
HAL Id: inria-00518328
https://inria.hal.science/inria-00518328

Submitted on 17 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A quasi-Monte Carlo method for computing areas of
point-sampled surfaces

Yu-Shen Liu, Jun-Hai Yong, Hui Zhang, Dong-Ming Yan, Jia-Guang Sun

To cite this version:
Yu-Shen Liu, Jun-Hai Yong, Hui Zhang, Dong-Ming Yan, Jia-Guang Sun. A quasi-Monte Carlo
method for computing areas of point-sampled surfaces. Computer-Aided Design, 2006. �inria-
00518328�

https://inria.hal.science/inria-00518328
https://hal.archives-ouvertes.fr


http://www.elsevier.com/locate/cad


Y.-S. Liu et al. / Computer-Aided Design 38 (2006) 55–6856
the area computation is unsuccessful. Furthermore, the

surface reconstruction requires the expenditure of large

amounts of time and space if the number of points is

gigantic. To our knowledge, there is no published literature

on computing areas of point-sampled surfaces directly.

The work most related to ours is Ref. [14], in which a

quasi-Monte Carlo method for computing the surface area

of a CSG model is presented by Li et al. Their method is

based on the Cauchy–Crofton formula, and performs the

area computation by counting the number of intersection

points between the boundary surface of the CSG model and

a set of uniformly distributed lines. However, since no

parametric or implicit surface is given for an unorganized

point set, their method cannot be applied directly to

compute the area of the point-sampled surface. This paper

mainly discusses how to apply the quasi-Monte Carlo

method to an unorganized point set for quickly and

efficiently computing the area of the point-sampled surface.

The main difficulty is to determine all intersection points

between a line and the point set. Traditionally, there are two

approaches to compute the intersection. One indirect

approach is based on surface reconstruction techniques,

e.g. Refs. [3,8,17], and then uses general line/surface

intersection methods. To speed up the intersection compu-

tation, Adamson et al. [2] define a point set surface

approximated locally by polynomial, and then compute

the intersection of a ray and the point set surface. The other

approach described by Schaufler et al. [25] computes the

intersection between a ray and the point set directly by

placing a disk at each point of the point set without

reconstructing any surface, but their method can only find

one of intersection points.

In this paper, we present a novel method for computing

the area of a point-sampled surface. The new method

operates directly on the given point set without reconstruct-

ing any surface. Thus, it avoids the additional storage

overhead and an approximation error that would be

introduced by a polygonal reconstruction. Our method is

based on the Cauchy–Crofton formula used in Ref. [14]. It

computes the area of the point-sampled surface by counting

the number of intersection points between the point set and a

set of uniformly distributed lines generated using low-

discrepancy sequences. For this reason, our method is also

called a quasi-Monte Carlo area (QMCA) method for a

point-sampled surface. To determine all intersection points

between the point set and the lines, we present a new

algorithm of a line and point sets intersecting (LPSI), which

is based on a clustering technique. In some sense, our LPSI

algorithm can be considered an extension of the ray tracing

routine proposed by Schaufler et al. [25]. In addition, the

approximation influences of sampling density and noise on

the area computation of point sets are discussed. The major

contributions of our work are as follows.

– Propose the formula for area computation of the

point-sampled surface. A novel QMCA method is
presented for directly computing the area of a

point-sampled surface without any surface recon-

struction procedure. This method can be applied

to large and complex point sets acquired by 3D

scanning devices or sampled from multi-surfaces

(or non-manifold).

– Extend the ray tracing routine [25]. A new LPSI

algorithm is designed for computing all approxi-

mated intersection points between a line and a

point set.

– Investigate the effect of quasi-Monte Carlo

integration on the discontinuous problem. The

influences of sampling density and noise on the

QMCA method are discussed.

The remainder of this paper is organized as follows. In

Section 2, the procedure of the QMCA method is presented.

In Section 3, the LPSI algorithm is described. In Section 4,

some experimental results are introduced. In Section 5, the

influences of sampling density and noise on the QMCA

method are discussed, and the comparisons with the

methods based on surface reconstruction are presented.

Finally, we give conclusions in Section 6.
2. Computing the area of a point-sampled surface

2.1. Definition of the area of a point-sampled surface

Let §Z fpij1% i%Mg be a set of points sampled from

an unknown surface S2R
3 with or without boundary.

Because, there is no connectivity information for point

sets, these local neighbors of pi 2§ are usually

constructed using k-nearest neighbors determined by

gathering the k points of § nearest to pi [8,11,19]; this

set is denoted by Nk(pi). For finding k-nearest neighbors,

we use the ANN library written in CCC. The ANN

library approximates nearest neighbor searching based on

kd-trees and box-decomposition trees, which can be found

at: http://www.cs.umd.edu/wmount/ANN/. We assume

that each point pi of § is equipped with a unit normal

ni. In practice, these normals can be estimated either from

scanners or by local neighboring positions [8,17]. Here, the

area of a point-sampled surface, which consists of a point

set § sampled from a regular surface S2R
3 with or

without boundary, is defined by the area of S. In this paper,

our goal is to approximate the area of the point-sampled

surface consisting of § without reconstructing the

underlying surface S.

2.2. Formula for surface area computation

Consider a surface in R
3. For a line L intersecting the

surface, let dL be the density of all lines intersecting the

surface. Then, let m be the number of intersection points

of all lines with the surface, and s the area of the surface.

http://www.cs.umd.edu/~mount/ANN/


Y.-S. Liu et al. / Computer-Aided Design 38 (2006) 55–68 57
The Cauchy–Crofton formula is described by Li et al. [14]:ð
m dL Z ps; (1)

which relates the area of a surface to the number of

intersection that the surface has with all lines. The reader

may see Ref. [14] for more detailed derivation of the

formula. Li et al. [14] use the Cauchy–Crofton formula to

compute the surface area of a given 3D body (e.g. a CSG

model) by Monte Carlo integration approximation. The

method relates the surface area of a 3D body B to the

number of intersection points between the boundary surface

of B and a set of random lines in R
3. Suppose that SB is the

boundary surface of B whose area is s. Let SB1
be the

boundary surface of a reference object B1, which contains B.

The area s1 of B1 is known. Consider a set L of N lines that

are randomly sampled from the set of lines that intersect B1,

as shown in Fig. 1. Let nB and nB1
be the total numbers of

intersection points of the lines in L with respect to SB and

SB1
, respectively. According to Eq. (1), by the integration

approximation, Li et al. [14] get

nB

N
zcps and

nB1

N
zcps1;

where c is a constant of proportionality. Then, the formula

for computing the surface area s of B can be given by

sz
nB

nB1

s1: (2)

Based on the formula (2), Li et al.’s method is essentially a

Monte Carlo method for numerical integration, and it can be

applied to CSG representation, boundary representation, or

surface models. However, since point sets acquired by 3D

scanning devices do not give explicitly surfaces and invariably

contain noise and irregular samples, we cannot compute the

intersection points of a line and point sets directly.
2.3. A description of the QMCA method

We have just sketched the basis for computing the

surface area of a given 3D body. Now, we apply the formula
B

B1

Fig. 1. Compute the area of a body B contained within the reference body B1

using the Cauchy–Crofton formula. Random lines are chosen within B1.
(2) to the area computation of a point-sampled surface.

Suppose that a point set § describes some underlying

surface S. Analogously, the above formula (2) can be

extended to the point set §. Let the area of the underlying

surface S of § be s. Suppose that S1 is the boundary surface

of a reference object B1 containing §. The area s1 of B1 is

known. According to the formula (2), we can give the

formula for computing the surface area s of § as follows:

sz
n

n1

s1; (3)

where n and n1 are the total number of intersection points of

the lines in L with respect to S and S1. To summarize, our

new method for computing the area of the point set §, i.e.

the so-called QMCA method, can be described as follows.

1. Generate the reference object B1 containing the point set

§ (Section 2.4).

2. Generate a set L of N random lines that sample the set of

all lines intersecting the reference object B1 (Section 2.5).

3. Compute the number of intersection points of the lines in

L with respect to the reference surface S1 and the

underlying surface S of the point set § (Section 3). Let n1

and n denote those two numbers of intersection points,

respectively.

4. Approximate the area s of S, i.e. the area of §, by

sz(n/n1)s1.
2.4. The smallest enclosing ball of point sets

In the first step of out method, there are two requirements

for generating a reference body B1, which contains the point

set §. One requirement is that B1 should been chosen as a

simple object to simplify the intersection of a line with B1.

The other requirement is that the generated reference body

B1 should enclose the original object, i.e. the point set §, as

closely as possible such that the approximation error derived

from the Monte Carlo method is decreased [23]. In practice,

the reference body B1 is chosen as a sphere to simplify the

intersection of a line with B1 [14], where the sphere is

denoted by SR. In this paper, we use Gärtner’s miniball

method [7] to choose the smallest enclosing ball of § as SR.

The method is very fast in low dimensions, e.g. three

dimensions. An alternative might be to consider a convex

bounding box, such as an axis-parallel bounding box of §,

as B1, and the correlative sampling problem is discussed by

Castro et al. [4].
2.5. Generating uniformly distributed lines using

low-discrepancy sequences

In this phase, we attempt to find a set L of N uniformly

distributed lines that sample all lines intersecting the

reference object B1. Castro et al. [4] generate a uniform

density of lines on a bounding sphere or a convex bounding



Y.-S. Liu et al. / Computer-Aided Design 38 (2006) 55–6858
box, where the convex bounding box might be to consider

an axis-parallel bounding box of point sets. Li et al. [14] use

two models, called the chord model and tangent model, for

sampling on a sphere. The chord model can be described as

follows: a random line is defined by a line passing through

two independent uniformly distributed points on a sphere SR

of radius R in R
3. Let SR be parameterized by

Qðb;aÞ Z ðR sinb cosa;R sinb sina;R cosbÞ (4)

where b2[0, p] and a2[0, 2p) are shown in Fig. 2.

According to the definition of the chord model, the key

problem of generating uniformly distributed lines is how to

obtain uniformly distributed points on the sphere. Since the

area element of the sphere SR is a function (i.e. sin bdadb)

of b, it is incorrect to select spherical coordinates b and a

from uniform distributions b2[0, p] and a2[0, 2p) for

obtaining uniformly distributed points on the sphere. The

more details of this result can be found at: http://mathworld.

wolfram.com/SpherePointPicking.html. To obtain points

such that any small area on the sphere is expected to

contain the same number of points, in general there are four

methods for doing this [24]. Here, we use one of these

methods, which are described as follows. By setting uZ
cos b, Eq. (4) can be rewritten by

Qðu;aÞ Z ðR
ffiffiffiffiffiffiffiffiffiffiffiffi
1Ku2

p
cos a;R

ffiffiffiffiffiffiffiffiffiffiffiffi
1Ku2

p
sin a;RuÞ (5)

with a2[0, 2p) and u2[K1,1]. Using the improved

parameterization given in Eq. (5), we obtain the uniformly

distributed points on the sphere SR.

The method of computing the area of a point-sampled

surface based on the formula (3) is essentially a Monte

Carlo method for numerical integration, with the domain

of integration being the 4D parameter space. It is known

that uniformly distributed random points are not distributed

as evenly as so-called low-discrepancy sequences of points

for the purpose of accurate numerical integration [14–16].

The reader may consult Refs. [15,16] for the concept of

low-discrepancy sequences. One can also use rejection

sampling for integration problem [28]. In this paper, we
X

Y

Z

α

β

Q(β,α)

SR

R

Fig. 2. The parameterization of a sphere SR.
use low-discrepancy sequences, instead of pseudo-random

number generators, to generate the set L of evenly

distributed lines. For this reason, our method is also called

a quasi-Monte Carlo method. Some quasi-Monte Carlo

methods have already been used for computing the volume

[5] and area [14] in CSG modeling. Castro et al. [4] also

apply such methods to the multi-path method for radiosity.

Let N be the number of sampling for approximating

numerical integration. Using low-discrepancy sequences

has theoretical error bound O(NKl 1ogs N), which is much

faster than the probabilistic error bound O(NK1/2) of Monte

Carlo methods using pseudo-random sequences in our

present setting [5,14–16], where discrepancy is defined in a

s-dimensional space.

There exists a lot of different low-discrepancy sequences:

Halton, Sobol, Niederreiter, and others [16,23]. In our case,

we use Niederreiter’s 4D low-discrepancy sequences of

points for Eq. (5). The chord model is performed in the 4D

space (u0, a0, u1, a1), where (u0, a0) and (u1, a1) are two

independent pairs of parameters for generating two

independent points on the sphere SR and the line passes

through Q(u0, a0) and Q(u1, a1).
3. The LPSI algorithm

Suppose that a set L of uniformly distributed lines on a

sphere SR has been generated using Niederreiter’s 4D low-

discrepancy sequences for Eq. (5). The emphasis of our

method for computing the area of the underlying surface S

of the point set § is to determine the number of intersection

points between each line in L and §. In this section, we

introduce a new algorithm of a line and point sets

intersecting, called LPSI. Schaufler et al. [25] compute

directly the intersection of a ray and a point set by placing a

disk at each point of the point set without reconstructing any

surface. Their method first intersects a cylinder around the

ray with those disks. Then, the intersection is computed as a

weighted average of disks whose centers are inside the

cylinder. However, their method can only find one of

intersection points. We extend Schaufler et al.’s approach

based on a clustering technique. In contrast to previous

intersection approaches [2,25], our LPSI algorithm does not

reconstruct or approximate a surface from a point set while

finding all intersection points of a line with the point set.

The main steps of the LPSI algorithm can be described as

follows.

1. Detect whether an intersection has occurred between a

cylinder around a line and a point set, and collect the

points inside the cylinder (Section 3.1).

2. Cluster the collected points (Section 3.2).

2.1. Build initial clusters by projecting the collected

points onto the line.

2.2. Classify the built clusters (possibly remove some

clusters or add some new clusters).

http://mathworld.wolfram.com/SpherePointPicking.html
http://mathworld.wolfram.com/SpherePointPicking.html


Y.-S. Liu et al. / Computer-Aided Design 38 (2006) 55–68 59
3. Return the number of intersection points, which is equal

to the number of the resultant clusters. (Optional)

approximate the intersection points for all resultant

clusters.

We will explain each step of the LPSI algorithm in the

following sections.

3.1. Collecting inclusion points

We assume that the maximum size dmax of a gap in the

samples for a point set § is known [25], and we will

describe how to choose dmax in Section 4.1. Let l2L be a

line with the parametric representation: l(t)ZoCtn for

some t 2R, where o and n is an origin and a unit direction of

the line l, respectively. We can use octrees described by

Adams et al. [1] or BSP trees, to accelerate the intersection

point searching speed. The points of § are considered as

surfels with zero radius. Suppose that we have constructed

an octree for §, and have classified the cells of the octree as

two types: boundary cells containing points of §, and

empty cells containing no point of § [1]. In some point-

based processing, such as Boolean operations [1] and

surface reconstruction [17], the octree can be utilized. Thus,

it is not an additional price for the point set.

The first step of our LPSI algorithm is similar to

intersection detection described in Ref. [25]. The line l is

surrounded by a cylinder of radius r, where r is set slightly

larger than the largest hole dmax in §. An intersection is

reported if the cylinder contains some points of §. We call

these points inside the cylinder inclusion points. Let CbZ
fCig be a set of boundary cells of the octree, where Ci is the

ith boundary cell and contains part of point sets. If l does not

intersect with Ci, we continue looking for another boundary

cell until the intersection yields. All points of Cb within the

cylinder are collected as inclusion points of l with §. In

Fig. 3, the black points are inclusion points of a point set

relative to a line l surrounded by a cylinder of radius r.

3.2. Clustering inclusion points

In this section, we present a projection-based clustering

algorithm. The algorithm consists of two steps. The first step

builds initial clusters by collecting the projection of

inclusion points onto l. In the second step, we classify

these clusters for counting the number of intersection points

and approximating all intersection points.
l

qi

ti > 2r

r

Fig. 3. Collecting initial clusters by projection.
3.2.1. Building initial clusters by projection

Clustering methods are widely used in Computer

Graphics to reduce the complexity of 3D objects. For

instance, Pauly et al. use region-growing and hierarchical

clustering methods to simplify point-sampled surfaces [20].

Unlike Pauly et al.’s method, our clustering method maps

three dimensional points into one dimensional coordinates.

Suppose that {qi} is a set of inclusion points of l with §.

Firstly, we project each point qi onto l, and get one

corresponding coordinate ti 2R by the parametric rep-

resentation: l(t)ZoCtn. So we also obtain a set {ti} of

coordinates. Secondly, the set {ti} is sorted in increasing

order. Thus we suppose below that {ti} has already been

sorted. Finally, we build initial clusters by {ti} as follows.

Starting from the minimal coordinate of {ti}, a cluster Q0,

which is a set of some inclusion points in {qi}, is built by

comparing the distance of adjacent coordinates. This

cluster is terminated when the distance of two adjacent

coordinates is larger than a maximum bound (we typically

choose 2r as the bound). Then, starting from the terminated

coordinate, the next cluster Q1 is built repetitively.

Clustering is terminated until the maximal coordinate is

reached. Fig. 3 shows the procedure of building initial

clusters.
3.2.2. Classifying clusters

Assume that QZ fqi 2§j1% i%mg is one of initial

clusters of l with §, where m is the number of inclusion

points of Q. Consider that Q is sorted in increasing order of

coordinates. Each inclusion point qi is equipped with a unit

normal nqi
. We shall classify Q into four cases as follows:

Case 1: Q contains no intersection point.

Case 2: Q contains only one touching point.

Case 3: Q contains only one intersection point.

Case 4: Q contains two intersection points.

We use the following algorithm to classify Q.

1. Project each inclusion point qi onto l and get the

corresponding projection point q0
i. If nqi

,ðq0
i KqiÞO0, is

classified as outside; otherwise q0
i is classified as inside,

where $ denotes dot product. If all corresponding

projection points of Q are outside, the cluster Q is

classified as Case 1 (see Fig. 4(a)). Stop.

2. If there is no outside point and all inside points of Q are

on the line l, the cluster Q is classified as Case 2 (see

Fig. 4(b)). Stop.

3. Map the unit direction n of l and each unit normal nqi

into a unit sphere. Let SP be a plane with the normal n

and through the sphere center (see Fig. 5). If all nqi
are at

the same side of SP, the cluster Q is classified as Case 3

(see Fig. 4(c)). Stop.

4. If all nqi
are not at the same side of SP, the cluster Q is

classified as Case 4 (see Fig. 4(d)). Stop.



r l
q'i

qi

Q

(a)

r l

Q

(b)

r
l

Q

(c)

l

Q

r

(d)

Fig. 4. Analyzing clustering. (a) Q contains no intersection point. (b) Q contains only one touching point. (b) Q contains only one intersection point.

(d) Q contains two intersection points.

n

SP

nq m

nq1

Y.-S. Liu et al. / Computer-Aided Design 38 (2006) 55–6860
In general, compared with the point set §, the radius r of

the cylinder surrounding the line l is too small. For this

reason, we can consider the cluster Q as a sampling on a local

convex (concave, or flat) patch on the underlying S. For Case

4, we split the cluster Q into two new clusters at such one

inclusion point, whose normal and nq1 are not at the same

side of SP. In practice, the case that Q contains multiple

convex (or concave) patches generally derives from noise,

and we will discuss the influence of noise in Section 5.2.

After classifying clusters, we choose the number of

resultant clusters as the number of intersection points of the

line l with the point set §. Although only the number of

intersection points of l with § is relative to the area

computation of §, it is still necessary to determine the

locations of the intersection points of l with § for other

applications, such as ray tracing point-sampled geometry

[25]. Suppose that QZ fqi 2§j1% i%mg is one of

intersection clusters of l with §. The intersection point of

one cluster Q is given by the average of projecting the points

qi onto the line l. Let y be a point on the line l. The

intersection point of one cluster Q can be written by yZoC
tn, where t is given by

t Z
1

m

ðm

iZ1

ðqiKoÞ,n: (6)
nq i nq i+1

Fig. 5. Map the unit direction n of l and inclusion point’s unit normals into a

unit sphere.
4. Implementation and experiments

We have applied our QMCA method to different point

sets, which are sampled from some simple objects
(see Fig. 6) or are obtained by 3D scanning devices (see

Fig. 11). The algorithms described above are implemented

in CCC. The execution time is given in seconds on a

Pentium IV 1.70 GHz processor with 512M RAM excluding

the time of loading point sets.
4.1. Implementation details

Our QMCA algorithm involves two parameters: the

number N of lines used and the radius r of the cylinder

surrounding the intersection line. N is set by the user. One

may choose a large N, which yields the better approximation

result at the expense of computation time. We define r to be

proportional to the maximum gap size dmax described in

Section 3.1:

r Z ldmax: (7)



Fig. 6. Point sets sampled from some simple objects. (a) A sampling on a cylinder of radius 0.2 and height 0.8. (b) A sampling on a sphere of radius 0.4. (c)

A sampling on a cube of side-length 1.0. (d) A sampling on a CSG difference between a cube of side-length 0.5 and a cylinder of radius 0.2 and height 1.0.

(e)–(h) show the rendering model corresponding to (a)–(d). Note that the maximum surfel radius of each model is chosen as its dmax.

Y.-S. Liu et al. / Computer-Aided Design 38 (2006) 55–68 61
One may choose dmax by two methods. For a point set

with surfel representation, dmax is set to the maximum one

of the surfel radii. For a general point set acquired by a

3D scanning device, dmax is set to the mean radius of the

particular point set, where the mean radius is defined by

the average over the sum of the distance between each

point of the point set and its nearest neighborhood. We

typically choose lZ1.5. A larger value for l yields the

expense of computation time and increases the approxi-

mation error.

For point sets used in this section, the enclosing reference

body B1 defined in Section 2.4 is a sphere with radius R. R is

chosen to be slightly larger than the radius of the smallest

enclosing ball of the given point set contained by B1. To

accelerate the computation, we exploit the octree described

in Section 3.1. In the preprocessing step, an axis-aligned

octree of depth d (typically dZ4) [1] is constructed and the

smallest enclosing ball of a point set is computed. In this

section, we demonstrate the rendering models, represented

by surfels, using the program sview developed by Bart

Adams. For more details of this program, see the website

(http://www.cs.kuleuven.ac.be/wbarta/). All errors

measured and given below are relative errors.

The efficiency of the quasi-Monte Carlo method for

computing surface area has been described in Ref. [14]. The

comparison suggests that the low-discrepancy sequences

lead to smaller approximation errors than pseudo-random
numbers. In this section, we do not repeat the comparison

between the standard Monte Carlo method using pseudo-

random numbers and the quasi-Monte Carlo method using

low-discrepancy sequences. Niederreiter’s sequences of

points in the 4D space of (u0, a0, u1, a1) are generated for

the tangent model, as described in Section 2.5. For timing

the performance and measuring the quality, a set of models

with varying complexities (with respect to the number of

points) have been used. In the next section, we first give

some experimental results to demonstrate the convergence

of the estimated areas of three point sets sampled from a

cylinder, a sphere, and a cube, as shown in Fig. 6(a)–(c). For

convenience, these point sets used in Fig. 6(a)–(c) are called

the cylinder, the sphere, and the cube, respectively. Fig. 6(d)

shows an example of CSG object, which will be referred to

as the ‘cubeCcylinder’. The true areas of the four models

are 1.2566, 2.0106, 6.0, and 2.1283, respectively.
4.2. Approximation errors

The approximation error arises from using the LPSI

method for intersecting and using low discrepancy

sequences for generating lines, so the real convergence

rate is determined by the LPSI’s error and the quasi-Monte

Carlo error. For the LPSI method, it is difficult to analyze

the theoretical error bound because of the complex cases of

intersection between lines and point sets.

http://www.cs.kuleuven.ac.be/~barta/


Y.-S. Liu et al. / Computer-Aided Design 38 (2006) 55–6862
Fig. 7 shows the curves of relative approximation errors

generated by our QMCA method for the cylinder, the

sphere, the cube, and the cubeCcylinder, in Fig. 6(a)–(d),

respectively. In Fig. 7, the number of lines is specified from

102 to 106. The reference solid lines marked with K(1/2)

and K(2/3) in Fig. 7 are the graphs of the functions NK1/2

and NK2/3, respectively, for revealing the trend of the error

curves, where N is the number of lines used. The standard

Monte Carlo method approximates the error O(NK1/2) and

the quasi-Monte Carlo method using low-discrepancy

sequences approximates the error O(NK2/3) [14]. Fig. 7

shows that the error curves approximate the domain

between NK1/2 and NK2/3. Those error curves in Fig. 7

suggest that the QMCA method leads to small approxi-

mation errors. In general, the more lines are chosen,
2 3 4 5 6
–6

–5

–4

–3

–2

–1

0

log(number of lines)

lo
g(

re
la

tiv
e 

er
ro

r)

–1/2 

–2/3 

(d) (

2 3 4 5 6
–6

–5

–4

–3

–2

–1

0

log(number of lines)

lo
g(

re
la

tiv
e 

er
ro

r)

–1/2 

–2/3 

(a) (

Fig. 7. (a) Approximation error for the area of the cylinder. (b) Approximation erro

(d) Approximation error for the area of the cubeCcylinder. Note that the dashed
the higher accuracies would be obtained. When NZ5000

lines are generated using Niederreiter’s low-discrepancy

sequences, it is expected to approximate the relative error

O(NK2/3)(z0.0034) for the quasi-Monte Carlo method

[14]. In practice, we also find that 5000 lines for the QMCA

method can lead to both small errors and little computation

time.

4.3. Execution time

Before computing the area of a point set, a preprocessing

step consists of constructing an octree and computing the

smallest enclosing ball. The preprocessing step can be

performed in a short time. Table 1 gives the time in seconds

for the preprocessing step of some point sets referred to in
2 3 4 5 6
–6

–5

–4

–3

–2

–1

0

log(number of lines)

lo
g(

re
la

tiv
e 

er
ro

r)

–2/3 

–1/2 

c)

2 3 4 5 6
–6

–5

–4

–3

–2

–1

0b)

log(number of lines)

lo
g(

re
la

tiv
e 

er
ro

r)

–1/2 

–2/3 

r for the area of the sphere. (c) Approximation error for the area of the cube.

curves correspond to relative errors.



Table 1

Time for preprocessing

Model Fig. Number

of points

Time1a

(s)

Time2b

(s)

Cylinder 6(a) 12,516 0.015375 0.015625

Sphere 6(b) 30,096 0.032250 0.062500

Cube 6(c) 65,000 0.016500 0.125000

CubeCcylinder 6(d) 21,941 0.015105 0.046875

Bunny 11(a) 35,947 0.046999 0.062500

Dragon 11(b) 437,645 0.469000 0.921875

Buddha 11(c) 543,652 0.515999 1.156250

a Time 1 is the time of constructing an octree at depth 4.
b Time 2 is the time of computing the smallest enclosing ball.

2 3 4 5 6
3

2

1

0

1

2

3

log(number of lines)

lo
g(

tim
es

)

cylinder
sphere
cube
cube+cylinder

Fig. 8. Time comparison of the estimated areas of four point sets, i.e. the

cylinder, the sphere, the cube, and the cubeCcylinder, respectively, in

Fig. 6.

Y.-S. Liu et al. / Computer-Aided Design 38 (2006) 55–68 63
this paper. The execution time shown in the following test

does not include the preprocessing time.

Fig. 8 shows four curves of time, which are relative to the

number of lines during computing the areas of four models:

the cylinder, the sphere, the cube, and the cubeCcylinder,

respectively, in Fig. 6. In Fig. 8, each curve shows that the

more lines are chosen, the larger computation time is

required. The computation time increases approximately

linearly with the number of lines used. The time also

depends on the number of points of the models.
5. Discussion

Since point sets acquired by 3D scanning devices

invariably contain noise and irregular samples, we have to

consider their influences on the errors of the area

computation for point sets.
5.1. Sampling density

From an approximation point of view, when a point set §
sampled from an underlying surface S is sufficiently dense, §
is a piecewise constant approximation of S. It is impossible to

approximate the area of S at higher accuracy when insufficient

sampling has occurred. We will discuss the influence of

sampling density on the QMCA method in this section.

To choose the radius of the cylinder surrounding the

intersection line l, we assume that the maximum size dmax of a

gap in samples is known in Section 3. We use r-dense

proposed by Hoppe et al. [8] to define the sampling density,

where r-dense is related to dmax. The point set § is said to be

r-dense if any sphere with radius r and center in S contains at

least one sampled point in § [8], where r is called the

sampling radius. For sampling on a parameter or implicit

surface, r can be specified. For the surfel representation, r is

the maximum one of the surfel radii. For a general point

cloud, r can be obtained by computing the sampling density

as described in Ref. [22]. In particular, if the radius r of the

cylinder surrounding the intersection line l is less than r, it is

impossible to test reliably the intersection between l and §.

In contrast, if r is larger than r, it will spend more time on

computing intersection. When § approximates S sufficiently,

less relative approximation errors will occur by our QMCA

method. Fig. 9 shows the error curves with respect to the

various sampling radii r. Fig. 9(a) shows the curves of

relative approximation errors for point sets that are uniform

sampling on a sphere of radius 0.4 by different sampling radii.

Fig. 9(b) shows the curves of relative approximation errors

for point sets that are a uniform sampling on a cylinder of

radius 0.2 and height 0.8 by different sampling radii.

Highly irregularly sampled point sets are uncommon in

scanned data sets. If the sampled points are not uniformly

distributed over the underlying surface, the QMCA method

may lead to large approximation errors. We present two

simple methods to eliminate the influence of uneven sampling.

One direct method is to use the resampling technique to insert

new sampling points [19]. However, this method has one

drawback: the resampled point set may contain too many

points such that it will spend more time on preprocessing and

intersecting. The other method is based on computing

intersection between an uneven cylinder and the original

point set. We use the local sampling density ri described in

Ref. [22] to define an uneven cylinder surrounding the line l,
where ri is the r-dense of the ith boundary cell of the octree of

the original point set. The uneven cylinder is defined by the

intersection line l with different radius ri when it intersects

with some boundary cells in the octree.

5.2. Noise

Models created from 3D scanners usually contain noise

[9,10]. Noise tends to increase errors in the LPSI algorithm.

Next, we give two experimental results demonstrating the

approximation influences of noise on the area computation



0.01 0.02 0.03 0.04 0.05
–3

–2.5

–2

–1.5

–1

–0.5

0

sampling radius (sphere)

lo
g(

re
la

tiv
e 

er
ro

r)
(a)

sampling radius (cylinder

0.01 0.02 0.03 0.04 0.05
–3

–2.5

–2

–1.5

–1

–0.5

0(b)

lo
g(

re
la

tiv
e 

er
ro

r)

Fig. 9. (a) Errors for a sphere of radius 0.4 with different sampling radius r. (b) Errors for a cylinder of radius 0.2 and height 0.8 with different sampling radius r.

Table 2

Error comparison with the noisy models for the QMCA method

Models Fig. Number of

elements

Relative error

noiseless

models

Relative error

noisy models

Y.-S. Liu et al. / Computer-Aided Design 38 (2006) 55–6864
of point sets. Fig. 10 shows two point sets sampled from a

cylinder of radius 0.2 and height 0.8, and a sphere of radius

0.4, with Gaussian noise added to positions and normals

with 0.001% variances. The true areas for the two models

are 1.2566 and 2.0106, respectively. Table 2 shows the error

comparison for these two noisy models in Fig. 10(a) and (b)

using the QMCA method with the same lines used. Table 2

suggests that the relative errors of approximating noisy

models are larger than the relative errors for the noiseless

models. To eliminate the influence of noise, one possible

scheme is to smooth the point set in preprocessing. In

practice, simple, fast, and feature-preserving bilateral

filtering [9,10], which removes noise from models, is used

to reduce the error of area computation.

5.3. Comparison with methods based on surface

reconstruction

The area of a point set can also be estimated indirectly by

surface reconstruction. The MPU method, described by

Ohtake et al. [17], is an implicit shape reconstruction
Fig. 10. Two noisy point sets sampled from some simple objects. (a) The

noisy cylinder. (b) The noisy sphere.
technique with a high speed. In this section, we choose 10K4

as the MPU approximation accuracy, where 10K4 is quite

sufficient for the reconstruction of fine features [17]. Table 3

shows the comparison of relative approximation errors

generated by the QMCA method and the MPU method.

Note that the relative errors generated by the QMCA

method are always smaller than the MPU method in Table 3.

Table 3 also gives the time comparison generated by the

QMCA method using 5000 lines and the MPU method. Note

that the processing time for the cube using the MPU method

is faster than the QMCA method. This is because

reconstruction methods, which also include the MPU

method, depend on not only the size but also the geometric

complexity of a given point set. The QMCA method

depends both the size of the point set and the number of
Cylinder 10(a) 5000 lines 0.0015 0.0054

Sphere 10(b) 5000 lines 0.0019 0.0113

Table 3

Comparison with the MPU method for simple models

Model Method Time(s) Number of

elements

Relative

error

Cylinder QMCA 1.015625 5000 lines 0.001506

MPU 10.281000 32,180 triangles 0.005816

Sphere QMCA 3.609375 5000 lines 0.001900

MPU 26.672000 31,372 triangles 0.013713

Cube QMCA 4.250000 5000 lines 0.004009

MPU 3.782000 40,372 triangles 0.016475

CubeC

cylinder

QMCA 2.921875 5000 lines 0.003615

MPU 7.218999 31,776 triangles 0.014159



Table 4

Time and error comparisons for large complex point sets

Model Method Time(s) Number of elements Area Relative errora

Bunny QMCA 1.875000 5000 lines 0.057626 0.008699

Mesh – 69,451 triangles 0.057129 –

Dragon QMCA 7.109375 5000 lines 0.073941 0.018527

Mesh – 871,414 triangles 0.072596 –

Buddha QMCA 7.828125 5000 lines 0.053063 0.052362

Mesh – 1,087,716 triangles 0.055995 –

a Relative error is relative to the area of the corresponding mesh.

Y.-S. Liu et al. / Computer-Aided Design 38 (2006) 55–68 65
lines. Therefore, the QMCA method is suitable for large

complex point sets. Furthermore, the QMCA method is

suitable for open surfaces but the MPU method cannot

reconstruct open surfaces [17]. The interpolation technique

[3] based on the three-dimensional Voronoi diagram can

efficiently reconstruct surfaces with boundary, but it

requires the expenditure of large amounts of time and

space when point sets are gigantic. For instance, the running

time for the reconstruction of a point set sampled on a

square of side-length 1.0 is about 708.359375 s using
Fig. 11. Three large complex point sets from the Stanford 3D scanning repository. (

are the rendering models corresponding to (a)–(c).
Amenta et al.’s method [3], where the point set contains

about 10,000 points. The area relative error generated using

the QMCA method with 5000 lines is about 1.7856% and its

running time is about 0.390625 s.

The QMCA method is suitable for large complex point

sets. Table 4 compares the errors for three reconstructed

triangle meshes: the Bunny, the Dragon, and the Buddha,

from the Stanford 3D scanning repository. Those recon-

structed models can be found at: http://graphics.stanford.

edu/data/3Dscanrep/. Using Desbrun’s method [6] for
a) The Bunny model. (b) The Dragon model. (c) The Buddha model. (d)–(f)

http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/


Fig. 12. (a) A point set sampled from two squares. (b) The rendering model corresponding to (a) with checkerboard texture.

Y.-S. Liu et al. / Computer-Aided Design 38 (2006) 55–6866
computing the areas of triangle meshes, we obtain three true

areas: 0.057129, 0.072596 and 0.055995, of the above

reconstructed models. Now, we extract three point sets from

these triangle meshes as follows: point positions are

acquired by vertices from the triangle meshes; the normal

at a point is computed as the weighted average (by the area

of the triangles) of the normals to the triangles in the 1-ring

neighborhood of the vertex. Fig. 11(a)–(c) shows those

extracted point sets. Table 4 shows time and error

comparisons for these complex point sets. In Table 4, the

‘Mesh’ item of each model is the reconstructed Stanford

triangle mesh, and the ‘Relative error’ item is defined by the

error relative to the corresponding true area (i.e. the area of

the reconstructed mesh). In general, point sets acquired by

3D scanning devices typically have uneven sampling

density, resulting in larger approximation errors.

Fig. 11(d)–(f) show the rendering models using surfels

with the nonzero radius that is equal to the mean radius of

the point set. Some small black holes can be found in the

Dragon and the Buddha because of the uneven sampling

density. Table 4 shows that the relative errors of the Dragon

and the Buddha are larger than that of the Bunny, where

lZ3.0 of Eq. (7) is selected for the QMCA method.

The Cauchy–Crofton formula can also be used directly

for multi-surfaces and non-manifold. If multi-surfaces are

considered as a collection S of regular surface patches,

Eq. (3) is suitable for point sets sampled from S. In Fig. 12,

we show a point set sampled from two squares of side-

length 1.0. The true area is 2.0 for those two squares. We

approximate the area of the point set as 2.002553 using the

QMCA method with 5000 lines, which demonstrates high

accuracy of area computation for point sets sampled from

the multi-surfaces.

Reconstruction methods depend on the geometric

complexity of given point sets, and they may fail or form

holes for some large complex point sets. Therefore, for these

cases, reconstruction methods would fail on the area

computation of these point sets. The failure of computing

areas of point sets does not occur to the QMCA method. In

some cases, e.g. 3D shape recognition and matching, one
only focuses on the area of geometric measurements [18]

without requiring reconstruction. Thus, reconstruction

becomes an additional price. In addition, the QMCA

method should be well suited to a parallel implementation

due to the independent nature of lines used.
6. Conclusions

We have presented a quasi-Monte Carlo method for

computing areas of point-sampled surfaces, called the

QMCA method. The method is based on the Monte Carlo

integration and counts the number of intersection points

between point sets and a set of straight lines. We have also

introduced a new algorithm: LPSI, for intersecting a line

with a point set based on the clustering technique. Our

experiments show that the QMCA method is fast, robust and

obtains the high accuracy without requiring a reconstruction

of the underlying surface from point sets. We believe that

the QMCA method presented in this paper can be a good

help to many point-based processing applications, such as

property computation, area-preserving smoothing, and

shape recognition and matching.

The major drawback in our current implementation is

that the results of point classification in the LPSI algorithm

are dependent on the orientation of the normal vector, i.e.

whether points are inside or outside. However, surface area

should not be dependent on normal orientation; besides, one

orientation cannot be favored over another for an open

surface. This may lead to large approximation errors. In the

future, we plan to improve this step to make it sensible.

Furthermore, it is an interesting topic to calculate volumes

and areas of point sets with large noise.
Acknowledgements

We would like to thank Wenping Wang for many helpful

discussions, and Piqiang Yu and Jean-Claude Paul for some

valuable comments during our work. The authors appreciate



Y.-S. Liu et al. / Computer-Aided Design 38 (2006) 55–68 67
the comments and suggestions of the anonymous reviewers.

The research was supported by Chinese 973 Program

(2004CB719400), and the National Science Foundation of

China (60403047). The second author was supported by the

project sponsored by a Foundation for the Author of

National Excellent Doctoral Dissertation of PR China

(200342), and SRF for ROCS, SEM (041501004).
References

[1] Adams B., Dutré P. Interactive boolean operations on surfel-bounded

solids. In: Proceedings of SIGGRAPH’03; 2003. p. 651-656.

[2] Adamson A., Alexa M. Ray tracing point set surfaces. In: Proceedings

of Shape Modeling International 2003; 2003. p. 272-279.

[3] Amenta N., Bern M., Kamvysselis M. A new Voronoi-based surface

reconstruction algorithm. In: Proceedings of SIGGRAPH’98; 1998.

p. 415-421.

[4] Castro F., Sbert M. Application of quasi-Monte Carlo sampling to the

multi-path method for radiosity. Proceedings of the Third Inter-

national Conference on Monte Carlo and quasi Monte Carlo methods

in scientific computing, Springer series Lecture Notes in Compu-

tational Science and Engineering, Springer Berlin, 1998.

[5] Davies T., Martin R.R. Low-discrepancy sequences for volume

properties in solid modelling, Proceedings of CSG, 98 (1998) p. 13.

[6] Desbrun M., Meyer M., Schröder P., Barr A.H. Implicit fairing of

irregular meshes using diffusion and curvature flow. In: Proceedings

of SIGGRAPH’99; 1999. p. 317-324.

[7] Gärtner B. Fast and robust smallest enclosing balls. In: Proc. 7th

Annual European Symposium on Algorithms (ESA). Volume 1643 of

Lecture Notes in Computer Science, Springer-Verlag (1999), p. 325-

338, 1999.

[8] Hoppe H., DeRose T., Duchamp T., McDonald J., Stuetzle W. Surface

reconstruction from unorganized point. In: Proceedings of SIG-

GRAPH’92; 1992. p. 71-78.

[9] Jones T., Durand F., Desbrun M. Non-iterative, feature-preserving

mesh smoothing. In: Proceedings of SIGGRAPH’ 03; 2003. p 943-

949.

[10] Jones T, Durand F, Zwicker M. Normal improvement for point

rendering. IEEE Comput Graph Appl 2004;53–6.

[11] Kobbelt L, Botsch M. A survey of point-based techniques in computer

graphics. Comput Graph 2004;28(6):801–14.

[12] Lee YT, Requicha AAG. Algorithms for computing the volume and

other integral properties of solids, Part I. Commun ACM 1982;25(9):

635–41.

[13] Lee YT, Requicha AAG. Algorithms for computing the volume and

other integral properties of solids, Part II. Commun ACM 1982;25(9):

642–50.

[14] Li X, Wang W, Martin RR, Bowyer A. Using low-discrepancy

sequences and the Crofton formula to compute surface areas of

geometric models. Comput Aided Design 2003;35(9):771–82.

[15] Niederreiter H. Quasi-Monte Carlo methods and pseudo-random

numbers. Bull Am Math Soc 1978;84(6):957–1041.

[16] Niederreiter H. Random number generation and quasi-Monte Carlo

methods. Philadelphia: SIAM Philadelphia; 1992.

[17] Ohtake Y., Belyaev A., Alexa M., Turk G., Seidel H.P. Multi-level

partition of unity implicits. In: Proceedings of SIGGRAPH’03; 2003.

p. 463-470.

[18] Osada R, Funkhouser T, Chazelle B, Dobkin D. Shape distributions.

ACM Transact Graph 2002;21(4):807–32.

[19] Pauly M., Kobbelt L., Gross M. Multiresolution modeling of

point-sampled geometry. ETH Zurich Technical Report, #378,

September 16, 2002. http://graphics.stanford.edu/wmapauly/Pdfs/

Multires Modeling.pdf.
[20] Pauly M., Gross M., Kobbelt L. Efficient simplification of point-

sampled surfaces. In: Proceedings of IEEE Visualization’02; 2002.

p. 163-170.

[21] Pauly M., Keiser R., Kobbelt L., Gross M. Shape modeling with

point-sampled geometry. In: Proceedings of SIGGRAPH’03; 2003.

p. 641-650.

[22] Pauly M. Point primitives for interactive modeling and processing of

3D geometry. Ph. D thesis, ETH Zurich, Switzerland, 2003.

[23] Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical

recipes in C. 2nd ed.: Cambridge University Press; 1992.

[24] Rusin D. N-dim spherical random number drawing. In the

Mathematical Atlas. http://www.math.niu.edu/wrusin/known-

math/96/sph.rand.

[25] Schaufler G., Jensen H.W. Ray tracing point sampled geometry, In

Proceedings of the 11th Eurographics Workshop on Rendering,

(2000) 319–328

[26] Taubin G. A signal processing approach to fair surface design. In:

Proceedings of SIGGRAPH’95; 1995. p. 351-358.

[27] Timmer HG, Stern JM. Computation of global properties of solid

objects. Comput Aided Design 1980;12(6):301–4.

[28] Wang X. Improving the rejection sampling method in quasi-Monte

Carlo methods. J Comput Appl Math 2000;114(2):231–46.
Yu-Shen Liu is a PhD student in the

Department of Computer Science and Tech-

nology at Tsinghua University, China. He

received his BSc in mathematics from Jilin

University of China in 2000. His research

interests are computer-aided design and com-
puter graphics.
Jun-Hai Yong is an associate professor in

School of Software at Tsinghua University,

China. He received his BSc and PhD in

computer science from the Tsinghua Univer-

sity, China, in 1996 and 2001, respectively. He

held a visiting researcher position in the
Department of Computer Science at Hong

Kong University of Science and Technology in

2000. He was a postdoctoral fellow in the

Department of Computer Science at the

University of Kentucky from 2000 to 2002.

His research interests include computer-aided design, computer graphics,

computer animation, and software engineering.
Hui Zhang is an assistant professor in School

of Software at Tsinghua University, China. She

received her BSc and PhD in computer science

from the Tsinghua University of China in 1997

and 2003, respectively. Her research interests

are computer-aided design and computer
graphics.



-Aided
Dong-Ming Yan is a PhD student of Computer

Science at the University of Hong Kong. He

received his BSc and Master degrees in

Computer Science from Tsinghua University,

China, in 2002 and 2005, respectively. His

current research interests include geometric

Y.-S. Liu et al. / Computer68
modeling and computer-aided design.
Jia-Guang Sun is a professor in the Depart-

ment of Computer Science and Technology at

Tsinghua University, China. His research

interests are computer graphics, computer

aided design, computer-aided manufacturing,

product data management and software engin-

Design 38 (2006) 55–68
eering.


	A quasi-Monte Carlo method for computing areas of point-sampled surfaces
	Introduction
	Computing the area of a point-sampled surface
	Definition of the area of a point-sampled surface
	Formula for surface area computation
	A description of the QMCA method
	The smallest enclosing ball of point sets
	Generating uniformly distributed lines using low-discrepancy sequences

	The LPSI algorithm
	Collecting inclusion points
	Clustering inclusion points

	Implementation and experiments
	Implementation details
	Approximation errors
	Execution time

	Discussion
	Sampling density
	Noise
	Comparison with methods based on surface reconstruction

	Conclusions
	Acknowledgements
	References


