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Abstract—This paper presents an approach to design,
implement and deploy a simulation platform based on
distributed workflows. It supports the smooth integation of
existing software, e.g. Matlab, Scilab, Python, Op#-OAM,
Paraview and user-defined programs. The contributia of the
paper is a new feature which supports applicationdvel fault-
tolerance and exception-handling, i.e., resilience.
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ranging from pharmacy, meteo, biology to climatedaiing,
that all require extensive simulations and tesf@jg]. They
often need large-scale experiments, including lasting
runs, tested against petabytes volumes of datarge multi-
core supercomputers [10] [11].

In such application environments, various teamsallysu
collaborate on several projects or part of projects
Computerized tools are shared and tightly or Igosel
coupled. Some codes may be remotely located and non
movable. This requires distributed code and data
management facilities. Unfortunately, this is prote
unexpected errors and breakdowns.

Large-scale simulation applications are becoming Data replication and redundant computations hawa be

standard in research laboratories and in the ing(i}[2].

proposed to prevent from random hardware and

Because they involve a large variety of softwared an communication failures, as well as deadline-depende

terabytes of data, moving around calculations eatd flles
is not a simple process. Further, proprietary saféwand
data often reside in locations from where they oarire
moved. Distributed computing infrastructures arerdffore
necessary [6][8].

This paper explores the design, implementation use
of a distributed simulation platform. It is based @
distributed workflow system and distributed compgti
resources. This infrastructure includes heterogeseo
hardware and software components. Further, thecapiph
codes must interact in a timely, secure and effeatianner.
Additionally, because the coupling of remote handwand
software components are prone to
sophisticated mechanisms are necessary to
unexpected failures at the infrastructure and sydwvels.
This is also critical for the coupled software tieantribute
to large-scale simulation applications. Conseqyesgecific
approaches, methods and software tools are required
handle unexpected application behavior.

scheduling [9].

Hardware and system level fault-tolerance in specif
programming environments is also proposed, e.grieha
[5]. Also, middleware and distributed computing tsyss
usually support mechanisms to handle fault-tolezafitey
call upon data provenance [12], data replicati@gundant
code execution, task replication and job migratierg.,
ProActive [17], VGrADS [15].

However, erratic application behavior needs alsddo
addressed. This implies evolution of the simulatwacess
in the event of unexpected data values or unexgecistrol
flow. Little has been done in this area. The priynewncern

run-time errorsef the application designers and users is thatffadiency
handd@d performance. Therefore, application erraticalvih is

usually handled by re-designing and re-programnpieges
of code and adjusting parameter values and bouRis.
usually requires the simulations to be stopped aiilt
[15].

Departing from these solutions, a dynamic apprdach

This paper addresses these issues. Section Il is ##fesented in the following sections. It supports éholution

overview of related work. Section Il is a geneatakcription

of the application behavior using the introductiohnew

of a sample application, infrastructure, systemsd anexception handling rules at run-time by the uskased on

application software. Section IV addresses resibeand

occurring (and possibly unexpected) data valuese Th

asymmetric checkpointing issues. Section V gives afiunning workflows do not need to be aborted, as nees

overview of the implementation using the YAWL wddkf/
management system [4]. Section VI is a conclusion.
Il.  RELATED WORK

Simulation is nowadays a prerequisite for prodwesigh
and scientific breakthroughs in most applicatioreasr

can be added at run-time without stopping the ekagu
workflows [13]. At worst, they need to be paused.

This allows on-the-fly management of unexpected
events. It allows also a permanent evolution of the
applications, supporting their continuous adaptatio the
occurrence of unforeseen situations. As new sdoatarise



and new data values appear, new rules can be added This work is performed for the OMD2 project, an
workflows that will permanently be taken into acabin the  acronym for Optimisation Multi-Disciplinaire Distribuée
future. These evolutions are dynamically pluggedeirthe i.e., Distributed Multi-Discipline Optimization, pported by
workflows, without the need to stop the runningleggions.  the French National Research Agency ANR.

The overall application logics are therefore mairged N
unchanged. This guarantees a continuous adaptatinaw B. Application Workflow

situations without the need to redesign the exjstin  In order to provide a simple and easy-to-use iaterfto
workflows. Further, because exception-handling sodee  the computing software, the YAWL workflow managetnen
themselves defined by new specific workflows plng:ithe ~ System is used (Figure 2). It supports high-levedpbic

user interface to the applications remains unchafié. specifications for application design, deploymentecution
and monitoring. It also supports the modeling o§ibess
Ill.  APPLICATION TESTCASE organizations and interactions among heterogeneous
software components. Indeed, the example testes®ibed
A. Example Testcase above involves several codes written in Matlab, i{@2AM

An overview of a running tescase is presented Here. and displayed using ParaView. The 3D testcase facet
deals with the optimization of a car air-conditimgiduct.  involves CAD files generated using CATIA and STAR-
The goal is to optimize the air flow inside the guc CCM+, flow calculations using OpenFOAM, Python ptsi
maximizing the throughput and minimizing the aiegsure and visualization with ParaView. Future testcaséb also
and air speed discrepancies inside the duct. Bample is  require the use of the Scilab toolbox [16].
provided by a car manufacturer and involves ingustr ~ Because proprietary software are used, as weipas-
partners, e.g., software vendors, as well as opditin  source and in-house research codes, a securedrketivo

research teams (Figure 1). connected computers is made available to the usased on
The testcase is a dual faceted 2D and 3D examptsh E the ProActive middleware (Figure 5). .
facet involves different software for CAD modeling.g. This network is deployed on the various partners’

CATIA and STAR-CCM+, numeric computations, e.g.,locations throughout France. Web servers accessedgh
Matlab and Scilab, and flow computations, e.g., ©Ope the ssh protocol are used for the proprietary softwunning
FOAM and visualization, e.g., ParaView (Figure 1). on dedicated servers, e.g., CATIA v5 and STAR-CCM+.
The testcase is deployed using the YAWL workflow A powerful feature of the YAWL workflow system is
management system [4]. The goal is to distributetélstcase that composite workflows can be defined hierardhyidd].
on various partners’ locations where the differsoftware ~ They can invoke external software, i.e., piecescoie
are running (Figure 2). In order to support thistibuted ~ Written in whatever language is used by the uskmsy are
computing approach, an open source middleware ésl,us called by custom YAWL services or local shell StB'ijeb
namely: ProActive [17]. Services can also be invoked. Although custom sesueed
A first prototype was achieved using extensivelg th Java classes to be implemented, all these featares
virtualization technologies (Figure 3), in part@ulOracle natively supported in YAWL.
VM VirtualBox®, formerly called Sun VirtualB&[7]. This YAWL thus provides an abstraction layer that helpers
allowed experiments connecting virtual guest compsut design complex applications that may involve a darg
running heterogeneous software. These include Liradora number of distributed components (Figure 3). Furthiee
Core 12, Window3 7 and Window8 XP on a range of local Workflow specifications allow alternative executigraths
workstations and laptops (Figure 2). which may be chosen automatically or manually, ddjpey
on data values, as well as parallel branches, tondi
branching and loops. Also, multiple instance tasks
execute in parallel for different data values. Corat with
the run-time addition of code using the correspogdi
dynamic selection procedures, as well as new except
handling procedures (see Section 1V), a very pawerf
environment is provided to the users [4].

IV. RESILIENCE

A. Fault-tolerance

The fault-tolerance mechanism provided by the
underlying middleware copes with job and commuicat
failures. Job failures or time-outs are handled by
reassignment of computing resources and re-execatiol
of the jobs. Communication failures are handled rby
sending appropriate messages. Thus, hardware loweakd
are handled by re-assigning running jobs to otheources,

Figure 1. Pressure flow in the air-conditioningt{ParaView display).



which imply possible data movements to the corredjpgy
resources. This is standard for most middlewarg [17

B. Resilience

Resilience is commonly defined as “the ability tubce
back from tragedy” and as “resourcefulness” [18].id
defined here as the ability for the applicationshendle
correctly unexpected run-time situations, possiblgut not
necessarily — with the help of the users.

Usually, hardware, communication and software fagu
are handled using hard-coded fault-tolerance sof#WE5].

This is the case for communication software and for

middleware that take into account possible compatet
network breakdowns at run-time. These mechanismdars

example data and packet replication and duplicatge c

execution to cope with these situations [5].
However, when unexpected situations occur at mmeti

which are due to unexpected data values and apptica

erratic behavior, very few options are offered he tisers:
ignore them or abort the execution, analyze thergrand
later modify and restart the applications.

Optimized approaches can be implemented in su@scas

trying to reduce the amount of computations todseun, or
anticipating potential discrepancies by multiplyimpme
critical instances of the same computations. Thitiel
approach can rely on statistical estimations ofufes.
Another approach for anticipation is to prevenaldbdss of
computations by duplicating the calculations thatranning
on presumably failing nodes [9].

While these approaches deal with hardware andmyste

failures, they do not cope with application faikird’ hese
can originate from:
¢ Incorrect or incomplete specifications.
¢ Incorrect or hazardous programming.
¢ Incorrect anticipation of data behavior, e.g., ofit-
bounds data values.

C. Exception Handling

The alternative used proposed here to cope with
unexpected situation is based on the dynamic smteand
exception handling mechanism featured by YAWL [13].

It provides the users with the ability to add at-time
new rules governing the application behavior and prces
of code that will take care of the new situations.

For example, it allows for the runtime selection of
alternative workflows, called worklets, based oe turrent
(and possibly unexpected) data values. The apigicaian
therefore evolve over time without being stoppédah also
cope later with the new situations without beintgrald. This
refinement process is therefore lasting over timd the
obsolescence of the original workflows reduced.

The new worklets are defined and inserted in thgiral
application workflow using the standard specificati
approach used by YAWL (Figure 2).

Because it is important that monitoring long-rumnin
applications be closely controlled by the users, dlynamic
selection and exception handling mechanism alsoines|a
user-defined probing mechanism that provides wiik t
ability to suspend, evolve and restart the codexdyoally.

For example, if the output pressure of an air-ciioring
pipe is clearly off limits during a simulation ruthe user
must be able to suspend it as soon as he is awateato
situation. He can then take corrective actions,., e.g
suspending the simulation, modifying some pararaeter
value ranges and restarting the process immediafblgse
actions can be recorded as new execution rulesdstas
additional process description and invoked autarakyi in
the future.

These features are used to implement the applicatio
erratic behavior manager. This one is invoked leyubers to
restart the applications at the closest checkpoatter
corrective actions have been manually performed, if
necessary, e.g., modifying boundary conditions $ome

* Incorrect constraint definitions, e.g., approximateparameters. Because they have been defined bystrs at

boundary conditions.

To cope with this aspect of failures, we introduae
application-level fault management that we cedlilience It
provides the ability for the applications to suejiv.e., to
restart, in spite of their erroneous prevailingiestdn such
cases, new handling codes can be introduced dya#ynixy
the users in the form of specific new componentfiows.

This requires a roll-back to a consistent statd tha
defined by the users at critical checkpoints.

critical locations in the workflows, the checkpaintan be
later chosen automatically among the available asgtric
checkpoints available that are closest to the railacation
in the workflow.

D. Asymmetric Checkpoints

Asymmetric checkpoints are defined by the users at
critical execution locations in the application Wibows.
They are used to avoid the systematic insertion of

In order to do this efficiently, a mechanism is checkpoints at all potential failure points. Theye aiser-

implemented to reduce the number of necessary pbatk.
It is based on user-defined rules. Indeed, theicgifn
designers and users are the only ones to havexgiestise

defined at specific locations, depending only ore th
application logic. Clearly, the applications design and
users are the only ones that have the domain ésert

required to define appropriate corrective actionsd a necessary to insert appropriately these checkpoilmts

characterize the critical checkpoints.
mechanisms can be substituted for them, as is dke m
hardware and system failures. It is generally ratessary to
introduce checkpoints systematically, but only pécific
locations of the application processes, e.g., dmjore
parallel branches of the applications. We call #pproach

No automaticcontrast with middleware fault-tolerance which cas

submit jobs and resend data packets, no autonratbegure
can be implemented here. It is therefore based on a
dynamically evolving set of heuristic rules.

This approach significantly reduces the number of
necessary checkpoints to better concentrate on thalge

asymmetric checkpointsThis is described in Section D, that have an impact on the applications runs [3].

below.

For example (Figure 4):



« The checkpoints can be chosen by the users among « The persistence of these new rules to allow

those that follow long-running components and large applications to handle correctly the future
data transfers. occurrences of the new cases.

< Alternatively, those that precede sequences oflsmal e« The dynamic extension of these sets of rules.
components executions. » The definition of the new worklets to be executed,

using the native framework provided by the YAWL
specification editor: the new worklets are new
component workflows attached to the global
composite application workflows [13].

* Worklets can invoke external programs written in
any programming language through shell scripts,
custom service invocations and Web Services [14].

B. Distributed workflows

The distributed workflows rely on the interfaceeén
the YAWL engine and the ProActive middleware (FG).
Figure 4. Asymmetric checkpoints example. Users provide a specification of the simulationleggions
using the YAWL Editor. It supports a high-level @bst
The basic rule set on which the asymmetric checkpoi description of the simulation processes (Figure 2).
are characterized is the following:
¢ R1: no output backup for specified join operations.  Monitering Seripting Construction

. i Distribution Execution, Publication
* R2: only one output backup for fork operations. Sermetiing s . R & Bhariee
w Comparison

* R3: no intermediate result backup for user-spetifie Execution I
PROACTIVE v

¢ R4: no backup for user-specified local operations.

* R5: systematic backup for remote inputs.

This rule set can be evolved by the user dynamyicatl
any time during the application life-time, depergion the
specific application requirements. This uses thévaaule
mechanism in YAWL [13].

sequences of operations.
SCILAB goiprs =

V. |IMPLEMENTATION

A. Resilience e e

Resilience is the ability for applications to handl REMOTE LOCAL
unexpected behavior, e.g., erratic computationsoiahal
result values, etc. It is inherent to the applaradi logic and

programming. It is therefore different from systeros These processes are decomposed into components whic
hardware errors and failures. The usual fault-tmlee .5, pe other workflows or basic workitems. Theidas
mechanisms are therefore inappropriate here. Thigyoope  \yorkitems invoke executable tasks, e.g., shelptemr so-
with late symptoms, at best. . , called “custom services”. These custom servicespeeific

_ New mechanisms are therefore required to handie 09 gxecution units that call user-defined YAWL sergic&hey
discrepancies in the applications, most of whica anly 550t interactions with external and remote cotfeshis
discovered incrementally during the applicatiorfe-time,  yaricylar platform, the remote external servicesiavoked
whatever projected exhaustive details are incluaedhe through the ProActive middleware interface (Figé)e
application design time. This interface delegates the distributed executibthe

It is therefore important to provide the users withyemote tasks to the ProActive middleware [17]. The
powerful monitoring features and to complement theith  ijgleware is in charge of the distributed resosirce

dynamic tools to evolve the applications specifara and  gjjgcation to the individual jobs, their schedulirand the
behavior according to the future erratic behavmat will be  ¢oordinated execution and result gathering of tiividual
observed during the application life-time. tasks composing the jobs. The scheduler defaultypas

This is supported here using the YAWL workflow «est effort”. However, users can implement theiwno
system so-called “dynamic selection and exceptamdhing  ojicy, if desired. The middleware also takes imrge the
mechanism” [4]. It supports: , fault-tolerance related to hardware, communicatiamsi

* Application update using dynamically added rulessystem failures. The resilience, i.e., the apyiticatevel

specifying new worklets to be executed, based ofgyt-tolerance is handled using the rules desdrilve the
data values and constraints. previous sections.

Figure 5. The OMD?2 distributed simulation platform.



The remote executions invoke the
functionalities through ProActive’s Java API. Tharious

middlewarenot be envisaged at first. This is often the casgrmulations

due to the experimental nature of the applicationg,,

modules invoked are the ProActive Scheduler, thies Jo discovering the behavior of the system being sitedlalike

definition module and the Tasks which compose tiss .|
The jobs are allocated to the distributed computéspurces
based upon the scheduler policy. The tasks areatdispd
based on the job scheduling and resource allocalibay
invoke Java executables, possibly wrapping codéeriin
other programming languages, e.g., Matlab, Scigtthon,
or calling other software, e.g., CATIA v5, STAR-CGM
ParaView, etc.

Optionally, the workflow can invoke local tasks ngi
shell scripts and remote tasks using Web Servithsse
options are standard in YAWL [4]. Calling the Prdike
middleware is however necessary to run tasks @e laulti-
core clusters. ProActive is here in charge of ttieeduling
and resource allocation in these highly parallgirenments,
which YAWL does not support natively.

Application
Workflow

[ )

YAWL Engine

r 1

! i

ProActive Scheduler+—1 ProActive Job H ProActive TasksH

Middleware
Java classes Java Exec

Figure 6. The YAWL workflow / ProActive middlewaneterface.

VI. CONCLUSION

The requirements for large-scale simulations make i
necessary to deploy various software components on

heterogeneous distributed computing infrastructufidsese
environments are often required to be distributetbrag a
number of project partners for
organizational purposes.

This paper presents an experiment for deploying &

distributed simulation platform. It uses a netwardkhigh-

performance computers connected by a middlewarer.lay

Users interact dynamically with the applicationsngsa
distributed workflow system. It allows them to ohedj
deploy and control the application executions.

A significant bonus of this approach is that besitiilt-

tolerance provided by the middleware, which handle$6]

communication, hardware and system failures, tleesusan
define and handle the application failures at thorkflow
specification level.

This means that a new abstraction layer is intreduo
cope with the application errors at run-time. Irdjethese

errors do not necessarily result from programmimgl a
design errors. They may also result from unforeseen

situations, data values and boundary conditions ¢bald

administrative and

unusual flight dynamics: characterization of theallst
behavior of an aircraft for various load and batapcofiles
[2].

This provides support to resilience using an asytrime
checkpoints mechanism. This feature allows forcfit
handling mechanisms to restart only those partsamf
application that are characterized by the usersitisal for
overcoming erratic behavior.

Further, this approach can evolve dynamically, wden
applications are running. This uses the native uhjoa
selection and exception handling mechanism in tA&VY
workflow system [4]. Should unexpected situatiossu, it
allows for new rules and new exception handlersbéo
plugged-in at run-time.

New testcases are currently being designed thaiviav
large-scale (1000 CPU hours) simulations, e.g.,
aerodynamics, running on a network of multi-corestgrs.

car
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