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[10,11] showed us the correctness of an implementation based on fast binary
Cauchy sequence, which makes the base equal to 2. And they have described a
Haskell implementation in [10]. In addition, V. Ménissier-Morain in [3] proved a
similar algorithm whose base can be 2 or other integers which is bigger than 2.
Briggs implemented this paper’s algorithm using Python, C++, C respectively
[12]. Of course, there are also many other implementations and you can get more
information about exact real arithmetic in this survey [13]. But most of them
are deficient in the proof or integrality of algorithms.

Actually, all these methods can be converted into interval representations. But
different methods have different algorithms to calculate the operation concerning
real numbers. In that case their performances are also different. In terms of basic
operations, like addition, minus, multiplication and division, the second method
may be more efficient, which can be found in this competence result in 2000
[14]. However, LFT approach also has some merits that it can easily handle
irrational numbers [15,16], that Edalat argues its transcendental functions may
more efficient, and that under special circumstances continued fractions can solve
many problems which common representations is hard to handle. In this paper,
our interest focus on the amelioration of the second methods, that is constructive
reals. And we give new algorithms that solve two problems which can affect the
implementation’s performance. First, by balancing every item’s precision, we can
avoid unnecessary precision growth which is the first problem that has attracted
many attentions in [17,18]. Second, by distributing different weights to different
operations, we can make sure that complex operations do not waste most time
when to compute the whole expression which is the second problem that we
proposed.

The remaining part of the paper is arranged as follows. Related definitions and
algorithms about Cauchy sequences are briefly introduced in section 2. Problems
of present implementations based on Cauchy sequences are shown in section 3.
A new simple algorithm about addition, which considers balancing every item’s
precision, is proved in section 4. And a new algorithm about calculating the
expression that takes every operation’s complexity into consideration will be
given in section5. The experimental result and discussion are set in section 6.

2 Basic Definitions and Algorithms

We present some basic definitions and algorithms of computable real numbers,
which derived from Boehm, V. Ménissier-Morain, and Gowland’s work in [3,9,10].
First, we will show two definitions about the representation of real numbers.
Second, we will give two simple algorithms about addition and multiplication
that will help us understand the problem.

Definition 1. (Effective Cauchy sequences). A computable real number x is rep-
resented as an Effective Cauchy sequence, if there is an infinite computable se-
quence of rational numbers

{
n0
d0

, n1
d1

, . . . ,
np

dp
, . . . ,

}
, with di > 0, and a modulus
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of convergence function e : N → N which is recursive , such that ∀p ∈ N : k ≥
e(p)implies

∣∣∣x − nk

dk

∣∣∣ < 2−p.

In this definition, we use a sequence of rational numbers to represent the real
number. When we need to get a number which meets the precision requirement,
we can take a proper rational number from the sequence. In fact, we can get
an interval which is small enough to meet the error range and includes the true
value of the real number that is x ∈

(
nk

dk
− 2−p, nk

dk
+ 2−p

)
. But if we only want

to use integer arithmetic to finish this kind of exact real arithmetic, we should
do some changes.

Definition 2. (Fast Binary Cauchy Sequence) A computable real number x is
represented as a Fast Binary Cauchy Sequence if there is an infinite computable
sequence of integers{n0, n1, . . . , np, . . .}, such that |x − 2−pnp| < 2−p.

This definition makes a little change with respect to Definition 1. We can use a
sequence of integers to represent real number, which makes implementation only
use integer arithmetic and is not confined by floating-point numbers’ defects.
Some implementations using floating point, such as IRRAM [19], which is based
on real-RAMs, have faster speed. Although some real-RAMs can be realized ap-
proximately by floating point computations, real-RAMs cannot be realized by
physical machines, they are unrealistic [20]. But the way of construct reals is
completely accepted in that it only uses integer arithmetic. So in section 5 we do
not compare time with IRRAM which use floating-point arithmetic in implemen-
tation. In this definition, if the error range is 2−p, we can use np to represent the
real number x, which meets the requirement of x ∈ (2−pnp − 2−p, 2−pnp + 2−p).
In the rest of the article, we use x[p] to represent np.

Also, there are other similar definitions, in[3], they use the qualification of∣∣∣x − nk

dk

∣∣∣ < B−p where B ≥ 2 is some fixed integer, instead of
∣∣∣x − nk

dk

∣∣∣ < 2−p in
Definition 1. Obviously, modulating B can control the interval’s and the error
range. For example, if B is 10, we can get a sequence of error range:10−1, 10−2,
. . . , 10−p, . . . .If B is 2, we can get a sequence of error range:2−1, 2−2, . . . ,
2−p, . . . which is more flexible than B is 10 and can easily meet more error
requirements. In this paper, we only discuss our implementation based on B = 2
and these circumstances that B > 2 can be handled in the same thought.

Now we simply give some algorithms concerning addition and multiplication
which is widely used in [3,9,10] and is showed in [10]. These algorithms can help
us to illustrate our algorithms. Their proofs can be found in [10]. We suppose
that x,x1,x2 are real numbers and the required error range of x is 2−p which
means we need to get x[p].

Algorithm 1. (Addition of real numbers) Computing x = x1 + x2, we have
x[p]=round((x1[p + 2] + x2[p + 2])/4).

Algorithm 2. (Multiplication of real numbers) Computing x = x1 ∗ x2, we
have x[p]=round(2−(p+s1+s2)(n1n2)) where s1 = �log2(|x1[0]| + 2)� + 3 and
s2 = �log2(|x2[0]| + 2)� + 3.
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3 Problems

Several authors have implemented the algorithms that are based on constructive
reals. We can divide them into two kinds. One is to use Functional language which
is easy and natural to implement exact real arithmetic in that we can regard a
real number as a function and the expression can be evaluated automatically.
However, this way is very slow and impractical in many applications. The other is
to use DAG (directed acyclic graph) to represent the expression about operations
between exact real numbers. For example, Figure 1 shows an expression based
on DAG. This way can be finished by using C language, which can get much
better performance and also is easier to use in other software. But both of them
suffer from several flaws.

In the first problem, with the increase of operations’ number, the original
algorithms fail to use proper precise of every real number. For example, we
want to compute x = x1 + x2 + x3 + x4 according to Algorithm 1. Its DAG
is figure 1, and when we want to get x[p], we need get x4[p + 2], x3[p + 4],
x2[p + 6], x1[p + 8] respectively. Obviously, when the items’ number is very
large we may need some items that have extremely small precision. However,
by scrutinizing this case carefully, we find it is not reasonable. If we consider
it from a prospect of expression we find if we want to get an approximation of
x up to the precision ε, we only need every item’ approximation up to ε/4. In
this case, we should balance every item’s precision to get a more proper means
to compute the expression. This problem has been proposed in [17,18], which
occurs in all exact real arithmetic based on Type2 theory [20]. In [18], the author
proposed that each item’s precision should be balanced to solve this problem.
But in special representation how to solve it is also a question. In this paper we
give the methods about constructive reals and give a proof in the follow section.

Fig. 1. A DAG for the expression x1 + x2 + x3 + x4

In the second problem, the original algorithm fails to take the complexity of
each operation into consideration. Obviously, computing one multiplication takes
more time than computing an addition when we need them to get the same preci-
sion which can be found in Algorithm 1 and Algorithm 2. The original algorithms
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are not concerned about making the precision of operation of multiplication as
large as possible. For instance, when we compute x = x1 + x2 ∗ x3, in order to
get x[p], a choice is to get x1[p + 2] and (x2 ∗ x3)[p + 2] which is an original
algorithm’s way. However, in terms of expression, we have many other ways.
For example, when we want to get an approximation of x up to the precision ε,
we also need x1’s approximation up to ε/4 and (x2 ∗ x3)’s approximation up to
3ε/4. In this case, the operation of addition will cost more time than the former
and the operation of multiplication will cost little time than the former. But we
think it is totally worthy because the multiplication is more complex.

In conclusion, original implementations do not consider the difference between
exact real arithmetic and traditional computation. Traditional computation can
use a common way to compute because they are not affected by error require-
ment. However, in exact arithmetic, distributing a proper precision to every item
is very important which can make computation more effective.

4 Addition Algorithm with Balanced Precision

Addition and subtraction are very important in exact arithmetic in that sum-
mation plays an important role in science computing. And addition and sub-
traction’s error analysis are also very easy to process. In this part we give an
algorithm to compute an expression only including addition. Subtraction can be
processed in a similar way in that it can be taken as a special addition.

Algorithm 3. Computing x = x1 + x2 + . . . + xn, where x, x1, x2,. . ., xn

are real numbers and the required of error range of x is 2−p which means we
need to get x[p], we have x[p]=round((x1[m]+x2[m]+ . . .+xn[m])2p−m). where
m = 	log2n + p + 1
.

Proof. We will prove that |x − 2−px[p]| = |x1 + x2 + . . . + xn − 2−px[p]| < 2−p

i.e.
2−p(x[p] − 1) < x1 + x2 + . . . + xn < 2−p(x[p] + 1) (1)

According to definition 2, we have

|x − (x1[m] + x2[m] + . . . + xn[m])2−m|, n2−m (2)

We make m = 	log2n + p + 1
 such that

1
2m

≤ 1
n2p+1 <

1
2m−1 (3)

According to (2) and (3), we get
|x − (x1[m] + x2[m] + . . . + xn[m])2−m| < n2−m ≤ 2−(p+1) and

|x − (x1[m] + x2[m] + . . . + xn[m])2p−m2−p| < 2−(p+1) (4)
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Then according to round’s property, we have

|(x1[m] + x2[m] + . . . + xn[m])2p−m − round((x1[m] + x2[m] + . . . + xn[m])

2p−m)| ≤ 1
2

(5)

By multiplying 2−p, Formula (5) can be changed into:

|(x1[m] + x2[m] + . . . + xn[m])2−m − round((x1[m] + x2[m] + . . . + xn[m])

2p−m)2−p)| ≤ 2−(p+1)

(6)

Then we can use round((x1[m] + x2[m] + . . . + xn[m])2p−m) to replace (x1[m] +
x2[m] + . . . + xn[m])2p−m in Formula (4), we can get

|x − round((x1[m] + x2[m] + . . . + xn[m])2p−m)2−p| < 2−(p+1) + 2−(p+1) = 2−p

(7)
i.e.

|x − 2−px[p]| = |x1 + x2 + . . . + xn − 2−px[p]| < 2−p (8)

In this addition algorithm, we distribute the same precision to every item. For
example, if we want to get x[p] whose expression is shown in Figure 1, we only
need get x1[p + 3], x2[p + 3], x3[p + 3] and x4[p + 3] respectively. When n is a
very large number this way can evidently reduce many items’ precision required.
Compared with the original algorithm, this way is more proper in terms of
expression.

5 Algorithm with Precision Control

In section 4, we have solved the first problem that exits in constructive reals’
computation. In this section we will consider solving the second problem. From
what have been discussed, we can see that different operations have different
complexity. A sin’s operation is more complex than addition operation when is
computed to up to the same precision. Our solution is to distribute different
weight to single computation cell. The weight can control the precision that
operation needs. First, we introduce a definition of single computation cell.

Definition 3. (Single Computation Cell) A single computation cell is one of
these cases: 1. A real number that interacts with other items only with addition or
subtraction. 2. A result number that we get from operations except addition and
subtraction and it interacts with other SCCs only with addition or subtraction.

For example, when we want to deal with x1 + x2 ∗ x3 + sin x4 + x5 ∗ x6/x7, the
number x1, the result of x2 ∗ x3, the result of sin x4 and the result of x5 ∗ x6/x7
are SCCs. We can simply put x1’s weight is 1, x2 ∗ x3 is 4, sin x4 is 16 and
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x5 ∗ x6/x7 is 8. The value of weight is based on the compute complexity of the
SCC and is regulated to be the form of 2k, k ∈ N , which make our computation
convenient. We can compute single SCC use its original algorithm, but compute
the whole expression use our algorithm. Now we will show an algorithm that can
used to compute these expressions.

Algorithm 4. If we want to compute x = x1+x2+. . .+xnin order to meet some
error range 2−p, where xi’s weight is wi and every xi is a SCC, i = 1, 2, . . . , n.
We have x[p] = round(x1[m − log2w1]w12p−m + x2[m − log2w2]w22p−m + . . . +
xn[m − log2wn]wn2p−m) with m = 	−log2( 2−(p+1)

w1+w2+...+wn
)
.

Proof. We will prove

|x − 2−px[p]| = |x1 + x2 + . . . + xn − 2−px[p]| < 2−p (1)

We make m = 	−log2( 2−(p+1)

w1+w2+...+wn
)
 such that

(w1 + w2 + . . . + wn)2−m ≤ 2−(p+1) (2)

According to definition 2, we have

|x − (x1[m − log2w1]2log2w1−m + x2[m − log2w2]2log2w2−m + . . . + xn[m−
log2wn]2log2wn−m)| = |x − (x1[m − log2w1]w12−m + x2[m − log2w2]w22−m

+ . . . + xn[m − log2wn]wn2−m)| < (w1 + w2 + . . . + wn)2−m ≤ 2−(p+1)

(3)

It is similar to the addition’s proof above, we can get

|(x1[m − log2w1]w12−m + x2[m − log2w2]w22−m + . . . + xn[m − log2wn]

wn2−m) − round(x1[m − log2w1]w12p−m + x2[m − log2w2]w22p−m + . . . +

xn[m − log2wn]wn2p−m) < 2−(p+1)

(4)

According to (3) and (4), we can get |x−round(x1[m− log2w1]w12p−m +x2[m−
log2w2]w22p−m + . . .+xn[m− log2wn]wn2p−m)| < 2−(p+1) +2−(p+1) = 2−p that
is to say |x − x[p]| < 2−p.

For example, when we want to compute x = x1 + y1 ∗ y2 + x3 + x4 + x5 that is
x = x1 +x2 +x3 +x4 +x5, where x2 = y1 ∗ y2 and x1, x2, x3, x4, x5are SCCs. We
can appoint x1, x3, x4, x5’s weight to be 1 and x2’s weight to be 4. Then when
we need to get x[p], we should compute x1[p + 4], x2[p + 2], x3[p + 4], x4[p + 4],
x5[p + 4] which is more efficient than compute x1[p + 4], x2[p + 4], x3[p + 4],
x4[p+4], x5[p+4] that only use algorithm 3 to balance the precision. According
to Algorithm 2 we can get x2[p + 2], and then we use Algorithm 4 to compute
the whole expression.
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6 Conclusions and Discussions

One of our aim is to avoid the unnecessary precision growth which has been
talked in [17,18], in this paper we supply Algorithm 3 to balance every item
in an expression including addition and subtraction. This way indeed improves
exact arithmetic’s speed. For example, we will do a computation that gets the
sum of the harmonics series

∑n
i=1

1
i . The Table 1 below shows Algorithm 3’s

performance is much better than xrc1.1 which is an implementation based on
V.Mnissier-Morain’s Algorithm [3]. The software xrc1.1 can be gotten from [21].

Table 1. Computing
�n

i=1
1
i

n result’sprecision xrc1.1(ms) Algorithm 3 (ms)

1000 100 9.641 4.92
1000 1000 77.377 10.948
1000 10000 168.708 161.989
5000 100 141.016 58.564
5000 1000 187.183 106.209
5000 10000 455.335 364.182
10000 100 373.373 81.788
10000 1000 446.627 150.112
10000 10000 956.082 619.227

Table 2. Computing
�n

i=1(
1

i∗(i+1) + 1
i
)

n result’sprecision xrc1.1(ms) Algorithm 3 (ms) Algorithm 4 (ms)

100 100 3.358 4.909 2.901
100 1000 11.811 10.911 10.256
1000 100 162.803 81.511 65.246
1000 1000 220.861 150.396 133.057
10000 100 19166.903 324.03 288.016
10000 1000 21070.736 900.51 894.279

But our way can only solve some of this problem. For example, x1 ∗ x2 ∗ x3
also should have a way to make sure that every item has the similar precision,
but because the result of multiplication’s interval is too complex we failed to get
an easy means just like we compute addition or subtraction. In the future, we
may find a way to completely solve this problem.

Another aim is to take into account the operation’s complexity which is first
introduced by us. We control every item’s precision according to its complexity.
In this way, we can improve the performance of the exact arithmetic furthermore.
For example, we will do a computation that gets the value of

∑n
i=1(

1
i∗(i+1) + 1

i ).
The Table 2 shows that Algorithm 4 has a better performance than xrc1.1 and
Algorithm 3.



448 Y. Li and J.-H. Yong

There is also a question in this algorithm that how large the weight should
be. In our implementation, we can easily appoint it by ourselves according to
test many times basic operations and we also can adjust it according to need.
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