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In this paper, a method is proposed to apply the FSM on
a triangular manifold. Since it is represented by a triangular
mesh, the manifold can be viewed as an undigraph
naturally. By traversing this undigraph, the FSM will
produce predetermined sweeping sequences, which will
direct the order of nodes’ evaluation in Gauss-Seidel
iterations. The method is optimal in the sense that a finite
number of iterations is needed. Its computing complexity is
as well OðNÞ. In addition, both theoretical analysis and
experiments are presented to verify its correctness. The
convergence and error estimation are also included.

The rest of this paper is organized as follows: In Section 2,
we review some related preliminaries on the Eikonal
equation and meanings of characteristics. The local solver
for each grid on the triangular manifold is addressed in
Section 3. In Section 4, the sweeping sequences obtained by
traversing the graph are explained and the FSM algorithm is
presented. Section 5 provides proofs on the convergence
and error estimation for the distance function. Meanwhile,
the correctness of the proposed method to solve the Eikonal
equation is presented. In Section 6.1, several numerical
experiments are designed to test the method. Finally,
Section 6.3 concludes the presented work and discusses
future work.

2 PRELIMINARY

2.1 Eikonal Equation

Let us consider a boundary �, which could be a curve in 2D
or a surface in 3D. � moves in its normal direction at a given
speed F . T ðxÞ represents the arrival time that � reaches each
point x. In one dimension, using the fact that distance ¼
rate� time, this problem can be expressed as

1 ¼ F dx

dT
:

In multiple dimensions, rT is orthogonal to the level sets
of T . Similar to the one-dimensional case, its magnitude is
inversely proportional to the speed. Hence,

jrT jF ¼ 1; T ð�Þ ¼ 0: ð1Þ

The general form of the stationary Eikonal equation [16],
[12], [13] is

jrT ðxÞj ¼ fðxÞ x 2 Rn; ð2Þ

with boundary condition T ðxÞ ¼ �ðxÞ, x 2 � � Rn. T ðxÞ is a
function defined on Rn and x is the independent variable in
Rn. The boundary condition is enforced on �, i.e., a set of
lines, or some discrete points, or even a single source point,
where � is zero.

2.2 Characteristics

Characteristics are the trajectories of a high-frequency wave
propagation. Considering (2), we denote Hðp;xÞ ¼ jpj �
fðxÞ, where p ¼ rT . The characteristic equation for the
Eikonal equation is

_x ¼ rpH ¼ rT
fðxÞ ;

_p ¼ �rxH ¼ rfðxÞ;
_T ¼ rT � _x ¼ fðxÞ;

8<
: ð3Þ

where the dot “_” above the letter denotes the derivative
along characteristics parametrized by the arc length s. ’ðxÞ
is a smooth solution of T in (3) and then r’ is the direction
of the characteristics. Apparently these characteristics
identify the directions in which ’ðxÞ increases or decreases.

The characteristics are an analytical representation of the
causality in the Eikonal equation. There are infinite
characteristics, which intersect or not according to fðxÞ.
To our knowledge, most of the numerical methods are
required to cover all of the characteristics. Cover means that,
when evaluating nodes on the domain, the front forms an
acute angle to a specified characteristic.

Furthermore, all directions of characteristics can be
divided into a finite number of groups. One characteristic
can be decomposed into a finite number of segments that
belong to one of those groups. This implies that if it covers
the directions of the characteristics in each group simulta-
neously, this numerical method will produce correct
numerical solutions of (2).

3 LOCAL SOLVERS ON TRIANGULAR MANIFOLDS

3.1 Representation of Triangular Manifolds

A manifold is tessellated if it is represented by a triangular
mesh. When a discretization is built on the triangulation T h,
a group of schemes for evaluating distance function on each
node is derived. These schemes are often referred to as local
solvers. However, a triangular manifold �h from which local
solvers can be obtained should satisfy the following
requirements:

. The manifold �h consists of nonoverlapping,
nonempty, and closed triangles. The maximum
value of their circumcircle diameters is hT .

. Any vertex of a triangle is neither an interior point
nor a point on edges except for two end points.

. The intersection of two triangles T 1; T 2 2 T h is
empty, a common vertex, or a common edge.

Local solvers focus on evaluating distance function T ðxÞ in
a triangle. Here, nodes on the manifold are referred as
vertices. If the right angle is considered to be obtuse one, the
inner angle of a vertex is either acute or obtuse. The local
solver of a vertex is also either an obtuse one or an acute one
with respect to its inner angle. In Fig. 1a, two angles ffACB
and ffECF are presented; suppose that CE ? CB and
CF ? CA. If the direction of causality is marked by a black
arrow, local solvers for both acute and obtuse angles should
be considered in three situations: The causality falls in both
angles (See Figs. 1a and 1b), the causality falls out of both
angles (See Figs. 1c and 1d), and the causality falls in one of
them (See Figs. 1e and 1f).

3.2 Acute Solver

An acute solver that covers the causality entirely was
presented in [13]. We adopt it and explain it in brief. In the
triangle of Fig. 2, the vertex C is to be evaluated. Its value is
TC . ffACB is acute. Vertices A and B have already been
evaluated. Their values are TA and TB, respectively. With-
out loss of generality, we assume that TA < TB.

When the causality falls in both ffACB and ffECF , shown
in Fig. 2a, the evaluating ordering should be A, B, and C.
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This fact can be substantiated by Huygens principle if the

following requirements are satisfied:

. ðTB � TAÞ=fC � AB. AB is the length of edge AB.
This ensures that the front of the distance function
propagates from A to B at a given speed fC .

. � � �. This ensures that the evaluating ordering is A,
B, and C.

. �þ � < �
2 . This ensures that the causality is satisfied.

Then, we have

TC ¼ minfTC; CQ � fC þ TAg; ð4Þ

which is the case in Fig. 1a.
Otherwise, the causality does not fall inside 4ABC,

and we have TC ¼ minfTC; TA þ bfC; TB þ afCg, where a ¼
BC and b ¼ AC. Figs. 2a and 2b are the cases in Figs. 1c

and 1e, respectively.
The acute solver is summarized as

if jTB � TAj � cfC then

� ¼ arcsinðTB�TAcfC
Þ;

if maxð0; � � �
2Þ � � � �

2 � � or � � �
2 � � �

minð0; �2 � �Þ then

CP ¼ a sinð� � �Þ; CQ ¼ b sinð�þ �Þ;
TC ¼ minfTC; CQ � fC þ TAg

else

TC ¼ minfTC; TA þ bfC; TB þ afCg
end if

else

TC ¼ minfTC; TA þ bfC; TB þ afCg
end if

3.3 Obtuse Solver

When ffACB is an obtuse angle, TC in Fig. 1b can be
evaluated using the acute solver. TC in Fig. 1d can be
evaluated using TC ¼ minfTC; TA þ bfC; TB þ afCg because
the causality falls outside. Fig. 1f is a special one. Several
methods have been provided to evaluate TC under this
situation. However, the technique of triangles unfolding in
[16], [11] might increase the computing complexity. The
technique of angle splitting in [13] cannot be used on
triangular manifolds. We propose an obtuse solver that is
discussed in the following two cases, respectively:

. The assumption of TA < TB implies that TA has been
evaluated. If TB has also been evaluated, the method
shown in Fig. 3a is adopted. TC is computed by
TC ¼ TA þ fc � CQ. The computing method is similar
to the cases in Fig. 2a.

. Otherwise, TB is infinite so that the method shown in
Fig. 3b is adopted. We find two neighboring
triangles 4AFC and 4ABE of 4ABC. 4ABE is
flipped so as to be on the same plane of 4ABC.
Meanwhile, according to the algorithm in Section 4,
TE , TF , or both have been evaluated. If TF has been
evaluated, we evaluate the vertex C in 4AFC with
the known TA and TF . If TE has been evaluated, we
evaluate C in 4AEC with the known TA and TE .

Proof on the cover of the causality is presented in Section 5.
Summarily, the obtuse solver is concluded as follows:
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Fig. 1. (a), (c), (e) show the cases of the acute triangle; (b), (d), (f) show

the cases of the obtuse triangle.

Fig. 2. The causality falls inside in (a) and outside in (b) of the triangle.

Fig. 3. (a) is the obtuse local solver when B has been evaluated; (b) is

the one when B is infinity.
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if TB is infinity then

Find B0 which is the vertex E or F , of which value is not

infinity. This form a new 4AB0C
end if

a ¼ B0C; b ¼ AC;

� ¼ arcsinðTB�TAcfC
Þ

if jTB0 � TAj � cfC then

if maxð0; � � �
2Þ � � � �

2 � � or � � �
2 � � �

minð0; �2 � �Þ then

CP ¼ a sinð� � �Þ; CQ ¼ b sinð�þ �Þ;
TC ¼ minfTC; CQ � fC þ TAg

else if � > �
2 � � or � < � � �

2 then

TC ¼ minfTC; TA þ bfC; TB0 þ afCg
else

TC ¼ minfTC; TA þ CQ � fCg
end if

else

TC ¼ minfTC; TA þ bfC; TB0 þ afCg
end if

The situation ffACB ¼ �=2 can be solved by either the
acute solver or the obtuse solver. The latter is adopted in
experiments.

4 FSM ON TRIANGULAR MANIFOLDS

This section is about the algorithm that applies the FSM to an
arbitrary manifold. The basic problem is the construction of
sweeping sequences. In [12], these sequences are derived
from orderings of rectangular grids. However, when it
comes to domain of triangular plane, the natural orderings
do not exist. Qian et al. [13] introduced lp distances taking
multiple reference points in sweeping to generate sequences.
Though the complexity of Gauss-Seidel iterations is OðNÞ,
the extra sorting procedure becomes the bottleneck. More-
over, no lp distances can be measured on an arbitrary
manifold, which means that neither above is available.

We develop a method that constructs sweeping se-
quences from topological orderings of a triangular mani-
fold. Because it is represented by a triangular mesh, the
manifold can be viewed as an undigraph naturally. Nodes
of the mesh are viewed as vertices of the undigraph. Edges
of the mesh represent the connections between vertices.
With this preparation, the method produces a tree by a
breadth-first traversing on the undigraph from one vertex.
Usually this vertex is the initial position of geodesics. Then,
it produces two topological orderings by two different
breadth-first traversings on this tree. These two orderings
and their reverses are the four sweeping sequences. We
explain the whole process via an example.

Fig. 4a shows a triangular manifold of which the nodes
are numbered. It is viewed as an undigraph. The initial
position is Point 1. First, the method produces a tree by a
breadth-first traversing on the undigraph. There is more
than one breadth-first tree that can be derived from this
undigraph. Any one is appropriate. We choose the one
shown in Fig. 4b as an example. It is considered as a
directed one in which positions of siblings sharing a
common parent cannot be swapped. Second, we have two
different breadth-first traversings on this tree. One traverses
siblings of a common parent from left to right and the other

traverses from right to left. Apparently, the first traversing
produces two orderings, Sþ1 ¼ f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11g
and its reverse S�1 ¼ f11; 10; 9; 8; 7; 6; 5; 4; 3; 2; 1g. And the
second one produces two orderings, Sþ2 ¼ f1; 7; 6; 5; 4; 3;
2; 11; 10; 9; 8g and S�2 ¼ f8; 9; 10; 11; 2; 3; 4; 5; 6; 7; 1g. These
four orderings are the sweeping sequences that are used in
the Gauss-Seidel iterations.

This algorithm generates arrival time at each vertex of
the undigraph. Without loss of generality, the boundary
condition of the initial position is assumed to be one vertex
of the undigraph. Thus, the algorithm is composed of two
parts, as follows.

Part I. Constructing orderings.

1. Construct the undigraph.
2. Set distance function value T of the starting vertex V0

as zero and set that of other vertices as infinite.
3. Have a breadth-first traversing on the undigraph

starting from V0, which produces a traversing
ordering Sþ1 and a corresponding directed breadth-
first tree B.

4. Have another breadth-first traversing on B that
accesses the children of each node from right to left,
which produces ordering Sþ2 .

5. Reverse Sþ1 and Sþ2 to produce two orderings S�1
and S�2 .

Part II. Gauss-Seidel iterations.
for j ¼ þ;� do

1. For every vertex C 2 Sj1 and every triangle asso-
ciated with C; fC ¼ fðCÞ, and apply local solvers.

2. For every vertex C 2 Sj2 and every triangle asso-
ciated with C; fC ¼ fðCÞ, and apply local solvers.

end for

The computing model is similar to the wavefronts one
described in [13], though these waves depicted in Fig. 5a
might not be concentric circles. If one edge of these circles
overlaps some parts of a characteristic, the vertices there
cannot be evaluated correctly. That is why two groups of
interfering sweeping sequences are constructed. Fig. 5b
depicts these two breadth-first traversing waves visually,
which seem like two groups of interfering water waves. If
the trajectory of a characteristic is tangent with one wave in
one group, it cannot be tangent with any wave in the other.
The formal proof is presented in Section 5.
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Fig. 4. (a) is a triangular manifold; (b) is a certain breadth-first
traversing tree.
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The computing complexity is linear to the number of
vertices. In Part I of the algorithm, the complexities of
Steps 1 and 2 are OðCÞ and OðNÞ, respectively, where C is a
constant and N is the number of the vertices. The complex-
ity of Steps 3 and 4 is OðN þ EÞ, where E is the number of
edges. Step 5 runs in OðNÞ. In the procedure of Gauss-Seidel
iterations, the complexity is OðNÞ. Thus, this method runs
in the linear time to the size of the undigraph. Furthermore,
the undigraph is a topological representation of a manifold,
which is a considerably sparse one. Considering a regular
mesh with E ’ 3

2N , the complexity of this method is
OðN þ EÞ ¼ OðN þ 3

2NÞ ¼ OðNÞ.

5 ALGORITHM ANALYSIS

5.1 Godunov Numerical Hamiltonian

Given 4ABC, let a ¼ jBCj, b ¼ jCAj, c ¼ jABj, p1 ¼ ðTC �
TAÞ=b; p2 ¼ ðTC � TBÞ=a, and p3 ¼ ðTB � TAÞ=c. The discre-
tization for the Eikonal equation we used is based on the
Godunov numerical Hamiltonian:

ĤC
TC � TA

b
;
TC � TB

a

� �
¼ fC; ð5Þ

where

ĤCðp1; p2Þ ¼

1

sin �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

1 � 2p1p2 cos � þ p2
2

q
if jp3j � fC and
� � �

2 � arcsinðp3

fC
Þ

� minð0; �2 � �Þ
minfTC; TA þ bfC; TB þ afCg

otherwise:

8>>>>>>>><
>>>>>>>>:

ð6Þ

Lemma 1 (Godunov numerical Hamiltonian [13]). The
Godunov numerical Hamiltonian is consistent, namely,

ĤC
TC � TA

b
;
TC � TB

a

� �
¼ jpj ð7Þ

if rT ¼ p 2 R2.

Lemma 2 (Discretization of the acute solver [13]). If the
causality condition is guaranteed, the acute solver satisfies the
discretization of Godunov numerical Hamiltonian.

Lemmas 1 and 2 have been proven in [13]. The following
lemma shows that the obtuse solver satisfies the discretiza-
tion of the Godunov numerical Hamiltonian.

Lemma 3 (Discretization of the obtuse solver). Assuming
that the causality condition is guaranteed, the obtuse solver
satisfies the discretization of Godunov numerical Hamiltonian.

Proof. Since the case of the acute solver has been proved in
Lemma 2, only the obtuse one depicted in Fig. 3a is

presented here.
In Fig. 6, it is possible to find a point M that can

construct two acute angles, ffABM and ffACM. Then, TC
can be obtained from points A and M by

TC ¼ Facute1
ðTA; TMÞ: ð8Þ

By solving (8), we have

TC ¼ Facute1
ðTA; TMÞ ¼ minfTC; TA þAQ � fCg:

Note that another value T 0C of Point C can be evaluated in

an obtuse local solver,

T 0C ¼ FobtuseðTA; TBÞ: ð9Þ

Since ffABM is an acute triangle, TB is determined by the

points A and M too, namely,

TB ¼ Facute2
ðTA; TMÞ: ð10Þ

By solving (9) and (10), we have

T 0C ¼ FobtuseðTA; TBÞ
¼ Fobtuse 	 Facute2

ðTA; TMÞ
¼ minfTC; FobtuseðTA; TA þAP � fBÞg
¼ minfTC; TA þAF � sin � � fCg
¼ minfTC; TA þAQ � fCg:

Now, reach the conclusion TC ¼ T 0C , which indicates
that the obtuse solver is equivalent to backtracking the
acute solver. Thus, the obtuse local solver can use the
Godunov numerical model for the discretization. tu
It has been proven in [13] that the Godunov numerical

model can be used if all of the triangles are acute on the
manifold. It has also been proven that the numerical

solution is convergent on this discretization. According to

Lemmas 2 and 3, the following theorem is proved.
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Fig. 6. Two ways to evaluate TC .

Fig. 5. (a) shows the loops formed by breadth-first traversing; (b) shows

the interferences of two breadth-first traversings.
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Theorem 1 (Convergence). The solution of the fast sweeping
algorithm converges monotonically to the solution of the
discretized system.

5.2 Causality and Characteristic

All of the lemmas and the theorem above are built on the
basis that the causality condition is guaranteed. As we
know, the characteristics never intersect with each other
on the manifold. The causality condition stands as long as
the algorithm can cover any direction of characteristics
locally on the computing domain.

Lemma 4. Six sweeping orderings in a triangle cover all
trajectories of characteristics from any direction of it.

Proof. Providing a triangle illustrated in Fig. 7a, a black
arrow marks the wave propagating direction, which is
also the direction of a characteristic. If it is bounded in �1,
then this direction implies that the value TA should be
obtained from TB and TC . The sweeping ordering of the
three vertices is either TB, TC , and TA or TC , TB, and TA. In
other words, if these three vertices can be evaluated in
either ordering, all of the directions of characteristics
bounded by �1 can be covered. An operator 
 is defined
to simplify the further discussion. The domain of 
 is an
evaluating sequence in a triangle, and the field is an angle
in which the direction of characteristic should be
bounded. For example, in Fig. 7a, 
ðBCA���!Þ represents
that the sweeping sequence is TB, TC , and TA. Then, the
characteristic direction marked as a black arrow is
bounded in �1. We have


 ðBCA���!Þ ¼ �1:

Similarly, we have


 ðCBA���!Þ ¼ �1;


 ðACB���!Þ ¼ �2;


 ðCAB���!Þ ¼ �2;


 ðABC���!Þ ¼ �3;

and


 ðBAC���!Þ ¼ �3:

Apparently, we have

�1 þ �2 þ �3 ¼ 2�: ð11Þ

Equation (11) shows that all of the directions are covered

by these operations except for six ones along the edgesAD,

AE,BD,BF ,CE, andCF . However, these odd directions

will be covered by the obtuse solver. Consider the case of

AD in Fig. 7b. Providing that TA is to be evaluated and

there is a wavefront withDA
��!

as the direction of its normal,

TA and TC should be evaluated simultaneously. IfTC is not

infinity, TA can be evaluated correctly by the scheme in

Fig. 3a; otherwise, another evaluated vertex Q is intro-

duced, as depicted in Fig. 7b, and then the normal of

wavefronts is bound in �4. tu

Lemma 5. For a specific 4 ABC, at most three sweeping
orderings are needed to cover trajectories from any direction.

Proof. In Lemma 4, six sweeping orderings can be divided
into three groups:

�1 ¼ 
ðCBA
���!Þ ¼ 
ðBCA���!Þ;

�2 ¼ 
ðCAB
���!Þ ¼ 
ðACB���!Þ;

and

�3 ¼ 
ðABC
���!Þ ¼ 
ðBAC���!Þ:

Without loss of generality, we choose vertex A to be

evaluated. Then the ordering must be eitherTB,TC , andTA
or TC , TB, and TA. If the ordering is the first one, then the

operation
ðBCA���!Þ is chosen to evaluate TA; otherwise, the

operation
ðCBA���!Þ is chosen. It is noted that both
ðBCA���!Þ
and 
ðCBA���!Þ belong to the group �1. In other words, only
one operation in group �1 is needed when TA is to be

evaluated. Similarly, if either TB or TC is to be evaluated,

one operation belong to either group �2 or �3 is chosen. It

indicates that the three orderings that belong to the three

groups in Lemma 4 are enough to cover trajectories from

any direction. tu
Lemma 6. Four sweeping orderings cover either of two operations

in three groups of Lemma 5.

First, we present intuitive explanation of this lemma.
Letting point A be the initial position of geodesics in
Fig. 8a, two orderings are produced by a breadth-first
tree. One is ABCDE, the other is ACBED. Considering
ABCED in 4ABC, the subordering ABC indicates the
operation 
ðABC���!Þ that belongs to the group �3 while its
reverse subordering CBA indicates the operation 
ðCBA���!Þ
that belongs to the group �1. In the same way, the ACB ,
which is the subordering of ACBED, belongs to the group
�2 and its reverse ordering BCA belongs to the group �1. It
is obviously observed that the groups �1, �2, and �3 are
included at least once by the two orderings. According to
Lemma 5, the four sweeping orderings are produced to
cover trajectories from any direction.

Proof. We propose that, within any ordering of three nodes,
if the positions of two nodes are swapped to produce a
new ordering, these two orderings and their reverse
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Fig. 7. The causality is bounded by � in (a). The critical conditions are

covered by local solvers.
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orderings indicate four different operations, which can
cover all the three groups in Lemma 5. This proposition
can be verified by an enumeration.

Furthermore, we verify that these two orderings
produce correct suborderings for all triangles. If
4MPQ is a triangle on a manifold, then one vertex
must be the parent of the other two vertices in a
traversing tree. Meanwhile, the two children vertices
must be neighbors. Fig. 8b shows one of many possible
results. The boxes numbered in Fig. 8b could be empty, a
vertex, or a tree. The ordering of the first breadth-first
tree is ð5; 6ÞMð7; 1ÞPQð2; 3; 4Þ. The ordering of the
second breadth-first tree is ð5; 7ÞMð6; 2ÞQP ð1; 4; 3Þ. Two
correct suborderings MPQ and MQP are produced. tu

Theorem 2. The FSM covers trajectories of characteristics from
any direction.

Proof. With the combination of Lemmas 4, 5, and 6, the
theorem is proven to be correct. tu

Corollary 1. If the initial boundary condition is a single point,
the FSM evaluates the arrival time of each vertex on the
manifold in four times sweeping.

Proof. This proposition is correct because, first, there are no
intersections of the characteristics on each triangles, and
second, any direction of the characteristics can be
covered by the four sweeping orderings when evaluating
vertices in a triangle. tu

5.3 Error Estimation

In this section, the error estimation of geodesics at each
node on the manifold is proposed. The error analysis model

is given in Fig. 9. The exact distance function dðxÞ satisfies

the Eikonal equation jrdðxÞj ¼ 1 everywhere except for the

initial data point. Let hmax represent the maximal length of

edges and hmin represent the minimal one on the manifold.

Using a Godunov numerical Hamiltonian at the vertex C in

4ABC, we have

dC � dA
b

¼ rdðCÞ � AC
�!
jACj þO

�
h2
max

�
: ð12Þ

Meanwhile, the numerical solution is

TC ¼ TA þ fc � b � sinð�þ �Þ; ð13Þ

where fc ¼ 1. Since this discretization produces monotonic

numerical solutions, the absolute error �C is

�C ¼ TC � dC

¼ TA � dA þ b sinð�þ �Þ � brdðCÞ � AC
�!
jACj

þ b �O
�
h2
max

�
¼ TA � dA þ bðcos ffACQ� cos ffACOÞ
þ b �O

�
h2
max

�
� TA � dA þ b sin

ffQCO
2

����
����þ b �Oðh2

maxÞ:

Noticing that ffQCO ¼ ffMOC, sin ffMOC � sin ffAOC ¼
jAMj
jAOj �

jABj
2jAOj , and jAOj � n � hmax, where n is the number of

triangles, we further have
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Fig. 8. (a) is a triangular manifold; (b) is a layout of a breadth-first

traversing tree.

TABLE 1
Accuracy on Planes

Fig. 9. The error analysis model. O is the initial position and we apply the
local solvers in 4ABC to evaluate C.
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j. Hence, the error is upbounded. This upper

bound is only provided for analytic reason. This worst

result happens when all the triangles are juxtaposed along a

line. A reasonable error bound is as follows:
Since a tree is constructed in the algorithm and the

evaluating ordering follows the upwind direction, we have

n̂ ¼ OðlnnÞ, then (14) can be rewritten as
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6 NUMERICAL EXPERIMENTS

6.1 Accuracy on 2D Domains

This experiment compares the accuracy of the proposed

FSM with the FMM in 2D domain. Planes are divided into

five levels, which are different in the number of vertex, the

number of edge, the length of the maximum edge, and so

on. These information are summarized in Table 1, where

hmax and hmin mean the maximal and the minimal length of

edges, respectively. Time costs are also recorded in the

table. The domain is a certain triangulated plane, which is

bounded in the region ½�5; 5� � ½�5; 5�. As shown in

Fig. 10a, five planes are created. Their boundary conditions

are all T ð�5;�5Þ ¼ 0. Both hmax and hmin are a half of that in

its prior level. To measure the error, two error normals are

introduced. In order to compare the accuracy and complex-

ity between the FMM in [11] and the proposed FSM, several

numerical experiments have been conducted on an Intel

Core Duo E4500@ 2.2 GHz PC with 2 GB RAM.

max
i2V

Ti � di ð16Þ

and the absolute average error with

1

jV j
X
i2V

Ti � di; ð17Þ

where V is the vertex set of the given manifold, Ti is the
numerical solution, and di is the exact solution of the vertex i.
The result is shown in Fig. 10b, where the blue line stands for
the exact solution and the red one is calculated by the FSM.

Figs. 10c and 10d are the line charts of the absolute
average error and absolute maximum error that are both
caused by the FMM and FSM, respectively. In the line chart,
the X-axis stands for the number of the vertices in five
different planes and the Y -axis stands for the absolute
errors. Although the same plane is processed by the two
different algorithms independently, nearly the same data
are obtained in this process. The evidence is provided in
Table 1. That is why only one line can be seen in each chart.
This phenomenon demonstrates that the FSM has a
comparative accuracy with that of the FMM in these plane
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Fig. 10. (a) is a triangulated plane, (b) is the result of computing

geodesics on the plane, (c) is the average error, and (d) is the maximal

error of the nodes on the plane.

TABLE 2
Accuracy on Spheres
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domains. The trends that both absolute average error and
absolute maximum error decrease when the number of
vertices increases are represented in the two line charts.

6.2 Accuracy on Spheres

This experiment compares the accuracy of the proposed
FSM and FMM with the exact geodesics on a manifold of
sphere. The computing domain represents several trian-
gulated spheres bounded in the box ½�10; 10� � ½�10; 10� �
½�10; 10�. The same error measurement of (16) and (17) is
used. Similar to the prior experiment, the spheres are
divided into four levels according to their varied degrees
of subdivision. The information also can be observed in
Table 2. A start point is selected as a source point
arbitrarily. Slightly different from that in Table 1, hmax is
a constant in all levels. Each triangle in a sphere manifold
model is divided by connecting the three vertices to the
center point. After the operation of division, these models
are all mixed with acute and obtuse triangles. Fig. 11a has
shown the detail of a sphere model.

Fig. 11b demonstrates the result of the FSM. Figs. 11c and
11d are the absolute average error and absolute maximum
error comparisons between the FMM and FSM, respectively.
The X-axis represents the vertex number and the Y -axis
represents the absolute error. One common in these two line
charts is the trend that the errors increase as the number of
vertices increases. In the first chart, the difference between the
two algorithms is trivial at the beginning and is enlarged at
Level 3, which has 42,122 vertices in the model. Similar result
also appears in the second chart, where the difference
approximates 0.1 at Level 4. Noticing that error accumulation
in the FSM is relatively slower than that in the FMM, which

shows that the local geometric changes have less influence on

the proposed method than that of the FMM.

6.3 Efficiency on Arbitrary Manifolds

Differently from the two experiments above, this experi-

ment is conducted to identify the time costs of the two

algorithms in a series of arbitrary mesh models. Contours
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Fig. 11. (a) is a triangulated sphere model, (b) is the result of geodesics

on the sphere, (c) is the average error, and (d) is the maximal error of the

nodes on the sphere.

Fig. 12. Results of computing geodesics on the models of arbitrary

manifolds. (a) Drill, (b) Bunny, (c) Hand, (d) Horse, (e) Kitty,

(f) Armadillo, (g) Angel, and (h) Dragon.
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are drawn on all mesh models in Fig. 12 to exhibit the
solutions by performing the FSM. The time costs that
represent their performances are recorded in Table 3. Fig. 13
demonstrates this comparison in a line chart. In Table 3, the
scale of the vertex number ranges from 1,961 to 437,645. The
difference on the time costs of the two methods is obvious.
This trend is shown clearly in Fig. 13. When performed on
the bunny model, the FMM takes 506 ms to complete the
calculation, which is almost 4 times longer than 138 ms the
FSM takes. The performance gap is widen to more than
10 times when these two algorithms are performed on the
model dragon, which has more than 437,000 points. It is
trivial to see that the FSM has a linear cost to the scale of the
manifolds while the FMM does not. We conclude that the
FSM performs more efficiently than the FMM.

This paper extends the FSM to the domain of arbitrary
manifolds for the computation of geodesics and reduce the
computing complexity toOðN logNÞ. In order to facilitate the
construction of sweeping orderings, the local solver for
obtuse triangles is improved. Since the triangular manifold
can be viewed as an undigraph that takes the natural
topology from the primitive model, four orderings for
sweeping are produced via the breadth-first traversing on
the undigraph. These orderings are proven to satisfy the basic
requirement of characteristics’ coverage, which ensures that
reasonable numerical results are to be produced. The
computational complexity is linear to the scale of vertices
on the manifold. Extensive numerical experiments demon-
strate the accuracy and efficiency of the proposed algorithm.

7 CONCLUSION

In the future, we intend to study the FSM for the general
Eikonal equation in the domain of arbitrary manifolds.
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