Atlas-Based Reduced Models of Blood Flows for Fast Patient-Specific Simulations

Kristin Mcleod 1 Alfonso Caiazzo 2 Miguel Angel Fernández 2 Tommaso Mansi 1 Irene Vignon-Clementel 2 Maxime Sermesant 1 Xavier Pennec 1 Younes Boudjemline 3 Jean-Frédéric Gerbeau 2, *
* Auteur correspondant
1 ASCLEPIOS - Analysis and Simulation of Biomedical Images
CRISAM - Inria Sophia Antipolis - Méditerranée
2 REO - Numerical simulation of biological flows
LJLL - Laboratoire Jacques-Louis Lions, Inria Paris-Rocquencourt, UPMC - Université Pierre et Marie Curie - Paris 6
Abstract : Model-based interpretation of the complex clinical data now available (shape, motion, flow) can provide quantitative information for diagnosis as well as predictions. However such models can be extremely time consuming, which does not always fit with the clinical time constraints. The aim of this work is to propose a model reduction technique to perform faster patient-specific simulations with prior knowledge built from simulations on an average anatomy. Rather than simulating a full fluid problem on individual patients, we create a representative `template' of the artery shape. A full flow simulation is carried out only on this template, and a reduced model is built from the results. Then this reduced model can be transported to the individual geometries, allowing faster computational analysis. % Here we propose a preliminary validation of this idea. A well-posed framework based on currents representation of shapes is used to create an unbiased template of the pulmonary artery for 4 patients with Tetralogy of Fallot. Then, a reduced computational fluid dynamics model is built on this template. Finally, we demonstrate that this reduced model can represent a specific patient simulation.
Type de document :
Communication dans un congrès
STACOM, Sep 2010, Beijin, China. Springer, 6364, pp.95-104, 2010, Lecture Notes in Computer Science. 〈10.1007/978-3-642-15835-3_10〉
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00517994
Contributeur : Jean-Frédéric Gerbeau <>
Soumis le : jeudi 16 septembre 2010 - 10:39:14
Dernière modification le : mercredi 12 septembre 2018 - 01:16:39
Document(s) archivé(s) le : mardi 23 octobre 2012 - 16:15:09

Fichier

2010_miccai_lncs.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Kristin Mcleod, Alfonso Caiazzo, Miguel Angel Fernández, Tommaso Mansi, Irene Vignon-Clementel, et al.. Atlas-Based Reduced Models of Blood Flows for Fast Patient-Specific Simulations. STACOM, Sep 2010, Beijin, China. Springer, 6364, pp.95-104, 2010, Lecture Notes in Computer Science. 〈10.1007/978-3-642-15835-3_10〉. 〈inria-00517994〉

Partager

Métriques

Consultations de la notice

759

Téléchargements de fichiers

172