Lines Pinning Lines

Abstract : A line L is a transversal to a family F of convex polytopes in R^3 if it intersects every member of F. If, in addition, L is an isolated point of the space of line transversals to F, we say that F is a pinning of L. We show that any minimal pinning of a line by polytopes in R^3 such that no face of a polytope is coplanar with the line has size at most eight. If in addition the polytopes are pairwise disjoint, then it has size at most six.
Type de document :
Article dans une revue
Discrete and Computational Geometry, Springer Verlag, 2011
Liste complète des métadonnées
Contributeur : Xavier Goaoc <>
Soumis le : jeudi 16 septembre 2010 - 12:11:26
Dernière modification le : jeudi 7 février 2019 - 17:54:13


  • HAL Id : inria-00518028, version 1



Boris Aronov, Otfried Cheong, Xavier Goaoc, Rote Günter. Lines Pinning Lines. Discrete and Computational Geometry, Springer Verlag, 2011. 〈inria-00518028〉



Consultations de la notice