plant-wide control of the Tennessee Eastman problem, Computers & Chemical Engineering, vol.19, issue.3, pp.321-331, 1995.
DOI : 10.1016/0098-1354(94)00057-U