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Abstract

We consider the dynamical behavior of Martin-Löf random points in dynamical systems
over metric spaces with a computable dynamics and a computable invariant measure. We
use computable partitions to define a sort of effective symbolic model for the dynamics.
Through this construction we prove that such points have typical statistical behavior (the
behavior which is typical in the Birkhoff ergodic theorem) and are recurrent. We introduce
and compare some notions of complexity for orbits in dynamical systems and prove: (i) that
the complexity of the orbits of random points equals the Kolmogorov-Sinäı entropy of the
system, (ii) that the supremum of the complexity of orbits equals the topological entropy.

Key words: Algorithmic randomness, Kolmogorov-Chaitin complexity, computable
partition, effective symbolic dynamics, entropy, orbit complexity

1. Introduction

The ergodic theory of dynamical systems provides a framework to study the way random-
ness arises in deterministic systems. For instance, Birkhoff’s ergodic theorem establishes the
typical statistical behavior of orbits in a given system, and entropies measure the randomness
degree of a process.

On the other hand, computability offers an alternative way of understanding randomness
as algorithmic unpredictability. A Martin-Löf random infinite binary sequence can be seen
as a sequence having maximal Kolmogorov-Chaitin complexity. The set of such sequences
has full measure, and many properties that hold with probability one actually hold for each
single random sequence. As an example of statistical properties which hold for each random
sequence we recall V’yugin result [V’y97] who proves the Birkhoff theorem for each random
symbolic sequence under some computability assumptions on the system.

It is natural to study the relationship between these two different approaches.
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The notion of Martin-Löf randomness was first defined for infinite strings and more
recently generalized to effective topological spaces in [HW03] and to computable metric
spaces in [Gác05, HR09b]. Computable metric spaces are separable metric spaces where the
distance can be in some sense effectively computed (see Sect. 2.3). In those spaces, it is also
possible to define “computable” functions, which are functions whose behavior is in some
sense given by an algorithm, and “computable” measures (there is an algorithm to calculate
the measure of nice sets). The space of infinite symbolic sequences, the real line or euclidean
spaces, are examples of metric spaces which become computable in a very natural way.

Computable partitions and ergodic theorems for random points

In the classical ergodic theory, the powerful technique of symbolic dynamics allows to
associate to an abstract system (X, µ, T ) a shift on a space of infinite strings having similar
statistical properties. In this paper we define computable measurable partitions (see Sect.
3) and construct an effective version of the above technique, defining the effective symbolic
models of the dynamics, in which random points are associated to random infinite strings.
This tool allows to easily generalize theorems which are proved in the symbolic setting to the
more general setting of endomorphisms of computable probability spaces. For instance we
use V’yugin’s theorem to prove a version of Birkhoff’s ergodic theorem for random points.

Theorem (3.2.2). Let (X, µ) be a computable probability space and x a µ-random point. For
any ergodic endomorphism T and any µ-continuity set A

lim
n

1

n

n−1
∑

i=0

fA ◦ T i(x) = µ(A)

where fA is the indicator function of A.

Here, the notion of endomorphism is in a measure-theoretic and computable sense, see
Sect. 2.4 for precise definitions. On this line, we also prove a recurrence theorem for random
points (Prop. 3.2.1).

In the remaining part of the paper, computable partitions are used to investigate relations
between various definitions of orbit complexity, random points and entropy of the system.

Orbit complexity and entropy

In [Bru83], Brudno used Kolmogorov complexity to define a notion of complexity K(x, T )
for the orbits of a dynamical system on a compact space. It is a measure of the information
rate which is necessary to describe the behavior of the orbit of x. Later, White [Whi93] also
introduced a slightly different version K(x, T ). The following relations between entropy and
orbit complexity were proved:

Theorem (Brudno, White). Let X be a compact topological space and T : X → X a
continuous map.
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1. For any ergodic Borel probability measure µ the equality

K(x, T ) = K(x, T ) = hµ(T )

holds for µ-almost all x ∈ X,

2. For all x ∈ X, K(x, T ) ≤ h(T ).

Here hµ(T ) is the Kolmogorov-Sinäı entropy of (X, T ) with respect to µ and h(T ) is the
topological entropy of (X, T ). This result seems miraculous as no computability assumption
is required on the space or on the transformation T . Actually, this miracle lies in the
compactness of the space, which makes it finite when observations are made with finite
precision (open covers of the space can be reduced to finite open covers). Indeed, when the
space is not compact, it is possible to construct systems for which the complexity K(x, T ) of
orbits is correlated in no way to their dynamical complexity. In [Gal00], Brudno’s definition
was generalized to non-compact computable metric spaces. This definition (see Sect. 5.2).
coincides with Brudno’s one in the compact case. However, a relation with entropy was not
stated in the non-compact case, or for non-continuous functions. This is in part because these
definitions are topological. We propose an alternative notion of orbit complexity Kµ(x, T )
and prove its relation with entropy for non-compact spaces and for transformations which
are not necessarily continuous. Our definition is “measure-theoretical” in the sense that it
uses measurable (computable) partitions to encode orbits. With this tool we prove:

Theorem (6.1.2). Let T be an ergodic endomorphism of the computable probability space
(X, µ),

Kµ(x, T ) = hµ(T ) for all µ-random points x.

We then prove that in the compact case our symbolic orbit complexity coincides with
Brudno’s one at each random point:

Theorem (5.3.1). Let T be an ergodic endomorphism of the computable probability space
(X, µ), where X is compact,

Kµ(x, T ) = K(x, T ) for all µ-random point x.

The two above statements hence implie a pointwise version of the Brudno’s theorem for
each random point.

In the topological context, we then consider K(x, T ) and strengthen the second part of
Brudno’s theorem, showing:

Theorem (6.2.1). Let T be a computable map on a compact computable metric space X,

sup
x∈X

K(x, T ) = sup
x∈X

K(x, T ) = h(T )
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Observe that this was already implied by Brudno’s theorem, using the variational prin-
ciple: h(T ) = sup{hµ(T ) : µ is T -invariant}. Nevertheless, our proof uses purely topological
and algorithmic arguments and no measure. In particular, it does not use the variational
principle, and can be thought as an alternative proof of it.

Many of these statements require that the dynamics and the invariant measure be com-
putable. The first assumption can easily be checked on concrete systems if the dynamics is
given by a map that is effectively defined.

The second is more delicate: it is well-known that given a map on a metric space, there
can be a continuous (even infinite dimensional) space of probability measures which are
invariant for the map, and many of them will be non computable. An important part of
the theory of dynamical systems is devoted to selecting measures which are particularly
meaningful. From this point of view, an important class of these measures is the class of
SRB invariant measures, which are measures being in some sense the “physically meaningful
ones” (for a survey on this topic see [You02]). It can be proved (see [GHR09a, GHR09b]
and their references e.g.) that in several classes of dynamical systems where SRB measures
are proved to exist, these measures are also computable. Hence this provides several classes
of nontrivial concrete examples to which our results can be applied.

2. Preliminaries

2.1. Partial recursive functions on integers and numbered sets

In this section we recall some basic facts on recursion, mainly to fix a notation for what
follows.

The notion of algorithm has been formalized independently by Turing, Church, Kleene
among others. Each constructed model defines a set of partial (not defined everywhere)
functions which can be computed by some effective mechanical or algorithmic procedure.
Later, it has been proved that all this models of computation define the same class of func-
tions, namely: the set of partial recursive functions. This fact supports a working hypothesis
known as Church’s Thesis, which states that every (intuitively formalizable) algorithm is
a partial recursive function. We will not give formal definitions, see for example, [Rog87].
There exists an effective procedure to enumerate the class of all partial recursive functions.
More precisely, there is an enumeration (ϕe)e∈N of all the partial recursive functions and a
particular recursive function ϕu, called universal, such that ϕu(〈e, n〉) = ϕe(n) for all e, n,
where 〈., .〉 : N2 → N is some effective bijection. A number e such that ϕe = ϕ is called
a Gödel number of ϕ. Intuitively, it is the number of a program computing ϕ. A set of
natural numbers is called recursively enumerable (r.e. for short) if it is the range of
some partial recursive function, i.e. if there exists an algorithm listing the set. We denote
by Ee := {ϕu(〈e, n〉) : n ∈ N} the r.e. set associated to ϕe.

Strictly speaking, the above notions are defined on integers. However, when the objects
of some class have been identified with integers, it makes sense to speak about algorithms
acting on these objects.

Definition 2.1.1. A numbered set is a countable set O together with a surjection νO :
N → O called the numbering. We write on for νO(n) and call n a name of on.
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Some classical examples of numbered sets are Nk, the set of partial recursive functions
(with their Gödel numbers), the collection of all r.e. subsets of N. The set of rational
numbers has also a natural numbering Q = {q0, q1, . . .} that we fix once for all.

It is straightforward to see how the notion of recursive function and algorithmic enumer-
ation can be extended to numbered sets once a numbering is specified.

2.2. Computability over the reals

We now use the numbered set Q = {q0, q1, . . .} to define computability on the set R of
real numbers.

Definition 2.2.1. Let x be a real number. We say that:

• x is lower semi-computable if the set E := {i ∈ N : qi < x} is r.e.,

• x is upper semi-computable if the set E := {i ∈ N : qi > x} is r.e.,

• x is computable if it is lower and upper semi-computable.

Equivalently, a real number is computable if there exists an algorithmic enumeration of
a sequence of rational numbers converging exponentially fast to x. That is:

Proposition 2.2.1. A real number x is computable if and only if there exists an algorithm
A : N → Q such that |A(i) − x| < 2−i, for all i.

Definition 2.2.2. Let (xn)n be a sequence of real numbers. We say that xn is computable
uniformly in n if there exists an algorithm A : N×N → Q such that |A(n, i)− xn| < 2−i

for all n, i.

Sequences of uniformly lower (resp. upper) semi-computable reals are defined in the same
way.

2.3. Computable metric spaces

We give a short and self-contained introduction to the concepts from computable analysis
on metric spaces that we need in the sequel. More details on the subject can be found in
[Wei00, BHW08].

Definition 2.3.1. A computable metric space is a triple X = (X, d,S), where

• (X, d) is a separable complete metric space,

• S = {si}i∈N is a numbered dense subset of X (called ideal points),

• the real numbers d(si, sj) are computable, uniformly in i, j.
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(Rn, dRn , Qn) with the euclidean metric and the standard numbering of Qn is an example
of computable metric space. Another important example is the Cantor space (ΣN, d,S)
with Σ a finite alphabet and d the usual distance1. In this case S is the set of ultimately
0-stationary sequences. For further examples we refer to [Wei93].

Like in the case of the real numbers, let us say that a sequence of points xi ∈ X converges
fast to x if d(xi, x) < 2−i for all i.

Definition 2.3.2 (Computable points). A point x ∈ X is said to be computable if there
exists an algorithm A : N → S that enumerates a sequence converging fast to x.

Let (xn)n be a sequence of computable points. We say that xn is computable uniformly

in n if there exists an algorithm A : N × N → S such that for all n, the sequence (A(n, i))i

converges fast to xn.

Let us consider the set of ideal balls B := {B(si, qj) : si ∈ S, qj ∈ Q, qj > 0}. The
numberings of S and Q induce a canonical numbering B = {B0, B1, . . .} that is fixed once
for all.

Definition 2.3.3 (Effective open set). We say that U ⊆ X is an effective open set if
there is some r.e. set E ⊆ N such that U =

⋃

i∈E Bi.
Let (Un)n be a sequence of open sets. We say that Un is effectively open, uniformly in

n if there exists a r.e. set E ⊆ N × N such that for all n it holds Un =
⋃

i:(n,i)∈E Bi.

Remarks 2.3.1.

• If U is an effective open set then the set of ideal points belonging to U is r.e.

• If (Un)n is a sequence of uniformly effective open sets then the union
⋃

n Un is an
effective open set.

• The numbering {E0, E1, . . .} of the r.e. subsets of N induces a numbering {U0, U1, . . .}
of the collection U of all effective open subsets of X, defining Un =

⋃

i∈En
Bi.

• The numbered set U is closed under finite unions and finite intersections. Furthermore,
these operations are effective in the following sense: there exist recursive functions ϕ∪

and ϕ∩ such that for all i, j ∈ N, Ui ∪ Uj = Uϕ∪(i,j) and the same holds for ϕ∩.
Equivalently, Ui ∪ Uj is effectively open, uniformly in i, j.

Definition 2.3.4 (Effective Gδ-set). An effective Gδ-set is the intersection
⋂

n Un of a
family of uniformly effective open sets Un.

Let (X, d,S) and (X ′, d′,S ′) be computable metric spaces with B = {Bi}i∈N,B′ = {B′
i}i∈N

the corresponding numbered sets of ideal open balls.

Definition 2.3.5 (Computable function). A function T : X → X ′ is said to be computable

if T−1(B′
n) is effectively open uniformly in n.

1d((si), (ti)) =
∑

i
|Σ|−iδ(si, ti) where δ(a, b) = 1 if a = b, 0 otherwise.
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Remarks 2.3.2.

• The preimage of a sequence of uniformly effective open sets is again a sequence of
uniformly effective open sets. This could be an alternative equivalent definition of
computable function.

• If T is computable then the images of ideal points can be uniformly computed: T (si)
is a computable point, uniformly in i.

• The distance function d : X × X → R is a computable function.

By definition computable functions are continuous. Since we will work with functions that
are not necessarily continuous everywhere, we shall consider functions that are computable
on some subset of X. More precisely,

Definition 2.3.6. A function T is said to be computable on D ⊆ X if there are uniformly
effective open sets Un ⊆ X such that T−1(B′

n) ∩ D = Un ∩ D for all n. D is called the
domain of computability of T .

2.4. Computable probability spaces

Now we turn our attention to computability on probability spaces. We will not consider
general measurable spaces, but only complete separable metric spaces endowed with the
Borel σ-field, as probability and ergodic theory take place mostly on such spaces. Strictly
speaking a computable probability space should be the computable version of a probability
space, given by a set, a σ-field and a probability measure, but for the sake of simplicity,
we will use this name for any computable metric space endowed with a computable Borel
probability measure (as defined below).

Let then X be a computable metric space. The set of Borel probability measures over X,
denoted by M(X), can be endowed with a structure of computable metric space (this will
be defined below, for more details, see [Gác05, HR09b]). A computable measure can then
be defined as a computable point of M(X).

Let us first recall some prerequisites from measure theory. The weak topology on M(X)
is defined by the notion of weak convergence of measures: we say that µn converge weakly
to µ and write µn → µ if

µn → µ iff

∫

f dµn →

∫

f dµ for all real bounded continuous f. (1)

Let us recall the Portmanteau theorem. We say that a Borel set A is a set of µ-continuity

if µ(∂A) = 0, where ∂A = A ∩ X \ A is the boundary of A.

Theorem 2.4.1 (Portmanteau theorem). Let µn, µ be Borel probability measures on a sep-
arable metric space (X, d). The following are equivalent:

1. µn converges weakly to µ,

2. lim supn µn(F ) ≤ µ(F ) for all closed sets F ,
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3. lim infn µn(G) ≥ µ(G) for all open sets G,

4. limn µn(A) = µ(A) for all µ-continuity sets A.

This theorem easily implies the following: when (X, d) is a separable metric space, weak
convergence can be proved using the following criterion:

Proposition 2.4.1. Let A be a countable basis of the topology which is closed under the
formation of finite unions. If µn(A) → µ(A) for every A ∈ A, then µn converge weakly to µ.

Let us introduce on M(X) the structure of a computable metric space. As X is separable
and complete, so is M(X). Let D ⊆ M(X) be the set of those probability measures that
are concentrated in finitely many points of S and assign rational values to them. It can be
shown that this is a dense subset (see [Bil68]).

We consider the Prokhorov metric π on M(X) defined by:

π(µ, ν) := inf{ǫ ∈ R+ : µ(A) ≤ ν(Aǫ) + ǫ for every Borel set A}.

where Aǫ = {x : d(x, A) < ǫ}.
This metric induces the weak topology on M(X). Furthermore, it can be shown that the

triple (M(X), π,D) is a computable metric space (see [Gác05]). By Def. 2.3.2 a measure
µ is then computable if there is an algorithmic enumeration of a sequence of ideal measures
(µn)n∈N ⊆ D converging fast to µ.

The following theorem gives a characterization for the computability of measures in terms
of the computability of the measure of sets (for a proof see [HR09b]):

Theorem 2.4.2. A measure µ ∈ M(X) is computable if and only if the measures µ(Bi1∪. . .∪
Bik) of finite unions of ideal open balls are lower-semi-computable, uniformly in i1, . . . , ik.

Definition 2.4.1. A computable probability space is a pair (X, µ) where X is a com-
putable metric space and µ is a computable Borel probability measure on X.

Definition 2.4.2 (Morphism). Let (X, µ) and (Y, ν) be two computable probability spaces.
A morphism from (X, µ) to (Y, ν) is a measure-preserving function F : X → Y which is
computable on an effective Gδ-set of µ-measure one.

We recall that F is measure-preserving if ν(A) = µ(F−1(A)) for every Borel set A.
Computable probability structures can be easily transferred:

Proposition 2.4.2. Let (X, µ) be a computable probability space, Y a computable metric
space and F : X → Y a function which is computable on an effective Gδ-set of µ-measure
one. The induced measure µF on Y defined by µF (A) = µ(F−1(A)) is computable and F is
a morphism of computable probability space.
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2.5. Algorithmic randomness

The randomness of a particular outcome is always relative to some statistical test. The
notion of algorithmically random infinite binary sequence, defined by Martin-Löf in 1966,
is an attempt to have an “absolute” notion of randomness. This absoluteness is actually
relative to all “effective” statistical tests, and lies on the hypothesis that this class of tests
is sufficiently wide.

More recently the notion of Martin-Löf randomness was generalized to effective topolog-
ical spaces in [HW03] and to computable metric spaces in [Gác05, HR09b]. In this section,
(X, µ) is a computable probability space.

Definition 2.5.1. A Martin-Löf µ-test is a sequence (Un)n∈N of uniformly effective open
sets which satisfy µ(Un) < 2−n for all n. Any subset of

⋂

n Un is called an effective µ-null

set.
A point x ∈ X is called µ-random if x is contained in no effective µ-null set. The set

of µ-random points is denoted by Rµ.

The set Rµ of µ-random points has full measure, so from a measure-theoretic point of
view, we can work on Rµ instead of the whole space X. The advantage of this is that many
results of the form

P (x) holds for µ-almost every x ∈ X,

with P some predicate, can be converted into an “individual” result

P (x) holds for every x ∈ Rµ.

To put conversion into practice, we will need the following results (see [HW03], Thm 4.5
or [HR09b]).

Lemma 2.5.1. Every µ-random point is in every effective open set of full measure.

Proposition 2.5.1 (Morphisms preserve randomness). Let F be a morphism of computable
probability spaces (X, µ) and (Y, ν). Then every µ-random point x is in the domain of
computability of F and F (x) is ν-random.

2.6. Kolmogorov-Chaitin complexity

The idea is to define, for a finite object, the minimal amount of algorithmic information
from which the object can be recovered. That is, the length of the shortest description (code)
of the object. For a complete introduction we refer to standard texts [LV93, Gác].

Let Σ∗ and ΣN be the sets of finite and infinite words (over the finite alphabet Σ) respec-
tively. A word w ∈ Σ∗ defines the cylinder [w] ⊆ ΣN of all possible continuations of w. A
set D = {w1, w2, ...} ⊆ Σ∗ defines an open set [D] =

⋃

i[wi] ⊆ ΣN. D is called prefix-free if
no word of D is prefix of another one, that is if the cylinders [wi] are pairwise disjoint.

Let X be Σ∗ or N or N∗.
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Definition 2.6.1. An interpreter is a partial recursive function I : {0, 1}∗ → X with a
prefix-free domain.

Definition 2.6.2. Let I : {0, 1}∗ → X be an interpreter. The Kolmogorov-Chaitin

complexity KI(x) of x ∈ X relative to I is defined to be

KI(x) =

{

|p| if p is a shortest input such that I(p) = x
∞ if there is no p such that I(p) = x.

It turns out that there exists an algorithmic enumeration of all the interpreters, which
entails the existence of a universal interpreter U that is asymptotically optimal in the sense
that the invariance theorem holds:

Theorem 2.6.1 (Invariance theorem). For every interpreter I there exists cI ∈ N such that
for all x ∈ X we have KU(x) ≤ KI(x) + cI .

We fix a universal interpreter U and we let K(x) := KU(x) be the Kolmogorov-Chaitin

complexity of x.

2.6.1. Simple estimates

Let us recall some simple estimates of the complexity that we will need later. Let f, g
be real-valued functions. We say that g additively dominates f and write f <

+

g if there
is a constant c such that f ≤ g + c. As codes are always binary words, we use base-2
logarithms, which we denote by log. We define J(x) = x + 2 log(x + 1) for x ≥ 0. For
n ∈ N, K(n) <

+

J(log n). For n1, . . . , nk ∈ N, K(n1, . . . , nk) <
+

K(n1) + . . . + K(nk). The
following property is a version of a result attributed to Kolmogorov, stated in terms of prefix
complexity instead of plain complexity.

Proposition 2.6.1. Let E ⊆ N × X be a r.e. set such that En = {x : (n, x) ∈ E} is finite
for all n. Then for all n ∈ N and s ∈ En,

K(s) <
+

J(log |En|) + K(n)

Proposition 2.6.2. Let µ be a computable measure on ΣN. For all w ∈ Σ∗,

K(w) <
+

− log µ([w]) + K(|w|)

Theorem 2.6.2 (Coding theorem). Let P : X → R
+

be a lower semi-computable function
such that

∑

x∈X P (x) ≤ 1. Then K(x) <
+

− log P (x), i.e. there is a constant c such that
K(x) ≤ − log P (x) + c for all x ∈ X.

Moreover, the quantity
∑

x 2−K(x) is finite and smaller than 1 as it is the Lebesgue measure
of the domain of the universal interpreter U . There is a relation between Kolmogorov-Chaitin
complexity and randomness, initial segments of random infinite strings being maximally
complex.

Theorem 2.6.3 (Schnorr). Let µ be a computable measure over the finite alphabet Σ. Then
ω ∈ ΣN is a µ-random sequence if and only if ∃m ∀n K(ω1:n) ≥ − log µ[ω1:n] − m.

The minimal such m, defined by dµ(ω) := supn{− log µ[ω1:n] − K(ω1:n)} and called the
randomness deficiency of ω w.r.t µ, is not only finite almost everywhere: it has finite
mean, that is

∫

dµ(ω) dµ ≤ 1. For a proof see [LV93].
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3. Effective symbolic dynamics and statistics of random points

Let us recall some basic facts about ergodic theory (see [Pet83, Wal82] for an introduc-
tion). Let X be a metric space, let T : X → X be a Borel measurable map. Let µ be
a T -invariant Borel probability measure, i.e. a Borel probability measure on X such that
µ(A) = µ(T−1(A)) for each measurable set A. A measurable set A is called T -invariant if
T−1(A) = A mod 0 (the symmetric difference between the two sets has zero measure). The
system (X, µ, T ) is said to be ergodic if each T -invariant set has total or null measure. In
such systems the famous Birkhoff ergodic theorem says that time averages computed along
µ-typical orbits coincides with space average with respect to µ. More precisely, for any
f ∈ L1(X, µ) it holds

lim
n→∞

Sf
n(x)

n
=

∫

f dµ, (2)

for µ-almost each x, where Sf
n = f + f ◦ T + . . . + f ◦ T n−1.

Now that we have algorithmic randomness at our disposal, it is then natural to ask if
µ-random points satisfy Birkhoff’s ergodic theorems, and for which transformations and ob-
servables. This problem was tackled by V’yugin [V’y97] who gave a positive answer on the
Cantor space for computable transformations and computable observables. It was later ob-
served in [Nan08] that V’yugin’s theorem does not imply anything for discontinuous observ-
ables (which cannot be computable), and an extension of V’yugin’s theorem for observables
that are computable but on a countable set was then carried out. In this section, we develop
the framework of effective symbolic dynamics to show that V’yugin’s theorem does imply a
more general result. Let us first state the problem in a slightly different way.

It is a classical result that the set of points x such that (2) holds for all continuous bounded
f has measure one. Such points are called µ-typical. This notion can be reformulated.
Given a point x, let us consider the measures νn = 1

n

∑

j<n δT jx, where δy is the Dirac
probability measure concentrated on y. Let µ be an ergodic measure for T . A point x is
µ-typical if and only if the associated measures νn converge weakly to µ.

Now the question is: are µ-random points µ-typical?
We now develop some more tools to give a positive answer to this question on any com-

putable probability space and for any ergodic endomorphism (Def. 2.4.2). This result (Thm.
3.2.2 below) implies equality (2) for random points, bounded continuous (not necessarily
computable) observables and indicators of sets of µ-continuity (without effectivity assump-
tion). In a sequel paper [HR09a] we give a much more general answer, proving a version of
Birkhoff’s ergodic theorem for random points and effectively µ-measurable transformations
and observables.

3.1. Symbolic dynamics of random points

Let T be an endomorphism of the probability space (X, µ). In the classical construction
of symbolic dynamics associated to a given system, one considers access to the system given
by a finite measurable partition, that is a finite collection of pairwise disjoint Borel sets
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ξ = {C1, . . . , Ck} such that µ(
⋃

i Ci) = 1. To almost each point x ∈ X corresponds an
infinite sequence ω = (ωi)i∈N = φξ(x) ∈ {1, . . . , k}N defined by:

φξ(x) = ω ⇐⇒ ∀j ∈ N, T j(x) ∈ Cωj

As ξ is a measurable partition, the map φξ is measurable and then the measure µ in-
duces the measure µξ on {1, . . . , k}N defined by µξ(B) = µ(φ−1

ξ (B)) for all measurable sets

B ⊆ {1, . . . , k}N. Let us define the shift endomorphism σ : {1, . . . , k}N → {1, . . . , k}N by
σ((ωi)i∈N) = (ωi+1)i∈N. The symbolic dynamical system ({1, . . . , k}N, µξ, σ) is called the
symbolic model of (X, µ, T ) w.r.t. ξ.

The requirement of φξ being measurable makes the symbolic model appropriate from the
measure-theoretic view point, but is not enough to have a symbolic model compatible with
the computational approach:

Definition 3.1.1. Let T be an endomorphism of the computable probability space (X, µ)
and ξ = {C1 . . . , Ck} a finite measurable partition.

The associated symbolic model ({1, . . . , k}N, µξ, σ) is said to be an effective symbolic

model if the map φξ : X → {1, . . . , k}N is a morphism of computable probability space
(here the space {1, . . . , k}N is endowed with the standard computable structure).

The sets Ci are called the atoms of ξ and we denote by ξ(x) the atom containing x (if
there is one). Observe that φξ is computable on its domain only if the atoms are effective
open sets (in the domain). We hence define:

Definition 3.1.2 (Computable partitions). A measurable partition ξ is said to be a com-

putable partition if its atoms are effective open sets.

Theorem 3.1.1. Let T be an endomorphism of the computable probability space (X, µ) and
ξ = {C1 . . . , Ck} a finite computable partition. The associated symbolic model is effective.

Proof. Let D be the domain of computability of T (it is a full-measure effective Gδ-set).
Define the set

Xξ = D ∩
⋂

n∈N

T−n(C1 ∪ . . . ∪ Ck)

Xξ is a full-measure effective Gδ-set: indeed, as C1 ∪ . . . ∪ Ck is effectively open and T is
computable on D there are uniformly effective open sets Un such that D∩T−n(C1∪. . .∪Ck) =
D ∩ Un, so Xξ = D ∩

⋂

n Un. As T is measure-preserving, all Un have measure one.
Now, Xξ ∩ φ−1

ξ [i0, . . . , in] = Xξ ∩ Ci0 ∩ T−1Ci1 ∩ . . . ∩ T−nCin . This proves that φξ is
computable over Xξ. Proposition 2.4.2 allows to conclude.

After the definition an important question is: are there computable partitions? the
answer depends on the existence of effective open sets with a zero-measure boundary.

Definition 3.1.3. A set A is said to be almost decidable if there are two effective open
sets U and V such that:

U ⊆ A, V ⊆ Ac, µ(U) + µ(V ) = 1

12



Remarks 3.1.1.

• a set is almost decidable if and only if its complement is almost decidable,

• an almost decidable set is always a continuity set,

• a µ-continuity ideal ball is always almost decidable,

Ignoring computability, the existence of open µ-continuity sets directly follows from the
fact that the collection of open sets is uncountable and µ is finite. The problem in the
computable setting is that there are only countable many effective open sets. Fortunately,
there still always exists a basis of almost decidable balls. This will be used many times in the
sequel, in particular it directly implies the existence of computable partitions. This result
was independently obtained in [Bos08a, Bos08b, HR09b].

Theorem 3.1.2. Let (X, µ) be a computable probability space. There is a sequence of uni-
formly computable reals (rj)j∈N that is dense in R+ and such that for every i, j, the ball
B(si, rj) is almost decidable.

We denote by Bµ
n the almost decidable ball B(si, rj) with n = 〈i, j〉. The family {Bµ

n :
n ∈ N} is a basis for the topology. It is even effectively equivalent to the basis of ideal balls
: every ideal ball can be expressed as a r.e. union of almost decidable balls, and vice-versa.
We finish presenting some results that will be needed in the next subsection.

Corollary 3.1.1. On every computable probability space, there exists a family of uniformly
computable partitions which generates the Borel σ-field.

Proof. Take ξ〈i,j〉 = {B(si, rj), X \ B(si, rj)} where B is the closed ball: as the almost
decidable balls form a basis of the topology, the σ-field generated by the ξn is the Borel
σ-field.

Proposition 3.1.1. If A is almost decidable then µ(A) is a computable real number.

Proof. Since U and V are effectively open, by Thm. 2.4.2 their measures are lower-semi-
computable. As µ(U) + µ(V ) = 1, their measures are also upper-semi-computable.

The following regards the computability of inducing a measure in a subset and will be
used in the proof of prop. 3.2.1

Proposition 3.1.2. Let µ be a computable measure and A be an almost decidable subset of
X with µ(A) > 0. Then the induced measure µA(.) = µ(.|A) is computable. Furthermore,
RµA

= Rµ ∩ A.

Proof. Let A be an almost decidable set, coming with U, V . Let W = Bn1
∪ . . . ∪ Bnk

be a
finite union of ideal balls. As A = U mod 0, one has

µA(W ) = µ(W ∩ A)/µ(A) = µ(W ∩ U)/µ(A).

13



W ∩ U is an effective open set, so its measure is lower semi-computable. As µ(A) is com-
putable, µA(W ) is lower semi-computable. Note that everything is uniform in n1, . . . , nk.
The result follows from Thm. 2.4.2.

Let U and V as in the definition of an almost decidable set. First note that Rµ ∩ A =
Rµ ∩ U , as Rµ ⊆ U ∪ V by Lem. 2.5.1. Again by Lem. 2.5.1, RµA

⊆ U , and as µA ≤ 1
µ(A)

µ,
every µ-effective null set is also a µA-effective null set, so RµA

⊆ Rµ. Hence, we have
RµA

⊆ Rµ ∩ U .
Conversely, Rc

µA
being a µA-effective null set, its intersection with U is a µ-effective null

set, by definition of µA. So Rc
µA

∩ U ⊆ Rc
µ, which is equivalent to Rµ ∩ U ⊆ RµA

.

3.2. Some statistical properties of random points

Before coming back to typicalness of random points, let us study a weaker property,
namely recurrence, for which the version for random points has a more simple proof.

3.2.1. Recurrence

We recall that the Poincaré recurrence theorem states that in a measure-preserving sys-
tem, for each set E almost each orbit starting from E comes back to E infinitely often. On
a metric space we can also consider:

Definition 3.2.1. Let X be a metric space. A point x ∈ X is said to be recurrent for a
transformation T : X → X, if lim infn d(x, T nx) = 0.

Poincaré recurrence theorem implies that in a measure-preserving transformation almost
each point are recurrent. Under suitable computability assumptions the same holds for all
random points.

Proposition 3.2.1 (Random points are recurrent). Let (X, µ) be a computable probability
space. If x is µ-random, then it is recurrent with respect to every endomorphism T of (X, µ).

Proof. Let x be µ-random and B an almost decidable open ball containing x. If B was a
µ-null set, it would be an effective µ-null set and could not contain x, which is µ-random.
Hence µ(B) > 0, µB(.) = µ(.|B) is well-defined and x is µB-random by Prop. 3.1.2. Let D
be the domain of computability of T . There is an effective open set U such that:

⋃

n≥1

T−nB ∩ D = U ∩ D.

The Poincaré recurrence theorem states that µ-almost every point in B comes back to B, so
µB(U) = 1. As x is µB-random, x ∈ U by Lem. 2.5.1.

3.2.2. Typicalness

To prove that µ-random points are µ-typical, we will use the following particular case of
V’yugin’s main theorem.
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Theorem 3.2.1 (V’yugin). Let µ be a computable shift-invariant ergodic measure on the
Cantor space {0, 1}N. For each µ-random sequence ω:

lim
n

1

n

n−1
∑

i=0

ωi = µ([1]). (3)

We are now able to prove:

Theorem 3.2.2. Let (X, µ) be a computable probability space. Then each µ-random point
x is µ-typical for every ergodic endomorphism T .

Proof. Let fA be the characteristic function of the set A. First, let us show that if A is an
almost decidable set then for all µ-random point x:

lim
n

1

n

n−1
∑

i=0

fA ◦ T i(x) = µ(A) (4)

Indeed, consider the computable partition defined by ξ := {U, V } with U and V as in
Def. 3.1.3 and the associated symbolic model ({1, . . . , k}N, µξ, σ). By Theorem 3.1.1 and
Proposition 2.5.1 φξ(x) is a well-defined µξ-random infinite sequence, so Thm. 3.2.1 applies
and gives (4). As explained at the beginning of Sect. 3, this can be reformulated as the
convergence of νn(A) to µ(A), where νn = 1

n

∑

j<n δT jx. Now, the collection of almost
decidable sets satisfies Prop. 2.4.1, so νn converges weakly to µ: x is µ-typical.

Observe that the version of Birkhoff’s theorem for random holds all ergodic endomor-
phisms (of computable probability space, i.e., in both a measure-theoretic and computable
sense, see Def. 2.4.2) and for all bounded continuous (not necessarily computable) observ-
ables. Moreover, by Prop. 2.4.1 if holds for all indicators of µ-continuity sets (again, without
any computability assumption). This result hence improves [Nan08].

4. Entropies of dynamical systems

4.1. Measure-theoretic entropy

Suppose that symbols from a finite alphabet are produced by some source at each integer
time. The tendency of the source toward producing such object more than such other can
be modeled by a probability distribution. The Shannon entropy of the source measures the
degree of uncertainty about future symbols.

Any ergodic dynamical system (X, µ, T ) can be seen as a source of outputs. Kolmogorov
and Sinäı adapted Shannon’s theory to dynamical systems in order to measure the degree
of unpredictability or chaoticity of an ergodic system. The first step consists in discretizing
the space X using finite partitions. Let ξ = {C1, . . . , Cn} be a finite measurable partition of
X. Then let T−kξ be the partition whose atoms are the pre-images T−kCi. Then let

ξn = ξ ∨ T−1ξ ∨ T−2ξ ∨ . . . ∨ T−(n−1)ξ
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be the partition given by the sets of the form

Ci0 ∩ T−1Ci1 ∩ . . . ∩ T−(n−1)Cin−1
,

varying Cij among all the atoms of ξ. Knowing which atom ξn a point x belongs to comes
to knowing which atoms of the partition ξ the orbit of x visits up to time n − 1.

The measure-theoretical entropy of the system w.r.t. the partition ξ can then be thought
as the rate (per time unit) of gained information (or removed uncertainty) when observations
of the type “T n(x) ∈ Ci” are performed. This is of great importance when classifying
dynamical systems: it is a measure-theoretical invariant, which enables one to distinguish
non-isomorphic systems.

We briefly recall the definition. For more details, we refer the reader to [Bil65, Wal82,
Pet83, HK95].

Given a partition ξ and a point x, ξ(x) denotes the atom of the partition x belongs to.
Let us consider the Shannon information function relative to the partition ξn (the
information which is gained by observing that x ∈ ξn(x)),

Iµ(x|ξn) := − log µ(ξn(x))

and its mean, the entropy of the partition ξn,

Hµ(ξn) :=

∫

Iµ(.|ξn) dµ =
∑

C∈ξn

−µ(C) log µ(C)

The measure-theoretical or Kolmogorov-Sinäı entropy of T relative to the parti-
tion ξ is defined as:

hµ(T, ξ) = lim
n→∞

1

n
Hµ(ξn).

(which exists and is an infimum, since the sequence Hµ(ξn)n is sub-additive). With the
Shannon information function, it is possible to define a kind of point-wise notion of entropy
with respect to a partition ξ:

lim sup
n

1

n
Iµ(x|ξn).

This point-wise entropy is related to the global entropy of the system by the celebrated
Shannon-McMillan-Breiman theorem:

Theorem (Shannon-McMillan-Breiman). Let T be an ergodic measure preserving transfor-
mation of (X, B, µ) and ξ a finite measurable partition. Then for µ-almost every x,

lim
n→∞

1

n
Iµ(x|ξn) = hµ(T, ξ). (5)

The convergence also holds in L1(X, B, µ).
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The partition-dependency is suppress taking the supremum over finite measurable parti-
tions: the Kolmogorov-Sinäı entropy of (X, µ, T ) is

hµ(T ) := sup{hµ(T, ξ) : ξ finite measurable partition}.

We recall the following two results that we will need later. The first proposition follows
directly from the definitions.

Proposition 4.1.1. If (ΣN, µξ, σ) is the symbolic model associated to (X, µ, T ) w.r.t. ξ then
hµ(T, ξ) = hµξ

(σ).

The next proposition is taken from [Pet83]:

Proposition 4.1.2. If (ξi)i∈N is a family of finite measurable partitions which generates the
Borel σ-field up to sets of measure 0, then hµ(T ) = supi hµ(T, ξ0 ∨ ... ∨ ξi).

4.2. Topological entropy

In this section, X is a metric space and T : X → X a continuous map.
Bowen’s definition of topological entropy is reminiscent of the capacity (or box counting

dimension) of a totally bounded subset of a metric space. We first recall this definition, and
then present another characterization given by Pesin, expressing the topological entropy as
a kind of Hausdorff dimension. We will use it in the sequel.

4.2.1. Entropy as a capacity

We recall the definition: for n ≥ 0, let us define the distance dn(x, y) = max{d(T ix, T iy) :
0 ≤ i < n} and the Bowen ball Bn(x, ǫ) = {y : dn(x, y) < ǫ}, which is open by continuity
of T . Given a totally bounded set Y ⊆ X and numbers n ≥ 0, ǫ > 0, let N(Y, n, ǫ) be the
minimal cardinality of a cover of Y by Bowen balls Bn(x, ǫ). A set of points E such that
{Bn(x, ǫ) : x ∈ E} is a cover of Y is also called an (n, ǫ)-spanning set of Y . One then defines:

h1(T, Y, ǫ) = lim sup
n→∞

log N(Y, n, ǫ)

n

which is non-decreasing as ǫ → 0, so the following limit exists:

h1(T, Y ) = lim
ǫ→0

h1(Y, T, ǫ).

When X is compact, the topological entropy of T is h(T ) = h1(T,X). It measures the
exponential growth-rate of the number of distinguishable orbits of the system.

Remark 4.2.1. The topological entropy can be defined using separated sets instead of open
covers: a subset A of X is (n, ǫ)-separated if for any distinct points x, y ∈ A, dn(x, y) > ǫ. Let
us define M(Y, n, ǫ) as the maximal cardinality of an (n, ǫ)-separated subset of Y . It is easy
to see that M(Y, n, 2ǫ) ≤ N(Y, n, ǫ) ≤ M(Y, n, ǫ), and hence h1(T, Y ) can be alternatively
defined using M(Y, n, ǫ) in place of N(Y, n, ǫ).
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4.2.2. Entropy as a dimension

It is possible to define a topological entropy which is an analog of Hausdorff dimension.
This definition coincides with the classical one in the compact case. Hausdorff dimension
has stronger stability properties than box dimension, which has important consequences, as
we will see in what follows. We refer the reader to [Pes98, HK02] for more details.

Let X be a metric space and T : X → X a continuous map. The ǫ-size of E ⊆ X is 2−s

where
s = sup{n ≥ 0 : diam(T iE) ≤ ǫ for 0 ≤ i < n}.

It measures how long the orbits starting from E are ǫ-close. As ǫ decreases, the ǫ-size of E
is non-decreasing. The 2ǫ-size of a Bowen ball Bn(x, ǫ) is at most 2−n.

In a way that is reminiscent from the definition of Hausdorff measure, let us define

ms
δ(Y, ǫ) = inf

G

{

∑

U∈G

(ǫ-size(U))s

}

where the infimum is taken over all countable covers G of Y by open sets of ǫ-size < δ. This
quantity is monotonically increasing as δ tends to 0, so the limit ms(Y, ǫ) := limδ→0+ ms

δ(Y, ǫ)
exists and is a supremum. There is a critical value s0 such that ms(Y, ǫ) = ∞ for s < s0 and
ms(Y, ǫ) = 0 for s > s0. Let us define h2(T, Y, ǫ) as this critical value:

h2(T, Y, ǫ) := inf {s : ms(Y, ǫ) = 0} = sup {s : ms(Y, ǫ) = ∞} .

As less and less covers are allowed when ǫ → 0 (the ǫ-size of sets does not decrease), the
following limit exists

h2(T, Y ) := lim
ǫ→0+

h2(T, Y, ǫ)

and is a supremum. In [Pes98], it is proved that:

Theorem 4.2.1. When Y is a T -invariant compact set, h1(T, Y ) = h2(T, Y ).

In particular, if the space X is compact, then h(T ) = h1(T,X) = h2(T,X).

5. Complexity of the orbits of a dynamical system

5.1. Symbolic orbit complexity

In this section, T is an endomorphism of the computable probability space (X, µ) and
ξ = {C1, . . . , Ck} is a computable partition. Let (ΣN, µξ, σ) be the effective symbolic model
of (X, µ, T, ξ) where Σ = {1, . . . , k} (see Sect. 3.1).

Kolmogorov-Chaitin complexity (see Sect. 2.6) was introduced as a quantity of infor-
mation, on the same level as Shannon information. When the measure, the transformation
and the partition are computable, it makes sense to define the algorithmic equivalents of the
notions defined above. It turns out that the two points of view are strongly related.

An atom C of the partition ξn can then be seen as a word of length n on the alphabet
Σ, which allows one to consider its Kolmogorov-Chaitin complexity K(C). For those points
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whose all iterates are covered by ξ (they form a dense effective Gδ-set of full measure), we
define the Kolmogorov-Chaitin information function relative to the partition ξn:

I(x|ξn) := K(ξn(x))

which is independent of µ. We can then define algorithmic entropy of the partition ξn as
the mean of I:

Hµ(ξn) :=

∫

I(.|ξn) dµ =
∑

C∈ξn

µ(C)K(C).

We also define a point-wise notion of algorithmic entropy, which we call symbolic orbit
complexity:

Definition 5.1.1 (Symbolic orbit complexity). Let T be an endomorphism of the com-
putable probability space (X, µ). For any finite computable partition ξ, we define

Kµ(x, T |ξ) := lim sup
n

1

n
I(x|ξn),

Kµ(x, T ) := sup{Kµ(x, T |ξ) : ξ computable partition}.

The quantity Kµ(x, T |ξ) was introduced by Brudno in [Bru83] without any computability
restriction on the space, the measure nor the transformation. He could not suppress the
dependency on ξ by taking the supremum over all finite partitions, as he remarked that this
supremum is infinite as soon as the orbit of x is not eventually periodic. Here we restrict
the class of admissible partitions to some class of regular but meaningful partitions (see
also [BBG+04] Sect. 4 or [Ken08]). We will see through Thm. 6.1.2 that this restricted
supremum makes sense.

Without the notion of computable partition, Brudno did not go further with this approach
and proposed a topological definition using open covers instead of partitions, that we present
now, in the more general version proposed in [Gal00].

5.2. Shadowing orbit complexity

In this section, (X, d,S) is a computable metric space and T : X → X a transformation
(for the moment, no continuity or computability assumption is put on T ). We will consider
a notion of orbit complexity which quantifies the algorithmic information needed to describe
the orbit of x with finite but arbitrarily accurate precision. This definition was introduced
by one of the authors in [Gal00] who proved that it coincides on compact spaces and for
continuous continuous maps with Brudno’s original definition (using open covers).

Given ǫ > 0 and n ∈ N, the algorithmic information that is needed to list a sequence of
ideal points which follows the orbit of x for n steps at a distance less than ǫ is:

Kn(x, T, ǫ) := min{K(i0, . . . , in−1) : d(sij , T
jx) < ǫ for j = 0, . . . , n − 1}

where K is the Kolmogorov-Chaitin complexity.
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We then define the maximal and minimal growth-rates of this quantity:

K(x, T, ǫ) := lim sup
n→∞

1

n
Kn(x, T, ǫ)

K(x, T, ǫ) := lim inf
n→∞

1

n
Kn(x, T, ǫ).

As ǫ tends to 0, these quantities increase (or at least do not decrease), hence they have
limits (which can be infinite).

Definition 5.2.1. The upper and lower shadowing orbit complexities of x under T
are respectively defined by:

K(x, T ) := lim
ǫ→0+

K(x, T, ǫ)

K(x, T ) := lim
ǫ→0+

K(x, T, ǫ).

Remark 5.2.1. If T is computable, and assuming that ǫ takes only rational values, the n first
iterates of x could be ǫ-shadowed by the orbit of a single ideal point instead of a pseudo-orbit
of n ideal points. Actually it is easy to see that it gives the same quantities K(x, T, ǫ) and
K(x, T, ǫ): let K′

n(x, T, ǫ) = min{K(i) : d(T jsi, T
jx) < ǫ for j < n}, one has:

K′
n(x, T, 2ǫ) <

+

Kn(x, T, ǫ) + K(ǫ)

Kn(x, T, ǫ) <
+

K′
n(x, T, ǫ/2) + K(n, ǫ)

Indeed, from ǫ and i0, . . . , in−1 some ideal point can be algorithmically found in the effective
open set B(si0 , ǫ) ∩ . . . ∩ T−(n−1)B(sin−1

, ǫ), uniformly in i0, . . . , in−1. Its n first iterates 2ǫ-
shadow the orbit of x, which proves the first inequality. For the second inequality, some
i0, . . . , in−1 can be algorithmically found from n, ǫ, and a point si whose n first iterates
ǫ/2-shadow the orbit of x, taking any sij ∈ B(T jsi, ǫ/2).

Remark 5.2.2. Under the same assumptions, one could define K(Bn(si, ǫ)) to be K(i, n, ǫ),
and replace K(i) by K(Bn(si, ǫ)) in the definition of K′

n(x, T, ǫ), without changing the quan-
tities K(x, T, ǫ) and K(x, T, ǫ). Indeed,

K(i) <
+

K(Bn(si, ǫ)) <
+

K(i) + K(n) + K(ǫ)

5.3. Equivalence of the two notions of orbit complexity for random points

We now prove:

Theorem 5.3.1. Let T be an ergodic endomorphism of the computable probability space
(X, µ), where X is compact. Then for every µ-random point x,

K(x, T ) = Kµ(x, T ).
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Proof of K(x, T ) ≤ Kµ(x, T ). Let ǫ > 0. Choose a computable partition ξ of diameter < ǫ
(this is why we require X to be compact). To every cell of ξ, associate an ideal point which
is inside (as ξ is computable, this can be done in a computable way, but we actually do not
need that). The translation of symbolic sequences in sequences of ideal points through this
finite dictionary is effective, and transforms the symbolic orbit of a point x into a sequence
of ideal points which is ǫ-close to the orbit of x. So K(x, T, ǫ) ≤ Kµ(x, T |ξ). The inequality
follows letting ǫ tend to 0.

To prove the other inequality, we recall some technical stuff. The Kolmogorov-Chaitin
complexity of natural numbers k ≥ 1 satisfies

K(k) <
+

f(k)

where f(x) = log x + 1 + 2 log(log x + 1) for all x ∈ R, x ≥ 1. f is a concave increasing
function and x 7→ xf(1/x) is an increasing function on (0, 1/2] which tends to 0 as x → 0.

We recall that for finite sequences of natural numbers (k1, . . . , kn), one has

K(k1, . . . , kn) <
+

K(k1) + . . . + K(kn)

as the shortest descriptions for k1, . . . , kn can be extracted from their concatenation (this
is one reason to use the self-delimiting Kolmogorov-Chaitin complexity instead of the plain
Kolmogorov complexity).

Lemma 5.3.1. Let Σ be a finite alphabet and n ∈ N. Let u, v ∈ Σn and 0 < α < 1/2 such
that the density of the set of positions where u and v differ is less than α, that is:

1

n
|{i ≤ n : ui 6= vi}| < α < 1/2

Then
∣

∣

1
n
K(u) − 1

n
K(v)

∣

∣ < αf(1/α) + αf(|Σ|) + c
n

where c is a constant independent of
u, v and n.

Proof. Let (i1, . . . , ip) be the ordered sequence of indices where u and v differ. By hypothesis,
p/n < α. Put k1 = i1 and kj = ij − ij−1 for 2 ≤ j ≤ p.

We now show that u can be recovered from v and roughly α(f(1/α)+f(|Σ|))n bits more.
Indeed u can be computed from (v, k1, . . . , kp, ui1 , . . . , uip), constructing the string which
coincides with v everywhere but at positions k1, k1 + k2, . . . , k1 + . . .+ kp, where the symbols
ui1 , . . . , uip are used instead. Hence K(u) <

+

K(v) + K(k1) + . . . + K(kp) + K(ui1) + . . . +

K(uip) <
+

K(v) + f(k1) + . . . + f(kp) + pf(|Σ|) as each symbol of Σ can be identified with a
natural number between 1 and |Σ|.

Now, as f is a concave increasing function, one has:

1

p

∑

j≤p

f(kj) ≤ f

(

1

p

∑

j≤p

kj

)

= f

(

ip
p

)

≤ f

(

n

p

)

21



As a result,
1

n
K(u) ≤

1

n
K(v) +

p

n
f

(

n

p

)

+
p

n
f(|Σ|) +

c

n

where c is some constant independent of u, v, n, p. As p/n < α < 1/2 and x 7→ xf(1/x) is
increasing for x ≤ 1/2, one has:

1

n
K(u) ≤

1

n
K(v) + αf(1/α) + αf(|Σ|) +

c

n

Switching u and v gives the result (c might be changed).

We are now able to prove the other inequality.

Proof of Kµ(x, T ) ≤ K(x, T ). Fix some computable partition ξ. We show that for any β > 0
there is some ǫ > 0 such that for every µ-random point x, Kµ(x, T |ξ) ≤ K(x, T, ǫ) + β. As
K(x, T, ǫ) increases as ǫ → 0+ and β is arbitrary, the inequality follows.

First take 0 < α < 1/2 small enough such that αf(1/α) + αf(|ξ|) < β, and remark that

lim
ǫ→0+

µ
(

(∂ξ)ǫ

)

= µ(∂ξ) = 0

Hence there is some ǫ such that µ
(

(∂ξ)2ǫ

)

< α. From a sequence of ideal points we

will reconstruct the symbolic orbit of a random point with a density of errors less than α.
Lemma 5.3.1 will then allow to conclude.

We define an algorithm A(ǫ, i0, . . . , in−1) with ǫ ∈ Q>0 and i0, . . . , in−1 ∈ N which outputs
a word a0 . . . an−1 on the alphabet ξ. To compute aj, A semi-decides in a dovetail picture:

• sij ∈ C for every C ∈ ξ,

• s ∈ C for every s ∈ B(sij , ǫ) and every C ∈ ξ.

The first test which stops provides some C ∈ ξ: put aj = C.
Let x be a random point whose iterates are covered by ξ, and si0 , . . . , sin−1

be ideal points
which ǫ-shadow the first n iterates of x. We claim that A will halt on (ǫ, i0, . . . , in−1). Indeed,
as T jx belongs to some C ∈ ξ, C ∩ B(sij , ǫ) is a non-empty open set and then contains at
least one ideal point s, which will be eventually dealt with.

We now compare the symbolic orbit of x with the symbolic sequence computed by A.
A discrepancy at rank j can appear only if T jx ∈ (∂ξ)2ǫ. Indeed, if T jx /∈ (∂ξ)2ǫ then
B(T jx, 2ǫ) ⊆ C where C is the cell T jx belongs to. As d(sij , T

jx) < ǫ, B(sij , ǫ) ⊆ B(x, 2ǫ) ⊆
C, so the algorithm gives the right cell.

Now, as x is µ-typical by Thm. 3.2.2,

lim sup
n→∞

1

n
|{j < n : T jx ∈ (∂ξ)2ǫ}| ≤ µ

(

(∂ξ)2ǫ

)

< α

so there is some n0 such that for all n ≥ n0,
1
n
|{j < n : T jx ∈ (∂ξ)2ǫ}| < α. This implies

that for all n ≥ n0 and ideal points si0 , . . . , sin−1
which ǫ-shadow the first n iterates of x
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and with minimal complexity, the algorithm A(ǫ, i0, . . . , in−1) produces a symbolic string u
which differs from the symbolic orbit v of x of length n with a density of errors < α. As
K(u) <

+

K(ǫ) + Kn(x, T, ǫ) and αf(1/α) + αf(|ξ|) < β, applying Lem. 5.3.1 gives:

1

n
K(ξn(x)) =

1

n
K(v) ≤

1

n
K(u) + αf(1/α) + αf(|ξ|) +

c

n

≤
1

n
(Kn(x, T, ǫ) + K(ǫ) + c′) + β +

c

n

where c′ is independent of n. Taking the lim sup as n → ∞ gives:

Kµ(x, T |ξ) ≤ K(x, T, ǫ) + β

6. Entropy vs orbit complexity

In [Bru83] Brudno proved:

Theorem 6.0.2 (Brudno’s first theorem). Kµ(x, T |ξ) = hµ(T, ξ) for µ-almost every point.

Theorem 6.0.3 (Brudno’s second theorem). Let X be a compact topological space and
T : X → X a continuous map.

1. For any ergodic Borel probability measure µ the equality

K(x, T ) = hµ(T )

holds for µ-almost all x ∈ X,

2. For all x ∈ X, K(x, T ) ≤ h(T ).

Observe that Brudno did not consider the quantity K(x, T ), which was later introduced
by White [Whi93], who improved Brudno’s second theorem showing that K(x, T ) = hµ(T )
holds for µ-almost all x ∈ X.

First, we show how the algorithmic theory of randomness and information on the space of
symbolic sequences provides powerful results that enable one to obtain Brudno’s first theorem
in an easier way. Then we will strengthen Brudno’s two theorems, proving versions for µ-
random points. Finally, we will study in more details the relation between the topological
quantities K(x, T ), K(x, T ) and h(T ).

6.1. Measure-theoretic entropy

6.1.1. A simple proof of Brudno’s first heorem

Thm. 2.6.3 and Prop. 2.6.2 enable one to give tight relations between the algorithmic
entropies Iµ and Hµ and the Shannon entropies Iµ and Hµ. First let us gather these two
inequalities: if ΣN is endowed with a computable probability measure ν, then for all ω ∈ ΣN,

− log ν[ω0..n−1] − dν(ω) ≤ K(ω0..n−1) <
+

− log ν[ω0..n−1] + K(n) (6)
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where dν is the deficiency of randomness, which satisfies
∫

ΣNdν dν < 1 and is finite exactly

on ν-random sequences (the constant in <
+

does not depend on ω and n, see Sect. 2.6.1).
Now we show how to obtain Brudno’s theorem from (6). Applying it to ν = µξ directly

gives:

Iµ(.|ξn) − dµ ◦ φξ ≤ I(.|ξn) <
+

Iµ(.|ξn) + K(n) (7)

where it is defined (almost everywhere, at least on random points). Every µ-random
point x is mapped by φξ to a µξ-random sequence (see Prop. 2.5.1), whose randomness
deficiency is finite. It then follows that the point-wise entropies using Shannon information
Iµ and Kolmogorov-Chaitin information Iµ coincide on µ-random points:

Proposition 6.1.1. For every µ-random point x,

Kµ(x, T |ξ) := lim sup
n

1

n
Iµ(x|ξn) = lim sup

n

1

n
Iµ(x|ξn). (8)

This equality together with the Shannon-McMillan-Breiman theorem (5) gives directly
Brudno’s theorem (Thm. 6.0.2). Hence, as the collection of computable partitions is gener-
ating (see Cor. 3.1.1 and Prop. 4.1.2) and countable, taking the supremum over computable
partitions gives Kµ(x, T ) = hµ(T ) for µ-almost every x. We will strengthen this in the next
section, proving that it holds for all µ-random points.

Remark 6.1.1. The Kolmogorov-Sinäı entropy, originally expressed using Shannon entropy,
can be expressed using algorithmic entropy. Indeed, taking the mean in (7), one obtains:

Hµ(ξn) − 1 ≤ Hµ(ξn) <
+

Hµ(ξn) + K(n),

so

hµ(T, ξ) = lim
n

Hµ(ξn)

n
= lim

n

Hµ(ξn)

n
.

Again, as the collection of computable partitions is generating the Kolmogorov-Sinäı
entropy of (X, µ, T ) can be characterized by:

hµ(T ) = sup

{

lim
n

Hµ(ξn)

n
: ξ finite computable partition

}

.

6.1.2. Brudno’s theorems for random points

On the Cantor space, V’yugin [V’y98] and later Nakamura [Nak05] proved a slightly
weaker version of the Shannon-McMillan-Breiman for Martin-Löf random sequences. In
particular, we will use:

Theorem 6.1.1 (V’yugin). Let µ be a computable shift-invariant ergodic measure on ΣN.
Then, for any µ-random sequence ω,

lim sup
n→∞

−
1

n
log µ([ω0..n−1]) = hµ(σ).

24



Note that it is not known yet if the limit exists for all random sequences. Using effective
symbolic models, this can be easily extended to any computable probability space.

Corollary 6.1.1 (Shannon-McMillan-Breiman for random points). Let T be an ergodic en-
domorphism of the computable probability space (X, µ), and ξ a computable partition. For
every µ-random point x,

lim sup
n→∞

−
1

n
log µ(ξn(x)) = hµ(T, ξ).

Proof. Since ξ is computable, the symbolic model ({1, . . . , k}N, µξ, σ) is effective. Every µ-
random point x is mapped to a µξ-random sequence ω, for which the preceding theorem holds.
Using the facts that µ(ξn(x)) = µξ([ω0..n−1]) and hµ(T, ξ) = hµξ

(σ) allows to conclude.

Finally, this implies our first announced result:

Theorem 6.1.2. Let T be an ergodic endomorphism of the computable probability space
(X, µ), and ξ be a computable partition. For every µ-random point x:

Kµ(x, T |ξ) = hµ(T, ξ),

Kµ(x, T ) = hµ(T ).

Proof. We combine equality (8) and Cor. 6.1.1: for every random point x, Kµ(x, T |ξ) =
lim supn

1
n
Iµ(x|ξn) = hµ(T, ξ). Since the collection of all computable partitions generates

the Borel σ-field (Cor. 3.1.1), Kµ(x, T ) = sup{hµ(T, ξ) : ξ computable partition} = hµ(T )
(Prop. 4.1.2).

Combining Thms. 5.3.1 and 6.1.2, we obtain a version of Brudno’s second theorem (Thm.
6.0.3) for Martin-Löf random points.

Corollary 6.1.2. Let T be an ergodic endomorphism of the computable probability space
(X, µ), where X is compact. Then for every µ-random point x:

K(x, T ) = hµ(T )

6.2. Topological entropy

Now we prove:

Theorem 6.2.1 (Topological entropy vs orbit complexity). Let X be a compact computable
metric space, and T : X → X a computable map. Then

h(T ) = sup
x∈X

K(x, T ) = sup
x∈X

K(x, T ).

In order to prove this theorem, we define an effective version of the topological entropy,
which is strongly related to the complexity of orbits. To do this, let us give first a simple
characterization of topological entropy which will accommodate to effectivisation.
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Definition 6.2.1. A null s-cover of Y ⊆ X is a set E ⊆ N3 such that:

1.
∑

(i,n,p)∈E 2−sn < ∞,

2. for each k, p ∈ N, the set {Bn(si, 2
−p) : (i, n, p) ∈ E, n ≥ k} is a cover of Y .

The idea is simple: every null s-cover induces open covers of arbitrary small size and
arbitrary small weight. Remark that any null s-cover of Y is also a null s′-cover for all
s′ > s.

Lemma 6.2.1. h2(T, Y ) = inf{s : Y has a null s-cover}.

Proof. Suppose s > h2(T, Y ). We fix p, k ∈ N and put ǫ = 2−p and δ = 2−k. As ms
δ(Y, ǫ) = 0,

there is a cover (Uj,k,p)j of Y by open sets of ǫ-size δj,k,p < δ with
∑

j δs
j,k,p < 2−(k+p). Let

si be any ideal point in Uj,k,p. If δj,k,p > 0, then δj,k,p = 2−n for some n > k. If δj,k,p = 0,
take any n ≥ max{k, (j + k + p)/s}. In both cases, Uj,k,p is included in the Bowen ball
Bn(si, ǫ). We define Ek,p as the set of (i, n, p) obtained this way, and E =

⋃

k,p Ek,p. By
construction, for each k, p, {Bn(si, 2

−p) : (i, n, p) ∈ E, n ≥ k} is a cover of Y as it contains
{Bn(si, 2

−p) : (i, n, p) ∈ Ek,p}. Moreover,
∑

(i,n,p)∈Ek,p
2−sn ≤

∑

j δs
j,k,p +

∑

j 2−(j+k+p) ≤

2−(k+p)+2, so
∑

(i,n,p)∈E 2−sn < ∞.

Conversely, if Y has a null s-cover E, take ǫ, δ > 0 and p, k such that ǫ > 2−p+1 and
δ > 2−k. For all k′ ≥ k, the family {Bn(si, 2

−p) : (i, n, p) ∈ E, n ≥ k′} is a cover of Y by
open sets of ǫ-size at most 2−n ≤ δ. Moreover,

∑

(i,n,p)∈E,n≥k′ 2−sn tends to 0 as k′ grows, so

ms
δ(Y, ǫ) = 0. It follows that s ≥ h2(T, Y ).

By an effective null s-cover, we mean a null s-cover E which is a r.e. subset of N3.

Definition 6.2.2. The effective topological entropy of T on Y is defined by

heff
2 (T, Y ) = inf{s : Y has an effective null s-cover}

As less null s-covers are allowed in the effective version, h2(T, Y ) ≤ heff
2 (T, Y ). Of course,

if Y ⊆ Y ′ then heff
2 (T, Y ) ≤ heff

2 (T, Y ′). We now prove:

Theorem 6.2.2 (Effective topological entropy vs lower orbit complexity). Let X be a com-
putable metric space and T : X → X a continuous map. For all Y ⊆ X,

heff
2 (T, Y ) = sup

x∈Y

K(x, T )

which implies in particular that heff
2 (T, {x}) = K(x, T ): the restriction of the system to

a single orbit may have positive effective topological entropy.
This kind of result has already been obtained for the Hausdorff dimension of subsets of

the Cantor space, proving that the effective dimension of a set A is the supremum of the
lower growth-rate of Kolmogorov-Chaitin complexity of sequences in A (which corresponds
to Thm. 6.2.2 for sub-shifts). This remarkable property is a counterpart of the countable
stability property of Hausdorff dimension (dimY = supi dim Yi when

⋃

i Yi = Y ) (see [CH94,
May01, Lut03, Rei04, Sta05]).

Theorem 6.2.2 is a direct consequence of the two following lemmas.
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Lemma 6.2.2. Let α ≥ 0 and Yα = {x : K(x, T ) ≤ α}. One has heff
2 (T, Yα) ≤ α.

Proof. Let β > α be a rational number. We define the r.e. set E = {(i, n, p) : K(i, n, p) <
βn}. Let p ∈ N and ǫ = 2−p. If x ∈ Yα then K(x, T, ǫ) ≤ α < β so for infinitely many
n, there is some si such that x ∈ Bn(si, ǫ) and K(i, n, p) < βn. So for all k, {Bn(si, 2

−p) :
(i, n, p) ∈ E, n ≥ k} covers Yα. Moreover,

∑

(i,n,p)∈E 2−βn ≤
∑

(i,n,p)∈E 2−K(i,n,p) ≤ 1.

E is then an effective null β-cover of Yα, so heff
2 (T, Yα) ≤ β. And this is true for every

rational β > α.

Lemma 6.2.3. Let Y ⊆ X. For all x ∈ Y , K(x, T ) ≤ heff
2 (T, Y ).

Proof. Let s > heff
2 (T, Y ): Y has an effective null s-cover E. As

∑

(i,n,p)∈E 2−sn < ∞, by the

coding theorem K(i, n, p) ≤ sn + c for some constant c, which does not depend on i, n, p. If
x ∈ Y , then for each p, k, x is in a ball Bn(si, 2

−p) for some n ≥ k with (i, n, p) ∈ E. Then
Kn(x, T, 2−p) ≤ sn + c for infinitely many n, so K(x, T, 2−p) ≤ s. As this is true for all p,
K(x, T ) ≤ s. As this is true for all s > heff

2 (T, Y ), we can conclude.

Proof of Thm. 6.2.2. By Lem. 6.2.3, α := supx∈Y K(x, T ) ≤ heff
2 (T, Y ). Now, as Y ⊆ Yα,

heff
2 (T, Y ) ≤ heff

2 (T, Yα) ≤ α by Lem. 6.2.2.

The definition of an effective null α-cover involves a summable computable sequence.
The universality of the sequence 2−K(i) among summable lower semi-computable sequences
is at the core of the proof of the preceding theorem, which states that there is a universal
effective null α-cover, for every α ≥ 0. In other words, there is a maximal set of effective
topological entropy ≤ α, and this set is Yα = {x ∈ X : K(x, T ) ≤ α}.

The definition of the topological entropy as a capacity could be also made effective,
restricting to effective covers. Classical capacity does not share with Hausdorff dimension
the countable stability. For the same reason, its effective version is not related with the
orbit complexity as strongly as the effective topological entropy is. Nevertheless, a weaker
relation holds, which is sufficient for our purpose: the upper complexity of orbits is bounded
by the effective capacity. We do not develop this and only state the needed property (which
implicitly uses the fact that the effective capacity coincides with the classical capacity for a
compact computable metric space):

Lemma 6.2.4. Let X be a compact computable metric space, and T : X → X a computable
map. For all x ∈ X, K(x, T ) ≤ h1(T,X).

Proof. We first construct a r.e. set E ⊆ N3 such that for each n, p, {si : (i, n, p) ∈ E} is
a (n, 2−p)-spanning set and a (n, 2−p−2)-separated set. Let us fix n and p and enumerate
En,p = {i : (i, n, p) ∈ E}, in a uniform way. The algorithm starts with S = ∅ and i = 0. At
step i it analyzes si and decides to add it to S or not, and goes to step i + 1. En,p is the set
of points which are eventually added to S.

Step i for each ideal point s ∈ S, test in parallel dn(si, s) < 2−p−1 and dn(si, s) > 2−p−2:
at least one of them must stop. If the first one stops first, reject si and go to Step
i + 1. If the second one stops first, go on with the other points s ∈ S: if all S has been
considered, then add si to S and go to Step i + 1.
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By construction, the set of selected ideal points forms a (n, 2−p−2)-separated set. If there
is x ∈ X which is at distance at least 2−p from every selected point, then let si be an ideal
point si with dn(x, si) < 2−p−1: si is at distance at least 2−p−1 from every selected point, so
at step i it must have been selected, as the first test could not stop. This is a contradiction:
the selected points form a (n, 2−p)-spanning set.

From the properties of En,p it follows that N(X, n, 2−p) ≤ |En,p| ≤ M(X, n, 2−p−2), and
then

sup
p

(

lim sup
1

n
log |En,p|

)

= h1(T,X)

If β > h1(T,X) is a rational number, then for each p, there is k ∈ N such that log |En,p| < βn
for all n ≥ k.

Now, for si ∈ En,p, K(i) <
+

log |En,p| + 2 log log |En,p| + K(n, p) by Prop. 2.6.1. Take
x ∈ X: x is in some Bn(si, 2

−p) for each n, so K(x, T, 2−p) ≤ lim supn
1
n

log |En,p| ≤ β as

log |En,p| < βn for all n ≥ k. As this is true for all p and all β > h1(T,X), K(x, T ) ≤ h1(T,X)
and this for all x ∈ X.

We are now able to prove Thm. 6.2.1. Combining the several results established above:

h1(T,X) = h2(T,X) ≤ heff
2 (T,X) = supx∈X K(x, T ) ≤ supx∈X K(x, T ) ≤ h1(T,X)

(Thm. 4.2.1) (Thm. 6.2.2) (Lem. 6.2.4)

and the statement is proved.
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to martin-löf randomness. In Proceedings of ICALP, 2009.
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