Lower Bounds to Helly Numbers of Line Transversals to Disjoint Congruent Balls

Abstract : A line L is a transversal to a family F of convex objects in R^d if it intersects every member of F. In this paper we show that for every integer d>2 there exists a family of 2d-1 pairwise disjoint unit balls in R^d with the property that every subfamily of size 2d-2 admits a transversal, yet any line misses at least one member of the family. This answers a question of Danzer from 1957.
Type de document :
Article dans une revue
Israël Journal of Mathematics, The Hebrew University Magnes Press, 2012, 190 (1), pp.213-228. 〈https://link.springer.com/article/10.1007%2Fs11856-011-0179-1〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00518035
Contributeur : Xavier Goaoc <>
Soumis le : jeudi 16 septembre 2010 - 12:21:32
Dernière modification le : mardi 24 avril 2018 - 13:35:04

Identifiants

  • HAL Id : inria-00518035, version 1

Collections

Citation

Otfried Cheong, Xavier Goaoc, Andreas Holmsen. Lower Bounds to Helly Numbers of Line Transversals to Disjoint Congruent Balls. Israël Journal of Mathematics, The Hebrew University Magnes Press, 2012, 190 (1), pp.213-228. 〈https://link.springer.com/article/10.1007%2Fs11856-011-0179-1〉. 〈inria-00518035〉

Partager

Métriques

Consultations de la notice

202