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Abstract—This paper presents an approach to design, 
implement and deploy a simulation platform based on 
distributed workflows. It supports the smooth integration of 
existing software, e.g. Matlab, Scilab, Python, OpenFOAM, 
Paraview and user-defined programs. The contribution of the 
paper is a new feature which supports application-level fault-
tolerance and exception-handling, i.e., resilience. 
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I.  INTRODUCTION 

Large-scale simulation applications are becoming 
standard in research laboratories and in the industry [1][2]. 
Because they involve a large variety of software and 
terabytes of data, moving around calculations and data files 
is not a simple process. Further, proprietary software and 
data often reside in locations from where they cannot be 
moved. Distributed computing infrastructures are therefore 
necessary [6][8]. 

This paper explores the design, implementation and use 
of a distributed simulation platform. It is based on a 
distributed workflow system and distributed computing 
resources. This infrastructure includes heterogeneous 
hardware and software components. Further, the application 
codes must interact in a timely, secure and effective manner. 
Additionally, because the coupling of remote hardware and 
software components are prone to run-time errors, 
sophisticated mechanisms are necessary to handle 
unexpected failures at the infrastructure and system levels. 
This is also critical for the coupled software that contribute 
to large-scale simulation applications. Consequently, specific 
approaches, methods and software tools are required to 
handle unexpected application behavior. 

This paper addresses these issues. Section II is an 
overview of related work. Section III is a general description 
of a sample application, infrastructure, systems and 
application software. Section IV addresses resilience and 
asymmetric checkpointing issues. Section V gives an 
overview of the implementation using the YAWL workflow 
management system [4].  Section VI is a conclusion. 

II. RELATED WORK 

Simulation is nowadays a prerequisite for product design 
and scientific breakthroughs in most application areas 

ranging from pharmacy, meteo, biology to climate modeling, 
that all require extensive simulations and testing [6][8]. They 
often need large-scale experiments, including long-lasting 
runs, tested against petabytes volumes of data on large multi-
core supercomputers [10] [11]. 

In such application environments, various teams usually 
collaborate on several projects or part of projects. 
Computerized tools are shared and tightly or loosely 
coupled. Some codes may be remotely located and non-
movable. This requires distributed code and data 
management facilities. Unfortunately, this is prone to 
unexpected errors and breakdowns. 

Data replication and redundant computations have been 
proposed to prevent from random hardware and 
communication failures, as well as deadline-dependent 
scheduling [9]. 

Hardware and system level fault-tolerance in specific 
programming environments is also proposed, e.g. Charm++ 
[5]. Also, middleware and distributed computing systems 
usually support mechanisms to handle fault-tolerance. They 
call upon data provenance [12], data replication, redundant 
code execution, task replication and job migration, e.g., 
ProActive [17], VGrADS [15]. 

However, erratic application behavior needs also to be 
addressed. This implies evolution of the simulation process 
in the event of unexpected data values or unexpected control 
flow. Little has been done in this area. The primary concern 
of the application designers and users is that of efficiency 
and performance. Therefore, application erratic behavior is 
usually handled by re-designing and re-programming pieces 
of code and adjusting parameter values and bounds. This 
usually requires the simulations to be stopped and rebuilt 
[15].  

Departing from these solutions, a dynamic approach is 
presented in the following sections. It supports the evolution 
of the application behavior using the introduction of new 
exception handling rules at run-time by the users, based on 
occurring (and possibly unexpected) data values. The 
running workflows do not need to be aborted, as new rules 
can be added at run-time without stopping the executing 
workflows [13]. At worst, they need to be paused. 

This allows on-the-fly management of unexpected 
events. It allows also a permanent evolution of the 
applications, supporting their continuous adaptation to the 
occurrence of unforeseen situations. As new situations arise 



and new data values appear, new rules can be added to the 
workflows that will permanently be taken into account in the 
future. These evolutions are dynamically plugged-in to the 
workflows, without the need to stop the running applications. 
The overall application logics are therefore maintained 
unchanged. This guarantees a continuous adaptation to new 
situations without the need to redesign the existing 
workflows. Further, because exception-handling codes are 
themselves defined by new specific workflows plug-ins, the 
user interface to the applications remains unchanged [14]. 

III.  APPLICATION TESTCASE  

A. Example Testcase 

An overview of a running tescase is presented here. It 
deals with the optimization of a car air-conditioning duct.  
The goal is to optimize the air flow inside the duct, 
maximizing the throughput and minimizing the air pressure 
and air speed discrepancies inside the duct. This example is 
provided by a car manufacturer and involves industry 
partners, e.g., software vendors, as well as optimization 
research teams (Figure 1). 

The testcase is a dual faceted 2D and 3D example. Each 
facet involves different software for CAD modeling, e.g. 
CATIA and STAR-CCM+, numeric computations, e.g., 
Matlab and Scilab, and flow computations, e.g., Open 
FOAM and visualization, e.g., ParaView (Figure 1). 

The testcase is deployed using the YAWL workflow 
management system [4]. The goal is to distribute the testcase 
on various partners’ locations where the different software 
are running (Figure 2). In order to support this distributed 
computing approach, an open source middleware is used, 
namely: ProActive [17]. 

A first prototype was achieved using extensively the 
virtualization technologies (Figure 3), in particular Oracle 
VM VirtualBox®, formerly called Sun VirtualBox® [7]. This 
allowed experiments connecting virtual guest computers 
running heterogeneous software. These include Linux Fedora 
Core 12, Windows® 7 and Windows® XP on a range of local 
workstations and laptops (Figure 2). 

 

 
 Figure 1. Pressure flow in the air-conditioning duct (ParaView display). 

This work is performed for the OMD2 project, an 
acronym for Optimisation Multi-Disciplinaire Distribuée, 
i.e., Distributed Multi-Discipline Optimization, supported by 
the French National Research Agency ANR.  

B. Application Workflow 

In order to provide a simple and easy-to-use interface to 
the computing software, the YAWL workflow management 
system is used (Figure 2). It supports high-level graphic 
specifications for application design, deployment, execution 
and monitoring. It also supports the modeling of business 
organizations and interactions among heterogeneous 
software components. Indeed, the example testcase described 
above involves several codes written in Matlab, OpenFOAM 
and displayed using ParaView. The 3D testcase facet 
involves CAD files generated using CATIA and STAR-
CCM+, flow calculations using OpenFOAM, Python scripts 
and visualization with ParaView. Future testcases will also 
require the use of the Scilab toolbox [16]. 

 Because proprietary software are used, as well as open-
source and in-house research codes, a secured network of 
connected computers is made available to the users, based on 
the ProActive middleware (Figure 5). 

This network is deployed on the various partners’ 
locations throughout France. Web servers accessed through 
the ssh protocol are used for the proprietary software running 
on dedicated servers, e.g., CATIA v5 and STAR-CCM+. 

A powerful feature of the YAWL workflow system is 
that composite workflows can be defined hierarchically [4]. 
They can invoke external software, i.e., pieces of code 
written in whatever language is used by the users. They are 
called by custom YAWL services or local shell scripts. Web 
Services can also be invoked. Although custom services need 
Java classes to be implemented, all these features are 
natively supported in YAWL. 

YAWL thus provides an abstraction layer that helps users 
design complex applications that may involve a large 
number of distributed components (Figure 3). Further, the 
workflow specifications allow alternative execution paths 
which may be chosen automatically or manually, depending 
on data values, as well as parallel branches, conditional 
branching and loops. Also, multiple instance tasks can 
execute in parallel for different data values. Combined with 
the run-time addition of code using the corresponding 
dynamic selection procedures, as well as new exception 
handling procedures (see Section IV), a very powerful 
environment is provided to the users [4]. 

IV.  RESILIENCE 

A. Fault-tolerance 

The fault-tolerance mechanism provided by the 
underlying middleware copes with job and communication 
failures. Job failures or time-outs are handled by 
reassignment of computing resources and re-execution and 
of the jobs. Communication failures are handled by re-
sending appropriate messages. Thus, hardware breakdowns 
are handled by re-assigning running jobs to other resources, 



which imply possible data movements to the corresponding 
resources. This is standard for most middleware [17]. 

B. Resilience 

Resilience is commonly defined as “the ability to bounce 
back from tragedy” and as “resourcefulness” [18]. It is 
defined here as the ability for the applications to handle 
correctly unexpected run-time situations, possibly – but not 
necessarily – with the help of the users. 

Usually, hardware, communication and software failures 
are handled using hard-coded fault-tolerance software [15]. 
This is the case for communication software and for 
middleware that take into account possible computer and 
network breakdowns at run-time. These mechanisms use for 
example data and packet replication and duplicate code 
execution to cope with these situations [5]. 

However, when unexpected situations occur at run-time, 
which are due to unexpected data values and application 
erratic behavior, very few options are offered to the users: 
ignore them or abort the execution, analyze the errors and 
later modify and restart the applications. 

Optimized approaches can be implemented in such cases 
trying to reduce the amount of computations to be re-run, or 
anticipating potential discrepancies by multiplying some 
critical instances of the same computations. This latter 
approach can rely on statistical estimations of failures. 
Another approach for anticipation is to prevent total loss of 
computations by duplicating the calculations that are running 
on presumably failing nodes [9]. 

While these approaches deal with hardware and system 
failures, they do not cope with application failures. These 
can originate from: 

• Incorrect or incomplete specifications. 
• Incorrect or hazardous programming. 
• Incorrect anticipation of data behavior, e.g., out-of-

bounds data values. 
• Incorrect constraint definitions, e.g., approximate 

boundary conditions. 
To cope with this aspect of failures, we introduce an 

application-level fault management that we call resilience. It 
provides the ability for the applications to survive, i.e., to 
restart, in spite of their erroneous prevailing state. In such 
cases, new handling codes can be introduced dynamically by 
the users in the form of specific new component workflows.  

This requires a roll-back to a consistent state that is 
defined by the users at critical checkpoints.  

In order to do this efficiently, a mechanism is 
implemented to reduce the number of necessary checkpoints. 
It is based on user-defined rules. Indeed, the application 
designers and users are the only ones to have the expertise 
required to define appropriate corrective actions and 
characterize the critical checkpoints. No automatic 
mechanisms can be substituted for them, as is the case in 
hardware and system failures. It is generally not necessary to 
introduce checkpoints systematically, but only at specific 
locations of the application processes, e.g., only before 
parallel branches of the applications. We call this approach 
asymmetric checkpoints. This is described in Section D, 
below. 

C. Exception Handling 

The alternative used proposed here to cope with 
unexpected situation is based on the dynamic selection and 
exception handling mechanism featured by YAWL [13]. 

It provides the users with the ability to add at run-time 
new rules governing the application behavior and new pieces 
of code that will take care of the new situations.  

For example, it allows for the runtime selection of 
alternative workflows, called worklets, based on the current 
(and possibly unexpected) data values. The application can 
therefore evolve over time without being stopped. It can also 
cope later with the new situations without being altered. This 
refinement process is therefore lasting over time and the 
obsolescence of the original workflows reduced. 

The new worklets are defined and inserted in the original 
application workflow using the standard specification 
approach used by YAWL (Figure 2). 

Because it is important that monitoring long-running 
applications be closely controlled by the users, this dynamic 
selection and exception handling mechanism also requires a 
user-defined probing mechanism that provides with the 
ability to suspend, evolve and restart the code dynamically. 

For example, if the output pressure of an air-conditioning 
pipe is clearly off limits during a simulation run, the user 
must be able to suspend it as soon as he is aware of that 
situation. He can then take corrective actions, e.g., 
suspending the simulation, modifying some parameters or 
value ranges and restarting the process immediately. These 
actions can be recorded as new execution rules, stored as 
additional process description and invoked automatically in 
the future. 

These features are used to implement the applications 
erratic behavior manager. This one is invoked by the users to 
restart the applications at the closest checkpoints after 
corrective actions have been manually performed, if 
necessary, e.g., modifying boundary conditions for some 
parameters. Because they have been defined by the users at 
critical locations in the workflows, the checkpoints can be 
later chosen automatically among the available asymmetric 
checkpoints available that are closest to the failure location 
in the workflow. 

D. Asymmetric Checkpoints 

Asymmetric checkpoints are defined by the users at 
critical execution locations in the application workflows. 
They are used to avoid the systematic insertion of 
checkpoints at all potential failure points. They are user-
defined at specific locations, depending only on the 
application logic. Clearly, the applications designers and 
users are the only ones that have the domain expertise 
necessary to insert appropriately these checkpoints. In 
contrast with middleware fault-tolerance which can re-
submit jobs and resend data packets, no automatic procedure 
can be implemented here. It is therefore based on a 
dynamically evolving set of heuristic rules. 

This approach significantly reduces the number of 
necessary checkpoints to better concentrate on only those 
that have an impact on the applications runs [3]. 

For example (Figure 4): 



• The checkpoints can be chosen by the users among 
those that follow long-running components and large 
data transfers.   

• Alternatively, those that precede sequences of small 
components executions. 

 

 
Figure 4. Asymmetric checkpoints example. 

The basic rule set on which the asymmetric checkpoints 
are characterized is the following: 

• R1: no output backup for specified join operations. 
• R2: only one output backup for fork operations. 
• R3: no intermediate result backup for user-specified 

sequences of  operations. 
• R4: no backup for user-specified local operations. 
• R5: systematic backup for remote inputs. 
This rule set can be evolved by the user dynamically, at 

any time during the application life-time, depending on the 
specific application requirements. This uses the native rule 
mechanism in YAWL [13]. 

V. IMPLEMENTATION 

A. Resilience 

Resilience is the ability for applications to handle 
unexpected behavior, e.g., erratic computations, abnormal 
result values, etc. It is inherent to the applications logic and 
programming. It is therefore different from systems or 
hardware errors and failures. The usual fault-tolerance 
mechanisms are therefore inappropriate here. They only cope 
with late symptoms, at best. 

New mechanisms are therefore required to handle logic 
discrepancies in the applications, most of which are only 
discovered incrementally during the applications life-time, 
whatever projected exhaustive details are included at the 
application design time. 

It is therefore important to provide the users with 
powerful monitoring features and to complement them with 
dynamic tools to evolve the applications specifications and 
behavior according to the future erratic behavior that will be 
observed during the application life-time. 

This is supported here using the YAWL workflow 
system so-called “dynamic selection and exception handling 
mechanism” [4]. It supports: 

• Application update using dynamically added rules 
specifying new worklets to be executed, based on 
data values and constraints. 

• The persistence of these new rules to allow 
applications to handle correctly the future 
occurrences of the new cases. 

• The dynamic extension of these sets of rules. 
• The definition of the new worklets to be executed, 

using  the native framework provided by the YAWL 
specification editor: the new worklets are new 
component workflows attached to the global 
composite application workflows [13]. 

• Worklets can invoke external programs written in 
any programming language through shell scripts, 
custom service invocations and Web Services [14]. 

B. Distributed workflows 

The distributed workflows rely on the interface between 
the YAWL engine and the ProActive middleware (Figure 5). 
Users provide a specification of the simulation applications 
using the YAWL Editor. It supports a high-level abstract 
description of the simulation processes (Figure 2).  

 

 
Figure 5. The OMD2 distributed simulation platform. 

These processes are decomposed into components which 
can be other workflows or basic workitems.  The basic 
workitems invoke executable tasks, e.g., shell scripts or so-
called “custom services”. These custom services are specific 
execution units that call user-defined YAWL services. They 
support interactions with external and remote codes. In this 
particular platform, the remote external services are invoked 
through the ProActive middleware interface (Figure 6). 

This interface delegates the distributed execution of the 
remote tasks to the ProActive middleware [17]. The 
middleware is in charge of the distributed resources 
allocation to the individual jobs, their scheduling, and the 
coordinated execution and result gathering of the individual 
tasks composing the jobs. The scheduler default policy is 
“best-effort”. However, users can implement their own 
policy, if desired. The middleware also takes in charge the 
fault-tolerance related to hardware, communications and 
system failures. The resilience, i.e., the application-level 
fault-tolerance is handled using the rules described in the 
previous sections. 



The remote executions invoke the middleware 
functionalities through ProActive’s Java API. The various 
modules invoked are the ProActive Scheduler, the Jobs 
definition module and the Tasks which compose the jobs. 
The jobs are allocated to the distributed computing resources 
based upon the scheduler policy. The tasks are dispatched 
based on the job scheduling and resource allocation. They 
invoke Java executables, possibly wrapping code written in 
other programming languages, e.g., Matlab, Scilab, Python, 
or calling other software, e.g., CATIA v5, STAR-CCM+, 
ParaView, etc. 

Optionally, the workflow can invoke local tasks using 
shell scripts and remote tasks using Web Services. These 
options are standard in YAWL [4]. Calling the ProActive 
middleware is however necessary to run tasks on large multi-
core clusters. ProActive is here in charge of the scheduling 
and resource allocation in these highly parallel environments, 
which YAWL does not support natively. 

 

 
Figure 6. The YAWL workflow / ProActive middleware interface. 

VI. CONCLUSION 

 
The requirements for large-scale simulations make it 

necessary to deploy various software components on 
heterogeneous distributed computing infrastructures. These 
environments are often required to be distributed among a 
number of project partners for administrative and 
organizational purposes. 

This paper presents an experiment for deploying a 
distributed simulation platform. It uses a network of high-
performance computers connected by a middleware layer. 
Users interact dynamically with the applications using a 
distributed workflow system. It allows them to define, 
deploy and control the application executions. 

A significant bonus of this approach is that besides fault-
tolerance provided by the middleware, which handles 
communication, hardware and system failures, the users can 
define and handle the application failures at the workflow 
specification level.  

This means that a new abstraction layer is introduced to 
cope with the application errors at run-time. Indeed, these 
errors do not necessarily result from programming and 
design errors. They may also result from unforeseen 
situations, data values and boundary conditions that could 

not be envisaged at first. This is often the case in simulations 
due to the experimental nature of the applications, e.g., 
discovering the behavior of the system being simulated, like 
unusual flight dynamics: characterization of the stall 
behavior of an aircraft for various load and balance profiles 
[2]. 

This provides support to resilience using an asymmetric 
checkpoints mechanism. This feature allows for efficient 
handling mechanisms to restart only those parts of an 
application that are characterized by the users as critical for 
overcoming erratic behavior. 

Further, this approach can evolve dynamically, i.e., when 
applications are running. This uses the native dynamic 
selection and exception handling mechanism in the YAWL 
workflow system [4]. Should unexpected situations occur, it 
allows for new rules and new exception handlers to be 
plugged-in at run-time. 

New testcases are currently being designed that involve 
large-scale (1000 CPU hours) simulations, e.g., car 
aerodynamics, running on a network of multi-core clusters. 
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Figure 2. The YAWL workflow interface for  the 2D testcase. 

 

Figure 3. The virtualized distributed infrastructure.  


