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SHOOT2.0: An indirect grid shooting package

for optimal control problems, with switching

handling and embedded continuation

Résumé : The shoot2.0 package implements an indirect shooting method for
optimal control problems. It is speci�cally designed to handle control discon-
tinuities, with an automatic switching detection that requires no assumptions
concerning the number of switchings. Special care is also devoted to the com-
putation of the Jacobian matrix of the shooting function, using the variational
system instead of classical �nite di�erences. The package also features an em-
bedded continuation method and an automatic (parallel) grid shooting in order
to reduce the dependency to the initialization.

Mots-clés : optimal control, shooting method, Pontryagin's Principle, control
switchings
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Introduction

The shoot2.0 package implements an indirect shooting method for optimal
control problems. It is speci�cally designed to handle control discontinuities,
with an automatic switching detection that requires no assumptions concerning
the number of switchings. Special care is also devoted to the computation of the
Jacobian matrix of the shooting function, using the variational system instead
of classical �nite di�erences. The package also features an embedded continu-
ation method and an automatic (parallel) grid shooting in order to reduce the
dependency to the initialization.

1 Algorithmic aspects

1.1 Indirect shooting

Direct methods in optimal control �rst discretize the problem then solve the
resulting nonlinear problem. Indirect methods, on the other hand, rely on the
necessary conditions given by Pontryagin's Minimum Principle. These condi-
tions give rise to a boundary value problem that can be solved for instance by
shooting methods.

Optimal control problem

As a general framework, we consider an optimal control problem in the Mayer
form, in the autonomous case (meaning the dynamics f does not depend explic-
itly on the time t):

(P )


Min g(t0, x(t0), tf , x(tf )) Objective
ẋ = f(x, u) Dynamics
u ∈ U Admissible Controls
x(t0) = x0 Initial Conditions
c1(x(tf )) = 0 Terminal Conditions

with x(t) ∈ Rn and u(t) ∈ Rm.

Remark: a problem with an integral cost
∫ tf
t0
l(x, u) dt can be expressed in

the Mayer form by adding a state variable following the dynamics l.

Optimality necessary conditions: Pontryagin's Principle

We assume in the following that the optimal control is piecewise C1, and that
we are in the so-called normal case, meaning that the multiplier p0 associated
to the objective is nonzero, and can be therefore set to 1. Let us de�ne the
costate p in the same space as x, and the Hamiltonian

H(x, p, u) = (p|f(x, u)).

Pontryagin's Minimum Principle ([12]): under the assumptions
(i) ∃ (x, u) feasible for (P ), with x absolutely continuous and u measurable.
(ii) f is continuous with respect to u and C1 with respect to x.

RR n° 7380
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(iii) g, c1 are C1 with respect to x.

Let (x∗, u∗) be an optimal pair for (P ), then
(i) ∃ p∗ absolutely continuous such that x∗, p∗ satisfy

ẋ∗ = ∂H
∂p (x, p, u) , ṗ∗ = −∂H∂x (x, p, u)

(ii) u∗ minimizes the Hamiltonian ae in [t0, tf ].
(iii) ∃ µ1 such that the transversality condition hold:

p∗(tf ) = ∂g
∂xf

(t0, x(t0), tf , x(tf )) + (µ1| ∂c1∂xf
(x(tf ))) (TC).

Free �nal time. If the �nal time tf is free, the additional condition

H(x∗(tf ), p∗(tf ), u∗(tf )) +
∂g

∂tf
(t0, x(t0), tf , x(tf ) = 0

must hold. For minimum time problems, this gives the condition H(tf ) = −1.

Boundary Value problem and shooting method

In the following we note y = (x, p) and assume that the Hamiltonian minimiza-
tion gives the optimal control as a function of y

u∗(t) = ArgMinw∈U H(x(t), p(t), w) = γ(y(t)).

Then the state-costate dynamics derived from the Hamiltonian system can also
be written as a function of y

ϕ(y) =
(
∂H

∂p
(x, p, γ(y)),−∂H

∂x
(x, p, γ(y))

)
.

We de�ne the shooting unknown z = p(t0), such that we have y(t0) = (x0, z).
If the �nal time is free, the shooting unknown is de�ned as z = (p(t0), tf ). More
generally, the software can solve problems for which the boundary conditions at
t0 for (BV P ) can be written under the form y(t0) = y0(z) ∈ Rn.
At the �nal time tf , in most cases the multiplier µ1 can be eliminated in
(TC), leading to a set of equations on y(tf ) = (x(tf ), p(tf )). These equa-
tions, in addition to the �nal conditions c1(x(tf )) = 0, constitute the bound-
ary conditions at tf , that we note B1(y(tf )). If the �nal time is free, tf is
an additional shooting unknown and is part of z. The corresponding equa-
tion H(x∗(tf ), p∗(tf ), u∗(tf )) + ∂g

∂tf (t0, x(t0), tf , x(tf )) = 0 is then added to the
boundary conditions B1.

In the general case, we obtain a Boundary Value Problem on y = (x, p)

(BV P )

 ẏ = ϕ(y) ae in [t0, tf ]
y(t0) = y0(z) Boundary Conditions at t0
B1(y(tf )) = 0 Boundary Conditions at tf

For a given value of the shooting unknown z, we note y(·, z) the solution of the
Initial Value Problem

(IV P )
{
ẏ = ϕ(y)
y(t0) = y0(z)

RR n° 7380
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and then de�ne the shooting function S that maps z to the value of the
boundary condition at the �nal time

S : Rp → Rp

z 7→ B1(y(tf , z))

with p = n if the �nal time is �xed and p = n+ 1 for a free �nal time. Finding
a zero of S gives a trajectory that satis�es the optimality conditions from Pon-
tryagin's Principle. The indirect shooting method thus consists in solving the
equation S(z) = 0, as summarized below:

(P ) Pontryagin's Principle
−−−−−−−−−−−−−−−−−−−→

(BV P ) Shooting method
−−−−−−−−−−−−−−→

S(z) = 0 .

This package uses the HYBRD/HYBRJ routines form Garbow, Hillstrom and
More ([4]) to solve the nonlinear equation S(z) = 0. Two ODE solvers are
available for the evaluation of the shooting function, the classical �xed step 4th
order Runge Kutta method and the variable step DOPRI5 from Hairer and Wan-
ner ([9]). This package is designed to handle two speci�c di�culties: control
discontinuities (see 1.2 Switching detection) and initialization (see 1.4 Discrete
continuation and 1.5 Grid shooting).

First, the evaluation of S and its Jacobian matrix can be tricky when con-
trol discontinuities (or �switchings�) are present. The key is here to detect the
switchings during the solving of (IV P ), and use the so-called variational equa-
tion instead of �nite di�erences to compute the Jacobian.

Then, the matter of �nding a suitable initial point is addressed by the means
of continuation techniques, coupled to an exploration of a grid of initial points.
The latter part is obviously better suited to lower dimension problems, which
are the usual situation when using indirect methods as opposed to discretization
approaches. This is an alternative to multiple shooting, the latter aiming to
increase the convergence radius of the shooting method at the expense of an
increased problem dimension.

1.2 Switching detection

We consider now the case of a discontinuous optimal control with switchings.
A common situation is when the Hamiltonian is linear in the control and the
control is bounded. We assume in the following that the optimal control can
take two distinct expressions, depending on the sign of a certain switching
function ψ. Namely, the Hamiltonian minimization gives

u = γ1(y) if ψ(y) < 0, u = γ2(y) if ψ(y) > 0

For instance, for a scalar bounded control, u∗ is either at the lower or upper
bound depending on the sign of ψ = ∂H

∂u . This can be generalized for a compo-
nent of a control u ∈ Rm, or for a number k > 2 of expressions γi. The zeros of
ψ correspond to the switchings of the optimal control, and we assume a �nite
number of such switchings. We then obtain y(·, z) as solution of the initial value

RR n° 7380
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problem with a discontinuous right hand side

(IV P )disc

 ẏ = ϕ1(y) if ψ(y) < 0
ẏ = ϕ2(y) if ψ(y) > 0
y(t0) = y0(z)

Trying to solve this kind of problem with a �xed step integrator (e.g. Runge
Kutta 4th order) is in practice nearly impossible except for very simple cases,
due to the errors at each switching. On the other hand, a variable step inte-
grator (such as RKF45 or DOPRI5) can usually handle the switchings by itself.
However, this costs many very small steps at the switchings, leading to an in-
creased cpu time, and the remaining small errors at each switching can pile up.
As a result, the shooting method is likely to be slower, and also su�ers from a
loss of precision.

An e�ective way to solve this problem is to detect the switchings during
the integration of (IV P )disc, as described for instance in [9, 10]. We use here
the detection method based on the dense output of the ODE solver, ie a cheap
(polynomial) approximation of y on each time interval, noted ydense output. This
algorithm can be applied to any �xed or variable step integration method with
a dense output, and is recalled below.

Main integration loop
compute y(t+ h)
compute switching function ψ(y(t+ h))
compare the signs of ψ(y(t+ h)) and ψ(y(t))
If sign change Then

locate switching τ ∈ [t, t+ h] by solving ψ(ydense ouptut(τ)) = 0
switch control
pursue integration on [τ, t+ h] from ydense ouptut(τ)

End

A simple way to solve ψ(ydense ouptut(τ)) = 0 in order to locate the switch-
ing time τ is to use a bisection. This bisection stops either at a �xed number
of iterations or as soon as the interval length is below a �xed tolerance.

Switching correction. A small �aw of the above algorithm is that the
switching point y(τ) from which we resume the IVP integration is inexact, as
given by the dense output. The dense output is typically one order less accurate
than the actual ODE method, and these small errors can add up in case of a
large number of switchings. We can correct the switching point by solving the
equation ψ(yODE(τ̄)) = 0, where yODE(τ̄) is given by an actual step of integra-
tion from t to τ̄ , instead of the dense output. This equation can be solved by
a newton method, using the previously located τ as initial point. In this case,
the stopping criterion of the bisection for the detection can be less strict, as this
point serves only as an initialization.

Remark: It is also possible to perform the whole switching detection while
using actual integration instead of the dense output. However, it is faster to use
the dense output for an approximate detection and then making the correction.

RR n° 7380
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This minor modi�cation can improve the convergence of the shooting method,
as well as the conservation of numerical invariants of the ODE system (such as
the Hamiltonian). Graphs below illustrate the di�erence between basic switch-
ing detection and switching correction.

1.3 Jacobian evaluation and Variational system

The most straightforward method to compute the Jacobian of the shooting func-
tion is to use �nite di�erences. This is done in the HYBRD solver with a step of
hj =

√
ε|xj |, where ε is the error on the shooting function evaluation. However,

when using a variable step ODE solver, the time steps can di�er at the points
for the �nite di�erences. This can impair the approximation of the Jacobian by
�nite di�erences (see [2, 9]).

Another option to compute the Jacobian is to use the method described in
[9], which is equivalent to the �internal di�erentiation�1 from [2].

1.3.1 Smooth (C1) case

In the smooth case, we consider the solution y(·, z) of the ODE system

(IV P )
{
ẏ(t) = ϕ(y(t))
y(t0) = y0

Then the derivatives Y = ∂y
∂y0

(y0) are solution of the variational system

(V AR)
{
Ẏ (t) = ∂ϕ

∂y (y(t)) Y (t)
Y (t0) = I

Here the initial condition is actually of the form y(t0) = y0(z), and we are
interested in the derivatives of y(·, z) with respect to z. Assuming that we have

1while �external di�erentiation� refers to the usual �nite di�erences

RR n° 7380
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y(t0) = [x0; z] for the sake of simplicity2, the variational equation for ∂y
∂zj

(t, z)
is

(V AR)j

{
Ẏj(t) = ∂ϕ

∂y (y(t))Yj(t)

Yj(t0) =
(
0 · · · 1 · · · 0

)T
where the right hand side can be approximated by �nite di�erences if not avail-
able analytically

Ẏ (:, j) ≈ 1
h

(ϕ(y + hY (:, j))− ϕ(y)).

Solving the variational system (V AR) along with (IV P ) provides both y(tf , z)
and ∂y

∂z (tf , z). The Jacobian of the shooting function can be computed from the
latter, as S(z) = B1(y(tf , z)):

JacS(z) =
∂B1

∂y
(y(tf ))

∂y

∂z
(tf , z).

With a �xed step integration, using �nite di�erences for the right hand side of
(V AR) has the same overall complexity as using �nite di�erences to compute
the Jacobian of the shooting function, namely (n + 1) × Nsteps evaluations of
ϕ. This still holds with a variable step method if we assume that solving both
(IV P ) and (V AR) for the Jacobian takes roughly the same number of steps as
solving only (IV P ) for the shooting function. This can be enforced in the ODE
solver, and is recommended in the discontinuous case.

1.3.2 Discontinuous case

In presence of discontinuities, jumps occur in the variational equation, that must
be computed at each control switching. Note that this implies the detection of
said control switchings, for instance by the method described in 1.2. Assuming
that a switching from ϕ1 to ϕ2 occurs at τ ∈]t0, tf [, we have to perform the
update (see [7])

Y ← Y + (ϕ1(yτ )− ϕ2(yτ+))τ ′(y0).

The switching time is determined by the equation ψ(y(τ, y0)) = 0, thus by the
implicit function theorem, assuming that ∂ψ

∂y (yτ ) 6= 0:

τ ′(y0) = −
∂ψ
∂y (yτ )Y (τ, y0)
∂ψ
∂y (yτ )ϕ1(yτ )

.

These updates are done automatically with the switching detection routine.

NB. It should be noted that using the variational system without the switch-
ing detection leads to a wrong Jacobian matrix, as the jumps described above are
not computed. Therefore, it is not recommended to use the variational system
when the switching detection is not available.

Time steps. Computing the shooting function and its Jacobian matrix
should use the same sequence of time steps, at least to ensure that the same
switchings are detected. The shooting function only requires the solving of

2ie z is actually the initial costate p(0)
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(IV P ), while its Jacobian matrix needs to solve both (IV P ) and (V AR). This
usually leads to di�erent time steps when using a variabel step ODE solver. To
prevent this, we ignore the variables of (V AR) in the formulas for the initial
stepsize and the stepsize control. This has been added in the DOPRI5 code as
option ITOL=2.

1.4 Discrete continuation method

Continuation techniques are commonly used to �nd a suitable initialization for
the shooting method, starting with an easier problem and progressively going
back to the original problem. Let us de�ne the continuation parameter λ ∈
[λ0, λf ] and a family of problems (Pλ) such that (Pλf

) = (P ) and we know a
solution of (Pλ0). We de�ne the homotopy

H : Rn × [λ0, λf ]→ Rn

(λ, z) 7→ Sλ(z)

where Sλ is the shooting function associated to the problem (Pλ). The aim of
the continuation is to follow the zero path of H from λ = λ0 to λ = λf . Note
that the existence of such a path is not guaranteed in general, and of course
depends on the family (Pλ). For practical purposes, suitable continuations often
involve some physical parameters and / or regularization of the original prob-
lem. There are several classes of methods to perform this path following, for
instance di�erential continuation or simplicial homotopy (see [1, 5, 6, 8, 11],
and the hampath3 package). We use here a discrete continuation with a linear
prediction, which does not require smoothness of the zero path and can be seen
a very simple predictor-corrector method.
λ = λ0; step = maxstep
While (λ < λf − ε) and (step > minstep) and (iter < maxiter)

iter = iter + 1; λ = λ + step
compute initialization for shooting at level λ (prediction)
perform shooting attempt at level λ (correction)
If shooting successful

update path with new solution
Else

back to previous solution; reduce stepsize (step = step / 2)
End if

End while

We note (zn, λn) the sequence of zeros of the homotopy computed by the
algorithm. The simplest way to compute the initialization zinitλn+1

for the next
shooting attempt is simply to take the solution of the latest successful shooting,
ie

zinitλn+1
= zn.

A little better is a linear prediction based on the two previous solutions

zinitλn+1
= zn +

λ− λn
λn − λn−1

(zn − zn−1).

3http://apo.enseeiht.fr/hampath/
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Numerical experiments indicate that this approach is generally superior to the
basic initialization by the previous solution. Higher order (quadratic or cubic)
predictions do not seem to improve the path following.

The maximal step for the continuation parameter λ is typically equal to
λf − λ0, so that the path following may be completed in only 1 iteration if the
�rst shooting attempt succeeds. The default value for the normalized maximal
step (set in the .init �le see 2.3) is therefore 1. One may want to decrease this
value if the path following seems to become unstable, for instance with points
branching out from the initial path. This can also be used to force the com-
putation of solutions at certain prescribed values of the continuation parameter.

The minimal step is used to stop the continuation if the stepsize becomes too
small, without having to wait until the maximal number of iterations is reached.
As the step for λ can only decrease, it is indeed unlikely that the continuation
can succeed when this step becomes very small. Attempts to increase again
the step after a certain number of successful shootings seem to make the path
following more unstable, and yield no overall bene�t.

The path following may fail to reach the prescribed value for the continu-
ation parameter in two distinct cases. First, the path stops at a certain limit
value for the continuation parameter, and further progress is impossible. This
case is usually detected by reaching the minimal stepsize for λ, and the path
following should stop at the limit value. Second, the path may go away �to
in�nity�, meaning that one or more components of the solution tend to in�nity.
This case is usually detected by reaching the maximum number of iterations,
and can be checked by plotting the continuation path saved in the .contpath �le.

Here is a schematic example of a path following for λ ∈ [0, 1].

Iter Step Theta Shooting

1 1 1 Fail

2 0.5 0.5 Success

3 0.5 1 Fail

4 0.25 0.75 Fail

5 0.125 0.625 Success

6 0.125 0.75 Success

7 0.125 0.875 Success

8 0.125 1 Success

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Z

θ

DISCRETE CONTINUATION WITH LINEAR PREDICTION

 

 

PATH FOLLOWED
SUCCESSFUL INITS
FAILED INITS

Alternately, the continuation can be used to explore a range of values for a
certain parameters, by setting the lower, upper bounds and maximal stepsize
for the continuation parameter accordingly.
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1.5 Grid shooting

Another way to �nd a correct initialization is basically to try several ones, which
can be automated in order to explore a grid of initial points. This procedure
can be a simple way to obtain convergence, and may also detect local solutions,
provided the computational cost remains reasonable.

Two aspects make this idea interesting in our context of solving optimal
control problems with an indirect shooting method. First, the dimension of the
problem is usually small, typically around 10, as it is more or less the dimension
of the state variables.

Then, the shooting method tends to be fast when it converges, but also
when it diverges. For instance, the newton method usually fails after only one
iteration for a starting point outside the domain of de�nition of the shooting
function, which can be quite small in practice (although not precisely known).
Therefore, the overall cost of making many failed attempts may be quite ac-
ceptable, allowing for several thousands of shooting attempts in less than one
hour on a standard computer.

This procedure can be combined with the continuation approach described
earlier. In this case, for each point of the grid we perform a full path following
instead of a simple shooting attempt. At the end of the grid all the obtained
solutions are sorted by value of the objective, with a count of the successful
shootings for each solution. Besides increasing the chance of �nding a suitable
initial point for the shooting method, grid shooting also allows for exploring the
solution space, and can detect multiples or local solutions. This can be use-
ful for real-life applications, for which a local solution may happen to be more
suitable for practical use. Grid shooting is also interesting for benchmarking
purposes: due to the high sensitiveness of the shooting method to the initial
point, collecting convergence results over a large number of initializations is
more reliable than using a single test. For instance, the simulations in [3] study
the relevance of using the Hamilton-Jacobi-Bellman approach to initialize the
shooting method.

We consider the initialization grid de�ned by the lower bounds zL ∈ Rn,
upper bounds zU ∈ Rn and range vector r ∈ Nn. The grid shooting algorithm
will perform an automated sequence of shootings for all initial points

z0 = zL + Σni=1ki
zUi − zLi

ri
, ∀ki ∈ [0, ri].

Each initial point is de�ned by the vector of indices k = (ki)i=1,n, and the total
number of grid points is N = Πn

i=1(ri + 1). In practice, we use a single loop
instead of embedded DO loops for each dimension. This loop increments the
vector of indexes k from k = (0, . . . , 0) to k = r.
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k=(0,...,0)
While k 6= r Do

Compute grid point z0 = zL + Σni=1ki
zU

i −z
L
i

ri

Perform shooting (or full path following for continuation) with z0
Increment indexes vector k for next grid point

carry = true; i = 1
While (carry & i ≤ n) Do

If ki < ri Then
ki = ki + 1; carry = false

Else
ki = 0; carry = true; i=i+1

End if
End do

End do

It is worth noting that there is no need to generate and store the full grid, as
each point can be computed directly from the vector of indexes k = (ki)i=1,n.
Moreover, this grid shooting can be completely parallelized, as each attempt is
independent from the others and the order does not matter. A parallel version
using OPENMP is available and can bene�t from multi-core CPUs. Numerical
experiments indicate that the total computation time is divided by the number
of cores, as expected.

2 Software overview

This section presents an overview of the main subroutines of the shoot2.0
package, as well as a description of the user-supplied subroutines required to
solve a problem, and the list of the input and output �les. The code is written
in Fortran90/95, and has been tested with the compilers ifort4, gfortran5 and
g956.

4http://software.intel.com/en-us/intel-compilers/
5http://gcc.gnu.org/fortran/
6http://www.g95.org/
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2.1 Main subroutines

� ShootMain: main program.
� ShootGrid: performs shooting over an initialization grid.
� ShootCont: shooting method with discrete continuation.
� Shoot: indirect shooting method.
� ShootFun: computes the shooting function S.
� ShootJacFun: computes the Jacobian matrix of S.
� IVP: solves the Initial Value Problem required for S or JacS .
� ODE: solves the ODE system for the Initial Value Problem.
� RHS: computes right hand side for the ODE system.
� EventDetection: detects switchings during ODE integration.
� Problem Specific Routines: user supplied subroutines, see 2.4.

2.2 Times structure

The shoot2.0 package can handle problems with elaborate times structures,
comprising �xed or free �nal time as well as multi-phase dynamics. Control
switchings are handled speci�cally by the switching detection method, and
therefore do not appear explicitly in the times structure.

2.2.1 Final time

The �nal time can be either �xed of free, in which case it is part of the shooting
unknown, as the last component of z. A free tf implies the additional optimality
condition H(x(tf ), p(tf ), u(tf )) + ∂g

∂tf (t0, x(t0), tf , x(tf )) = 0, which is added as
the last component of the shooting function S(z). The type of �nal time is set
in the input �le (see 2.3): 1 stands for a �xed �nal time, and -1 for a free �nal
time.

2.2.2 Multi-phase problems

We refer here as a multi-phase problem a system whose dynamics is governed
by several sets of equations, depending on the time. For instance, in the case
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of trajectory optimization for a multi-stage space launcher, the �ight is divided
into several phases corresponding to the each propulsion system. Each time
interval with a certain set of equation is called a phase, and the times delimit-
ing the phases can be either �xed or free. In the latter case, the optimal value
for this phase time is part of the shooting unknowns, and the corresponding
equation must be de�ned in the subroutine PhaseCondition.

The current phase is stored in the global variable ipar(19), and can be used
in the user supplied subroutines, see 2.4. The phase is typically required to
compute the control and/or dynamics, as well as the phase conditions in the
free time case. Phase times are speci�ed in the time structure in the input �le
(see 2.3): a 2 indicates a �xed phase time, whose value must be speci�ed; -2
indicates a free phase time, whose value is part of the shooting unknown z.

For instance, a problem with free initial costate, two free phase times t1, t2
and free �nal time would give z = [p(0); t1; t2; tf ].

2.3 Input and output �les

All input and output �les for a given problem will use the same pre�x, with
di�erent extensions. The algorithm requires a single initialization �le, say Prob-
lem.init, and typically generates a solution �le Problem.sol. Discrete contin-
uation can produce an additional path �le Problem.contpath storing the path
following. Grid shooting also outputs a Problem.gridcv �le which summarizes
the convergence results over the grid, as well as Problem-cvxx.sol �les for each
solution found. The Matlab scripts sol.m and contpath.m can visualize the .sol
and .contpath �les. The .init �le contains the following entries (see appendix A
for an example).

Shooting method

� Shooting, continuation and verbose mode
Shooting: -1: only compute S(z), 0: basic shooting, 1: grid shooting.
Continuation: 0: no continuation, 1: use continuation.
Verbose: from -1 (no output) to 2 (most info).

� State, Control, Switch dimensions
dimension n,m of state and control variables, and size of the vector re-
turned by the subroutine Switch (should be set to 1 if unused).

� Number of arcs and times structure
number of arcs (at least 1, see below for arc de�nition).
time structure (at least initial and �nal times):
0: (�xed) initial time
1: �xed �nal time, -1: free �nal time
2: �xed phase time, -2: free phase time.
values for �xed and free times7.

7put any value for free times that are part of z
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� Shooting unknown dimension and initial guess
size of the shooting unknown8, size of initial unknown values.
starting point for shooting unknown.

� Integrator choice, �xed steps, relative and absolute tolerances
4: Runge Kutta 4th order, 5: dopri5.
number of steps for RK4, tolerances for DOPRI5.

� Switching detection mode
-1: disabled, 0: use switching detection, 1: use switching correction

� Jacobian mode
0: usual �nite di�erences, 1: use variational system.

� Target convergence
tolerance (on shooting function norm) for a successful shooting.

Continuation

� Initial, �nal value and max normalized step for continuation parameter
Initial and �nal values λ0, λ1 for the continuation parameter λ, and max-
imal normalized stepsize for λ during the path following (see 1.4).

� Max iterations and iterations output frequency
maximal number of allowed iterations for the continuation.
output frequency (< 1: no output, n > 0: display every n iteration(s)).

� Prediction type
prediction mode for the continuation (0: constant, 1: linear).

� Output sol and path
generate solution �le .sol (1: enabled, other: disabled).
generate path following �le .contpath (1: enabled, other: disabled).

Grid shooting

� Lower bounds for grid shooting (see 1.5).
� Upper bounds for grid shooting (see 1.5).
� Range for grid shooting (see 1.5).

Problem speci�c parameters

� Parameters
size and value of problem speci�c parameters.

2.4 User supplied subroutines

The following subroutines are speci�c to each problem and must be provided:
- InitialConditions: computes the initialization y(t0) = y0(z).
- FinalConditions: computes the boundary conditions B1(y(tf )).
- Control: computes the optimal control minimizing the Hamiltonian.
- Dynamics: computes the dynamics for the state and costate variables.

8should be equal to size of initial unknown values + number of free times
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These optional subroutines can be left empty9 if unused:
- InitPar: speci�c initializations, such as table interpolation.
- Switch: computes the switching function used for switching detection.
- BangBangControl: control according to the switching function.
- PhaseCondition: equations to be satis�ed by the free phase times.

General notations:
- y(nxp) denotes the state-costate pair (x, p).
- u(m) denotes the control.
- nfree0 is the dimension of the shooting unknown z.
- ipar(lipar),rpar(lrpar) are global variables arrays described in 2.5.

2.4.1 InitialConditions

Subroutine InitialConditions(z,dim,y,lipar,ipar,lrpar,rpar)

implicit none

integer, intent(in) :: dim, lipar, lrpar

integer, intent(inout) :: ipar(lipar)

real(kind=8), intent(in) :: z(nz)

real(kind=8), intent(inout) :: rpar(lrpar)

real(kind=8), intent(out) :: y(dim)

...

This subroutine de�nes the initial conditions for the state and costate at
initial time, namely y(t0) = (x(t0), p(t0)), in the �rst nxp components of y.
Typically, the state x is set according to x(t0) = x0, while the free initial
costate is given by the shooting unknown as p(t0) = z. More generally, y(t0)
is de�ned by the initial and transversality conditions at t0, with the �missing
parts� coming from the shooting unknown z.

If the variational system is used for the Jacobian, then the derivatives of
y(t0) with respect to z must also be �lled (the ∂y(t0)

∂z are stored by lines after
the �rst nxp components of y).

2.4.2 FinalConditions

Subroutine FinalConditions(y,s,dsdy,lipar,ipar,lrpar,rpar)

implicit none

real(kind=8), intent(in) :: y(nxp)

integer, intent(in) :: lipar, lrpar

integer, intent(inout) :: ipar(lipar)

real(kind=8), intent(inout) :: rpar(lrpar)

real(kind=8), intent(inout) :: s(nfree0), dsdy(nfree0,nxp)

...

This subroutine computes the value of the boundary conditions at tf for the
shooting function. On entry the state-costate pair y = (x, p) at the �nal time
is provided in y. In the free �nal time case, the last component of s contains
H(tf ) on entry. On exit the shooting function value s must be �lled with the
value of B1(y(tf )). If the variational system is used to compute the Jacobian

9but must still be present for the compilation
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matrix of the shooting function, then the derivatives of theses conditions must
also be �lled in the matrix dsdy.

2.4.3 Control

Subroutine Control(y,u,lipar,ipar,lrpar,rpar)

implicit none

integer, intent(in) :: lipar, lrpar

integer, intent(inout) :: ipar(lipar)

real(kind=8), intent(inout) :: rpar(lrpar)

real(kind=8), intent(in) :: y(nxp)

real(kind=8), intent(out) :: u(m)

...

This subroutine provides the optimal control that minimizes the Hamilto-
nian, according to Pontryagin's Minimum Principle. On entry the state-costate
pair y = (x, p) at current time is provided in y. On exit the control value must
be provided in u.

2.4.4 Dynamics

Subroutine Dynamics(y,u,f,mode,lipar,ipar,lrpar,rpar)

implicit none

integer, intent(in) :: lipar, lrpar

integer, intent(inout) :: ipar(lipar)

real(kind=8), intent(inout) :: rpar(lrpar)

integer, intent(in) :: mode

real(kind=8), intent(in) :: y(nxp), u(m)

real(kind=8), intent(out) :: f(nxp)

...

This subroutine provides the dynamics for the state and costate variables.
On entry the value of the state, costate and control at the current time are given
in y,u. If mode=0, the full dynamics ẏ = (ẋ, ṗ) is required in f. If mode=1,
only the state dynamics ẋ is required in the �rst half of f.

2.4.5 InitPar

Subroutine InitPar(lipar,ipar,lrpar,rpar)

implicit none

integer, intent(in) :: lipar, lrpar

integer, intent(inout) :: ipar(lipar)

real(kind=8), intent(inout) :: rpar(lrpar)

...

This optional subroutine is called at the beginning of each shooting attempt
(and not for every shooting function call, unlike InitialConditions). It may
be used for one-time initializations, for instance related to discrete continuation
or table interpolations (splines computations).

2.4.6 Switch

Subroutine Switch(y,psi,lipar,ipar,lrpar,rpar)

implicit none
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real(kind=8), intent(in) :: y(nxp)

integer, intent(in) :: lipar, lrpar

integer, intent(inout) :: ipar(lipar)

real(kind=8), intent(inout) :: rpar(lrpar)

real(kind=8), intent(out) :: psi(npsi)

...

This optional subroutine provides the switching function ψ used for the
switching detection. On entry the value of the state and costate at the current
time are given in y. On exit the switching function must be provided in the �rst
component of psi. Additional components may be used to store other values
that the user would like to compute at each time step for visualization purposes.

2.4.7 BangBangControl

Subroutine BangBangControl(y,u,lipar,ipar,lrpar,rpar)

implicit none

integer, intent(in) :: lipar, lrpar

integer, intent(inout) :: ipar(lipar)

real(kind=8), intent(inout) :: rpar(lrpar)

real(kind=8), intent(in) :: y(nxp)

real(kind=8), intent(out) :: u(m)

select case (ipar(17))

case (-1)

!switching function is negative

u(1) = ...

case (1)

!switching function is positive

u(1) = ...

end select

end Subroutine BangBangControl

This subroutine is used to compute the optimal control when using the
automatic detection of switchings. Switching detection is enabled by setting
the corresponding �ag to 0 or 1 in the input �le .init (see 2.3), and requires the
subroutine Switch above that de�nes the switching function. The user has to
provide the two expressions of the optimal control depending on the sign of the
switching function. This sign at the current time step is automatically stored
in the global variable ipar(17).

2.5 Global variables

The two arrays ipar and rpar, of size lipar and lrpar, contain the integer and
real global variables for the shoot2.0 package. Most settings and parameters
for the algorithms are stored in these arrays, while other parts are for internal
use. Below is a short description of the values that can be of use in the user-
supplied subroutines.

2.5.1 Integer global variables: IPAR

- ipar(2): mode for embedded continuation (0: disabled, 1: enabled)
- ipar(3): Jacobian mode (0: Finite di�erence, 1: Variational System)
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- ipar(19): current phase number (starts at phase 1)
- ipar(30): total number of phases, computed from time structure

2.5.2 Real global variables: RPAR

- rpar(1): objective value (from last call to ivp)
- rpar(2): norm of the shooting function (idem)
- rpar(3): λ (continuation parameter)
- rpar(4): Hamiltonian value (from last call to rhs)
- rpar(12): initial value λ0 for continuation parameter
- rpar(13): �nal value λ1 for continuation parameter
- rpar(roffset1+1:roffset1+npar): optional parameters de�ned at the end
of the .init �le, see 2.3

3 Illustration problems

3.1 Step by step example

We now illustrate the method on a very simple optimal control problem:

(P )



Min
∫ 2

0
|u(t)| dt

ẋ1 = x2

ẋ2 = u
|u| ≤ 1
x(0) = (0, 0)
x(2) = (0.5, 0)

The Hamiltonian is de�ned by

H : (t, x, p, u) 7→ |u|+ p1 x2 + p2 u

and the costate p is solution of the adjoint equation

ṗ1 = 0, ṗ2 = −p1.

The optimal control is discontinuous{
u = −sgn(p2) if ψ(t, x, p) < 0
u = 0 if ψ(t, x, p) > 0

with the switching function

ψ : (t, x, p) 7→ 1− |p2|.

The unknown for the shooting method is the initial costate and the shooting
function is de�ned by

S : R2 → R2

z = p(0) 7→ x(2)− (0.5, 0)

The user-supplied subroutines and the input �le corresponding to this simple
example are given in appendix A. The objective Min

∫ 2

0
|u(t)| dt is de�ned as
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a third component for the state, whose corresponding costate is equal to 1.

We test the shooting method on a 50 × 50 grid over [−10, 10]2 for the initial
costate. We compare the two approaches for the Jacobian, �nite di�erences
and variational system, with or without switching detection. We note that
depending on the initial costate p(0), we have 9 possible control structures with
0, 1 or 2 switchings, and that convergence is related to these regions.

−10 −8 −6 −4 −2 0 2 4 6 8
−10

−5

0

5

CONVERGENCE FOR DOPRI / END / NODETECT: 46%

−10 −8 −6 −4 −2 0 2 4 6 8
−10

−5

0

5

CONVERGENCE FOR DOPRI / VAR / DETECT: 81%

Shooting method convergence - control

structures

The table summarizes the convergence results for the grid shootings, with
tolerances of 10−8 for the ODE solver. For each run we indicate the percent-
age of successful shootings over the grid, and the best convergence (norm of
the shooting function) obtained. We observe that the switching detection and
correction improve the precision of the shooting method, with a better norm.
Using the variational system gives better chances of success than the basic �nite
di�erences.

Jacobian No detection Detection Correction

FD 53% 5.75 10−7
67% 2.72 10−15

67% 1.24 10−16

VAR 68% 5.75 10−7
79% 2.72 10−15

80% 1.24 10−16

Simple bang-bang problem - grid shooting

RR n° 7380



SHOOT2.0: An indirect grid shooting package 22

3.2 Orbital transfer

We show here an orbital transfer problem studied in [7], from an elliptic transfer
orbit to the geostationary orbit. We consider a satellite with a low thrust electro-
ionic propulsion, with thrusts ranging from 10 Newtons to 0.1 Newton. The
forces applied to the satellite are the Earth attraction and the engine thrust,
giving the dynamics

r̈ = −µ r

|r|3
+
T

m
.

The objective is to maximize the payload, i.e., to minimize the fuel consumption
during the transfer. Unlike the minimum-time transfer, the optimal trajectories
present a bang-bang control, with either full thrust (at apogees and perigees)
or no thrust (see �gure). An interesting continuation approach is to go from an
energy type criterion to the mass criterion as

Min

∫ tf

t0

λ|u(t)|+ (1− λ)|u(t)|2 dt.

The graph below shows the smooth control for λ = 0 and the discontinuous
control for λ = 1 (for a 10N thrust).
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0

0.2
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0.8

1
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||
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Min ∫ ||u||
Min ∫ ||u||2

Orbital transfer - smooth and discontinuous control depending on objective

The solution from the energy criterion is usually su�cient to initialize the
shooting method and solve the problem for the mass criterion. This continua-
tion is quite e�ective, but solving the problem for the energy criterion becomes
di�cult for low thrusts. We test the grid shooting with embedded continuation
on the 1N transfer, with dopri5 (tolerances 10−8) as ODE solver. With the
simple grid {−0.1, 0.1}n for the initial costate p(0) (ie for each component of
p(0) we only try the two values ±0.1, for a total of 128 shooting attempts), we
are able to solve the problem for a maximal thrust as low as 0.1N .

For thrusts of 10N , 1N and 0.1N , the optimal trajectories present 14, 119
and 1195 control switchings respectively. The graph below shows the optimal
trajectory for a 1N thrust, with the thrust arcs (in red) located at apogees and
perigees of the orbits, and arcs with no thrust (in green).
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Orbital transfer - Trajectory for a 1N thrust (119 switchings)

We detail now the tests on the 1N transfer to compare several options. For
the Jacobian, we use either �nite di�erences (FD) or variational system (VAR).
For the switchings, we use either no detection, basic detection, or detection
with correction. The table below sums up the convergence results for these six
con�gurations. For each grid shooting we indicate the success ratio (percentage
of successful shootings over the grid) and the best convergence obtained (ie
lowest norm of the shooting function).

Jacobian No detection Detection Correction

FD 25% 1.25 10−5
25% 4.83 10−8

25% 3.06 10−9

VAR 87% 6.51 10−5
89% 2.80 10−8

89% 2.19 10−10

Orbital transfer (1N) - grid shooting CV results

Here the interest of switching detection is clear, as well as the e�ectiveness of
the grid shooting with embedded continuation. Overall, we once again observe
that the switching detection and correction improve the precision of the shooting
method. The variational system, on the other hand, gives better chances of
success than the basic �nite di�erences. We also notice that using the variational
system without the switching detection is much slower, which is probably due
to the wrong Jacobian (see 1.3).

Jacobian No detection Detection Correction

FD 1326 / 337 3.93 1106 / 281 3.94 1152 / 293 3.93

VAR 5479 / 1384 3.96 1025 / 261 3.93 1017 / 259 3.93

Orbital transfer (1N) - Total CPU and clock times (s), cpu / clock time ratio

All tests were run on a quad-core 3GHz Xeon processor, using the parallel
(OPENMP) version of the grid shooting. The times indicate that the actual
computation time (clock time) is roughly 4 times smaller than the total CPU
time (summed on all cores), as expected on a quad-core CPU.
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A Input �le and user supplied subroutines

A.1 Input �le sample.init

*** Shooting method ***
Shooting, continuation and verbose mode
1 0 1
State, Control, Switch dimensions
3 1 1
Number of arcs and times structure
1
0 1
0d0 2d0
Shooting unknown dimension and initial guess
2 2
-1.4 -1.4
Integrator choice, fixed steps, relative and absolute tolerances
5 100 1d-8 1d-8
Switching detection mode (-1: disabled 0: dense output)
-1
Jacobian mode (0:FD 1:VAR)
0
Target convergence
1d-4

*** Embedded continuation ***
Initial, final value and max normalized step for homotopic parameter
0d0 1d0 1d0
Max iterations and iterations output frequency
100 -1
Prediction type
1
Output sol and path
1 1

*** Grid shooting ***
Lower bounds
-10.1 -10.1
Upper bounds
9.9 9.9
Range
50 50

*** Problem specific parameters ***
1
1

A.2 Subroutines in �le sample.f90

Subroutine InitialConditions(y,lipar,ipar,lrpar,rpar)
implicit none
integer, intent(in) :: lipar, lrpar
integer, intent(inout) :: ipar(lipar)
real(kind=8), intent(inout) :: rpar(lrpar)
real(kind=8), intent(inout) :: y(nxp)

!local
integer :: contmode, bangbangmode, bangbangmode0
real(kind=8) :: lambda

!global vars
contmode = ipar(2)
lambda = rpar(3)

!CI
y(1:3) = 0d0
!CT (obj)
y(6) = 1d0

!criterion
if (contmode == 0) then

lambda = rpar(roffset1+1)
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rpar(3) = lambda
end if

!disable switchings detection for smooth control
bangbangmode0 = ipar(9)
if (lambda < 1d0) then

bangbangmode = -1
else

bangbangmode = bangbangmode0
end if
ipar(10) = bangbangmode

end Subroutine InitialConditions

Subroutine FinalConditions(y,s,dsdy,lipar,ipar,lrpar,rpar)
implicit none
real(kind=8), intent(in) :: y(nxp)
integer, intent(in) :: lipar, lrpar
integer, intent(inout) :: ipar(lipar)
real(kind=8), intent(inout) :: rpar(lrpar)
real(kind=8), intent(inout) :: s(nfree0), dsdy(nfree0,nxp)

!CF
s(1) = y(1) - 0.5d0
s(2) = y(2)

!derivatives for shooting function jacobian
dsdy = 0d0
dsdy(1,1) = 1d0
dsdy(2,2) = 1d0

end Subroutine FinalConditions

Subroutine Control(y,u,lipar,ipar,lrpar,rpar)
implicit none
integer, intent(in) :: lipar, lrpar
integer, intent(inout) :: ipar(lipar)
real(kind=8), intent(inout) :: rpar(lrpar)
real(kind=8), intent(in) :: y(nxp)
real(kind=8), intent(out) :: u(m)

!Local
real(kind=8) :: lambda, p2, signp2

lambda = rpar(3)

p2 = y(ns+2)
signp2 = sign(1d0,p2)

if (lambda < 1d0) then
if (abs(p2) <= lambda) then

u(1) = 0d0
elseif (abs(p2) > 2d0 - lambda) then

u(1) = - signp2
else

u(1) = - signp2 * (abs(p2)-lambda) / 2d0 / (1d0-lambda)
end if

else
if (abs(p2) <= 1d0) then

u(1) = 0d0
else

u(1) = - signp2
end if

end if

end Subroutine Control

Subroutine Dynamics(y,u,f,mode,lipar,ipar,lrpar,rpar)
implicit none
integer, intent(in) :: lipar, lrpar
integer, intent(inout) :: ipar(lipar)
real(kind=8), intent(inout) :: rpar(lrpar)
integer, intent(in) :: mode
real(kind=8), intent(in) :: y(nxp), u(m)
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real(kind=8), intent(out) :: f(nxp)

!local
real(kind=8) :: lambda

lambda = rpar(3)

!mode: 0 for state/costate dynamics, 1 for state dynamics only
f(1) = y(2)
f(2) = u(1)
f(3) = lambda * abs(u(1)) + (1d0-lambda)*u(1)**2

f(ns+1) = 0d0
f(ns+2) = - y(ns+1)
f(ns+3) = 0d0

end Subroutine Dynamics

Subroutine Switch(y,psi,lipar,ipar,lrpar,rpar)
implicit none
real(kind=8), intent(in) :: y(nxp)
integer, intent(in) :: lipar, lrpar
integer, intent(inout) :: ipar(lipar)
real(kind=8), intent(inout) :: rpar(lrpar)
real(kind=8), intent(out) :: psi(npsi)

psi(1) = 1d0 - abs(y(ns+2))

end Subroutine Switch

Subroutine BangBangControl(y,u,lipar,ipar,lrpar,rpar)
implicit none
integer, intent(in) :: lipar, lrpar
integer, intent(inout) :: ipar(lipar)
real(kind=8), intent(inout) :: rpar(lrpar)
real(kind=8), intent(in) :: y(nxp)
real(kind=8), intent(out) :: u(m)

!local
real(kind=8) :: p2, signp2

u = 0d0
p2 = y(ns+2)
signp2 = sign(1d0,p2)

select case (ipar(17))
case (-1)

u(1) = -signp2
case (1)

u(1) = 0d0
case default

write(0,*) 'ERROR: Control >>> Unknown switchflag...',ipar(17)
stop

end select

end Subroutine BangBangControl
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