Pinning a Line by Balls or Ovaloids in $R^3$

Xavier Goaoc 1 Stefan Koenig 2 Sylvain Petitjean 1
1 VEGAS - Effective Geometric Algorithms for Surfaces and Visibility
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : We show that if a line L is an isolated line transversal to a finite family F of (possibly intersecting) balls in R^3 and no two balls are externally tangent on L, then there is a subfamily G ⊆ F of size at most 12 such that L is an isolated line transversal to G. We generalize this result to families of semialgebraic ovaloids.
Type de document :
Article dans une revue
Discrete and Computational Geometry, Springer Verlag, 2011, 45 (2), pp.303-320. <10.1007/s00454-010-9297-5>
Liste complète des métadonnées

https://hal.inria.fr/inria-00518033
Contributeur : Xavier Goaoc <>
Soumis le : jeudi 16 septembre 2010 - 12:17:33
Dernière modification le : mardi 13 décembre 2016 - 15:45:42

Identifiants

Collections

Citation

Xavier Goaoc, Stefan Koenig, Sylvain Petitjean. Pinning a Line by Balls or Ovaloids in $R^3$. Discrete and Computational Geometry, Springer Verlag, 2011, 45 (2), pp.303-320. <10.1007/s00454-010-9297-5>. <inria-00518033>

Partager

Métriques

Consultations de la notice

228