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Fig. 1. Offset surfaces and touching point (a) growing or (b) shrinking.
the gradient flow method [4,8,38,43]. To compute all roots
in a given area of interest, several global solution methods
such as algebraic and hybrid methods, homotopy methods
and subdivision methods [31] are useful. The resultant based
methods [1,3,6,7,46,47] seem to be very promising in providing
solutions for low degree algebraic equations.

In this paper, we only consider the case where the two
surfaces do not intersect. There are a number of efficient ways
for computing the minimum distance between two surfaces
such as planes, quadrics, tori, or canal surfaces [17,22,39].
Lennerz and Schömer [22] discuss the minimum distance
computation problem between two quadric surfaces. They use
the Lagrange technique to obtain two bivariate polynomial
equations in Lagrange multipliers. When the two surfaces are
a cone and a general quadric surface, [22] obtains two bivariate
polynomial equations both of degree 4 or a univariate equation
of degree 12. Sohn et al. [39] use line geometry to convert
the minimum distance problem into an intersection problem
between the normal congruences of the two surfaces. Each
point on a surface is associated with the line passing through
the point and spanned by the normal of the surface at that point.
The normal congruence of a surface is defined as a set of lines
associated with the points on the surface. They describe one of
the two normal congruences in parametric form and the other
normal congruence in implicit form, and obtain two bivariate
equations. Usually one of the two surfaces in [39] is in implicit
form and the other is in parametric form. To describe a normal
congruence for a general implicit algebraic surface, one needs
to eliminate seven unknown variables from 10 polynomial
equations (or eliminate four variables from seven polynomial
equations by simplification), which is a non-trivial task. When
the two surfaces are a cone and a general quadric surface, [39]
produces two bivariate polynomial equations of degrees 4 and
8. In [17], Kim computes the minimum distance between a
canal surface and a simple surface such as a plane, a sphere,
a cylinder, a cone, or a torus. The fact that the normals at
the closest points between the two surfaces are collinear is
exploited, and characteristic circles are introduced to convert
the minimum distance problem into a problem of finding the
roots of a univariate function.

The offset technique employed in this paper generalizes
some of the methods mentioned above. Given two surfaces,
when we offset one of the closest points in one of the
two surfaces along or against its normal direction using the
minimum distance, we get a point on the other surface, and
the distance between these two points is exactly the minimal
distance. The method presented in this paper is based on this
simple but important fact. Suppose two surfaces S1 and S2 do
not intersect. We build the dynamic offset surface of one of the
two surfaces, for example S1. As Fig. 1 shows, if S1 contains
S2, the dynamic offset surface of S1 is shrinking, i.e., offsetting
inward, towards S2; otherwise, the dynamic offset surface of S1
is growing, i.e., offsetting outward, towards S2. Eventually, a
dynamic offset surface O1 will “touch” S2. The touching point
P could be one of the two points where the minimum distance
occurs. Together with the fact that the normals of the two given
surfaces at the two closest points where the minimum distance
occurs are collinear, we obtain the equations for calculating
one of the two closest points. From these equations we may
get several candidate points, e.g., in Fig. 1(b), both P and Q
are candidate points which satisfy the equations. To determine
the point we want, we define the corresponding distance of a
candidate point. If the normal line at a candidate point intersects
with S1, the corresponding distance of the candidate point is
defined as the distance from the point to the closest intersection
point of the normal line and S1; if not, it is defined as a
positive infinite real number. The point we want is the candidate
point whose corresponding distance is minimal. Once this point
is identified, the other point in S2 can be calculated along
or against the unit normal vector of the first point with the
minimum distance.

The remaining part of this paper is organized as follows:
an algorithm based on the offset method to compute the
minimum distance between two surfaces is given in Section 2;
in Section 3, we illustrate our method for two implicit algebraic
surfaces, using quadric surfaces and tori; Section 4 illustrates
the new method for an implicit algebraic surface and a canal
surface; whereas Section 5 compares our method with some
known existing methods. Some concluding remarks are given
in the last section.

2. Minimum distance between two surfaces

Given two surfaces S1 and S2, the minimum distance
computation problem is to find a non-negative real number dmin
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such that

dmin = inf{‖p − q‖ | p ∈ S1 and q ∈ S2},

where ‖p − q‖ is the Euclidean distance between the points p
and q. dmin is the minimum distance between the surfaces S1
and S2. Any pair of points (p, q) where the minimum distance
occurs is called a “location of the minimum distance”. If S1 and
S2 intersect, dmin is equal to zero, and any intersection point is
a location. Here, we assume that S1 and S2 do not intersect.

In this paper, we assume that at least one of the two surfaces
is an implicit algebraic surface. In this case, without loss of
generality, let S2 be an implicit algebraic surface. The other
surface S1 can be either an implicit algebraic surface or a
parametric surface. Suppose that S2 is given by

f2(q) = 0,

where q is a point in R3. A point q is on the surface S2 if and
only if f2(q) = 0. We write the coordinates of q as a column
vector (x, y, z)T. The gradient at point q ∈ S2 is

( f2x (q), f2y(q), f2z(q))T, (1)

where f2x (q), f2y(q), f2z(q) are the first partial derivatives of
f2(x, y, z) with respect to x, y and z.

For any real number d , we define the dynamic d-offset
surface of the surface S1 to be

Sd
1 =


x + dnx

y + dny
z + dnz

∣∣∣∣∣∣
nx

ny
nz

 is a unit normal vector of S1 at

x
y
z

 ∈ S1

 ,

which depends completely on the surface S1. In fact, the new
method only uses the information of S1 and d , and is not
affected by the singularity of the d-offset surface Sd

1 .
Suppose that the minimum distance between S1 and S2 is a

positive real number dmin, and point p is one point of a location
of dmin on the surface S1. Let Np be the gradient of S1 at p. If
p is regular, i.e., Np is not degenerated into a zero vector, there
exists d = dmin or d = −dmin, such that a dynamic d-offset
surface Sd

1 is tangent to the surface S2 at point

q = p + µNp, (2)

where µ =
d

‖Np‖
. The relationship between the minimum

distance and the dynamic offset surface is given by

dmin = inf{d ≥ 0 | Sd
1 ∩ S2 6= ∅ or S−d

1 ∩ S2 6= ∅}.

Since q is also a point on the surface S2, we have

f2(p + µNp) = 0. (3)

Let Nq be the gradient of S2 at the point q. Then,
Nq and Np are two collinear vectors. From (1), Nq is
( f2x (q), f2y(q), f2z(q))T. Therefore, we obtain

λNp + ( f2x (q), f2y(q), f2z(q))T
= 0, (4)
where λ ∈ R. Substituting Eq. (2) into Eq. (4), we have

λNp +( f2x (p + µNp), f2y(p + µNp), f2z(p + µNp))
T
= 0.

(5)

The resultant method [1,3,6,7,46,47] is useful for eliminating
one variable from two polynomial equations. Given two
polynomial equations

Fa = a0 + a1µ + a2µ
2
+ · · · + anµn, an 6= 0

and

Fb = b0 + b1µ + b2µ
2
+ · · · + bmµn, bm 6= 0,

Fa and Fb have common roots if and only if

Rb
a =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 · · · an
a0 a1 · · · an

· · · · · · · · · · · · · · ·

a0 a1 · · · an
b0 b1 · · · bm

b0 b1 · · · bm
· · · · · · · · · · · · · · ·

b0 b1 · · · bm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Rb
a is called the resultant of Fa and Fb with variable µ. Since

f2(x, y, z) is an implicit algebraic function about x , y and z,
the equations in equation systems (3) and (5) are all polynomial
equations in λ and µ. So we are able to eliminate λ and µ from
equation systems (3) and (5) with the resultant method, and thus
obtain{

g1(x, y, z) = 0,

g2(x, y, z) = 0.

Both of the above equations have three variables which are the
coordinates of the point p on the surface S1. Therefore, one
more equation is required to determine the point p.

If the first surface S1 is an implicit surface given by
f1(x, y, z) = 0, then we have the equation systemg1(x, y, z) = 0,

g2(x, y, z) = 0,

f1(x, y, z) = 0.

(6)

If the first surface S1 is a parametric surface given by

(x, y, z)T
= (X (u, v), Y (u, v), Z(u, v))T,

where u, v are parameters, then we have the equation system{
g1(X (u, v), Y (u, v), Z(u, v)) = 0,

g2(X (u, v), Y (u, v), Z(u, v)) = 0.
(7)

In either case, from the equation system (6) or (7), by using the
methods in [3,31], we can find a solution for the coordinates
of the point p. Substituting the coordinates of p into Eq. (3),
we obtain the value of d. The other point q of the location is
obtained from Eq. (2).

If p is singular, i.e., Np is degenerated into a zero vector, p
can be found by solving

Np = 0. (8)



1056 X.-D. Chen et al. / Computer-Aided Design 38 (2006) 1053–1061
For each singular point p1(x1, y1, z1)
T

∈ S1, the closest point
q(x, y, z) on S2 can be obtained by solving{

f2(x, y, z) = 0,

(x − x1, y − y1, z − z1)
T

× ( f2x , f2y, f2z)
T

= 0.
(9)

The corresponding distance d is just ‖p1 − q‖. Thus, whether
the closest point p ∈ S1 is singular or not, from both the
equation systems (6) or (7), (2) and (3) and the equation systems
(8) and (9), we are able to find the minimum distance as well as
the corresponding closest points p ∈ S1 and q ∈ S2.

The algorithm is as follows.

Input: Two surfaces S1 and S2. S1 is either an implicit surface
or a parametric surface. S2 is an implicit algebraic
surface.

Output: The minimum distance dmin between S1 and S2, and a
pair of points (p, q) with the properties ‖p−q‖ = dmin,
p ∈ S1 and q ∈ S2.

(1) If S1 and S2 have any intersection point p;
Output dmin = 0 and the pair of points (p, p), then go to
Step 5;

(2) Solve the equation systems (6) or (7); Substitute each
solution p ∈ S1 into Eq. (3) to obtain values of d; Compute
the corresponding point q ∈ S2 with Eq. (2);
Add all the solutions (p, q, d) into the set Ed ;

(3) Solve the equation systems (8) to obtain the singular points
on S1; For each singular point p ∈ S1, compute the closest
point q ∈ S2 with equation system (9), and calculate
d = ‖p − q‖;
Add all the solutions (p, q, d) into the set Ed ;

(4) Find dmin such that

dmin = min{|d| | (p, q, d) ∈ Ed , |d| = ‖p − q‖};

Output dmin and (p, q);
(5) End of the algorithm.

3. Minimum distance between a quadric surface and an
implicit algebraic surface

Quadric surfaces and tori are widely used [22,39,45]. In
this section, the first surface S1 is an implicit algebraic surface
defined by f1(x, y, z) = 0, and the second surface S2 is a
quadric surface such as a cylinder, cone, elliptic paraboloid,
ellipsoid or torus. The singular points of S1 can be found by
solving ( f1x , f1y, f1z)

T
= 0, and it is easy to compute the

distance between a point and S2. Here we omit the discussion
on the singular points of S1.

For the convenience of degree analysis, we provide the
following theorem.

Theorem 1. Suppose that an equation system has three
polynomial equations of degree 2, m and r. After eliminating
one variable, one can obtain two bivariate equations of degree
min{2m, 2r} and m + r − 1.
Proof. Without loss of generality, assume m ≤ r , and the first
equation of degree 2 is of the form (if necessary, with coordinate
transformation)

x2
= F2(y, z) + F1(y, z)x, (10)

where Fi (y, z) is a polynomial of degree i in y and z, i =

1, 2. Substituting Eq. (10) into the other two equations of the
equation system, we get two new equations{

Gm−1(y, z)x + Gm(y, z) = 0,

Ḡr−1(y, z)x + Ḡr (y, z) = 0,
(11)

where Gi (y, z) and Ḡ j (y, z) are polynomial of degree i and j
in y and z, i = m − 1, m, and j = r − 1, r .

Combining Eq. (10) with the first equation in the equation
system, we have

Gm(y, z)2
− F2(y, z)Gm−1(y, z)2

− F1(y, z)Gm−1(y, z)Gm(y, z) = 0. (12)

From Eq. (11), we have

Gr−1(y, z)Ḡm(y, z) − Gr (y, z)Ḡm−1(y, z) = 0. (13)

Eqs. (12) and (13) are of degree 2m and m + r − 1. Thus, we
complete the proof. �

When the three polynomial equations in an equation system
are of degrees 2, 2 and r , respectively, where r ≥ 2 is a positive
integer, we can obtain two bivariate polynomial equations of
degrees 4 and r + 1 by Theorem 1, or a univariate polynomial
equation of degree 4r with Levin’s method [23,43,48].

That is, in general detail: given two distinct quadrics A :

XTAX = 0 and B : XTBX = 0, where A, B are two distinct
4×4 matrices, and X = (x, y, z, 1)T, the pencil generated by A
and B is the set R(λ) with equations XT(A+λB)X = 0, λ ∈ R.

Levin [23] proves that there exists a real ruled quadric of the
form

q(u, v) = b(u) + vd(u)

in the pencil of two distinct quadrics, where the curve b(u) and
ruling direction d(u) are at most quadratic rational functions in
u [43,48]. Any intersection curve of the two quadrics (QSIC)
can be parameterized in the form

p(u) = a(u) ± d(u)
√

s(u),

where c2(u) = d(u)TAd(u), c1(u) = b(u)TAd(u), c0(u) =

b(u)TAb(u), a(u) = c2(u)b(u) − c1(u)d(u), s(u) = c2
1(u) −

c2(u)c0(u) (Refer to [23,43,48] for more details). Substituting
the intersection curve p(u) into the third equation of the
equation system, and removing the radical expression, we
obtain a univariate polynomial equation of degree 4r .

3.1. Minimum distance between a cylinder and an implicit
algebraic surface

Suppose the first surface S2 is a cylinder given by

x2
+ y2

− r2
= 0, r > 0.
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The equation system (6) becomes f1z = 0,

x f1y − y f1x = 0,

f1(x, y, z) = 0.

(14)

When S1 is a quadric surface, the equations in the equation
system (14) are of degree 1, 2 and 2, and we can obtain two
bivariate polynomial equations of degree 2, or a univariate
polynomial of degree 4.

3.2. Minimum distance between a cone and an implicit
algebraic surface

Suppose the first surface S2 is a cone given by

x2
+ y2

− mz2
= 0,

where m is a positive real number.
The equation system (6) becomes
x f1y − y f1x = 0,

λ2(m f 2
1x + m f 2

1y − f 2
1z) = 0,

f1(x, y, z) = 0,

(15)

where λ = 0 means that the candidate closest points on the
cone are singular. So the equation system (15) is equivalent to
two new equation systems

x f1y − y f1x = 0,

m f 2
1x + m f 2

1y − f 2
1z = 0,

f1(x, y, z) = 0,

(16)

and{
(x, y, z)T

× ( f1x , f1y, f1z)
T

= 0,

f1(x, y, z) = 0.
(17)

When S1 is a quadric surface, the equations in the equation
system (16) and (17) are all of degree 2. From each new
equation system, we can obtain two bivariate polynomial
equations of degree 3 and 4, or a univariate polynomial of
degree 8.

3.3. Minimum distance between an elliptic paraboloid and an
implicit algebraic surface

Suppose the first surface S2 is an elliptic paraboloid given by

x2
+ y2

− 2pz = 0,

where p is a positive real number.
The equation system (6) becomes
f1(x, y, z) = 0,

x f1y − y f1x = 0,

p( f 2
1x + f 2

1y) f1x − 2 f 2
1z(z f1x − x f1z − p f1x ) = 0.

(18)

When S1 is a quadric surface, the three equations in the equation
system (18) are of degrees 2, 2 and 4, and we can obtain
two bivariate polynomials of degrees 4 and 5, or a univariate
polynomial of degree 16.
3.4. Minimum distance between an ellipsoid and an implicit
algebraic surface

Suppose the first surface S2 is an ellipsoid given by

x2

a2 +
y2

b2 +
z2

c2 − 1 = 0.

If a = b = c, then we obtain{
f1(x, y, z) = 0,

(x, y, z)T
× ( f1x , f1y, f1z)

T
= 0.

Otherwise, suppose that a 6= b, the equation system (6)
becomes

f1(x, y, z) = 0,

a2 f1x (y f1z − z f1y) + b2 f1y(z f1x − x f1z)

+ c2 f1z(x f1y − y f1x ) = 0,

(x f1y − y f1x )
2(a2 f 2

1x + b2 f 2
1y + c2 f 2

1z)

− (b2
− a2)2 f 2

1x f 2
1y = 0.

(19)

When S1 is a quadric surface, the three equations in the
equation system (19) are of degrees 2, 3 and 6. By using the
transformation (x ′, y′, z′)T

= (x/ f1x , y/ f1y, z/ f1z)
T, we can

obtain two bivariate polynomials of degree 6, or a univariate
polynomial of degree 36, which can be factorized into two
polynomials of degrees 12 and 24. We show that the equation
system (19) will produce the same formulas as the method
in [39]. The details are as follows: the normal congruence of
S1, i.e., (L1, L2, L3, L4, L5, L6)

T, can be described as

( f1x , f1y, f1z, y f1z − z f1y, z f1x − x f1z, x f1y − y f1x )
T.

From the equation system (19), we obtain{
a2L1L4 + b2L2L5 + c2L3L6 = 0,

L2
6(a

2L2
1 + b2L2

2 + c2L2
3) − L2

1L2
2(a

2
− b2)2

= 0.
(20)

Since fL = (L1L4 + L2L5 + L3L6) = 0, by adding −c2 fL to
the first equation of equation system (20), we obtain the same
formulae as the method in [39].

3.5. Minimum distance between a torus and an implicit
algebraic surface

Suppose the first surface S2 is a torus given by

(x2
+ y2

+ z2
+ R2

2 − R2
1)2

− 4R2
2(x2

+ y2) = 0.

The equation system (6) becomes
f1(x, y, z) = 0,

x f1y − y f1x = 0,

(x f1z − z f1x )
2
+ (y f1z − z f1y)

2
− R2

2 f 2
1z = 0.

(21)

When S1 is a quadric surface, the degrees of the three above
equations are 2, 2 and 4, and we can obtain two bivariate
polynomials of degrees 4 and 5, or a univariate polynomial of
degree 16.
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4. Minimum distance of a canal surface and an implicit
algebraic surface

Our method is able to compute the minimum distance
between an implicit algebraic surface and a canal surface. This
section, therefore, also considers the case between two canal
surfaces as well. It appears that this new method generalizes
the method in [17].

A canal surface is a swept surface along the central trajectory
curve C(t) = (x(t), y(t), z(t))T and with the radius function
r(t). In this section, a canal surface is the same as that defined
in [17], which is the set of all x satisfying{

‖x − C(t)‖2
− r(t)2

= 0,

〈x − C(t), C′(t)〉 + r(t)r ′(t) = 0.
(22)

In [17], the characteristic circle K(t) is the circle embedded in
the moving sphere with center Ck(t) = C(t) − r(t)r ′(t) C′(t)

‖C′(t)‖

and radius rk(t) = r(t)
√

‖C′(t)‖−r ′2(t)
‖C′(t)‖

. The normal of the main

plane of the characteristic circle is Nk(t) = C′(t). K(t) lies on
the canal surface. Let p be a point on K(t). If

d(t) = p − C(t)

is parallel to the normal of the canal surface at p, then Kim [17]
provides an equation for solving the property of the canal
surface

〈d(t), C′(t)〉

‖d(t)‖‖C′(t)‖
+

r ′(t)

‖C′(t)‖
= 0. (23)

Let S1 be an implicit algebraic surface defined by f1(x, y, z) =

0, and the second surface S2 a canal surface defined by Eq. (22).
Suppose the pair (p, q) is a location of the minimum distance.
The line pq intersects the central trajectory curve at a point C(t)
and the vector V = p − C(t) is a normal of the canal surface at
p. Thus, according to Eq. (23), we have

〈p − C(t), C′(t)〉

‖p − C(t)‖‖C′(t)‖
+

r ′(t)

‖C′(t)‖
= 0. (24)

V is also a normal of S1 at p. We obtain{
λ( f1x (p), f1y(p), f1z(p))T

+ (p − C(t))T
= 0,

f1(x, y, z) = 0.
(25)

In particular, when S1 is a plane, cylinder, cone, or torus, the
point p can be solved geometrically from (25). Substituting
them into Eq. (24) yields the same result as in [17].

When S1 is a general quadric surface, the first three
equations in the equation system (25) are linear in the
coordinates of point p (which can be rewritten in matrix form
M(λ)p = C(t)) and we thus obtain p = M(λ)−1C(t).
Substituting it into Eq. (24) and the last equation in the equation
system (25), we obtain two bivariate equations in λ and t . When
C(t) and r(t) are polynomials of degree n and m, the degrees of
the two equations are max{2n+4, 6} and max{4n+2, 2n+2m+

2}, respectively. When r(t) is a constant function, the degrees
of the two equations are max{2n+4, 6} and 2n+1, respectively.
When S1 is a canal surface, suppose that the two canal
surfaces S1 and S2 are defined by Eq. (22) with their central
trajectory curves and radius functions being C1(u), r1(u) and
C2(v), r2(v), respectively. Suppose p and q are the closest
points on S1 and S2, respectively. The line pq intersects
the two central trajectory curves at points C1(u) and C2(v),
respectively. According to Eq. (23), we obtain

〈C1(u) − C2(v), C′

1(u)〉

‖C1(u) − C2(v)‖‖C′

1(u)‖
+

r ′

1(u)

‖C′

1(u)‖
= 0,

〈C1(u) − C2(v), C′

2(v)〉

‖C1(u) − C2(v)‖‖C′

2(v)‖
+

r ′

2(v)

‖C′

2(v)‖
= 0.

(26)

Suppose C1(u), C2(v), r1(u) and r2(v) are polynomials of
degrees m1 ≤ m2, n1 and n2, respectively. Then the two
equations in the equation system (26) are of degrees max{2m2+

2m1 − 2, 2m2 + 2n1 − 2} and max{4m2 − 2, 2m2 + 2n2 − 2},
respectively. When r1(u) and r2(v) are constant functions, the
degrees of the two equations are m2 + m1 − 1 and 2m2 − 1,
respectively.

5. Comparisons

This section compares our method with the methods in [17,
22,39]. Let M1, M2, M3 be the corresponding methods in [17,
22,39] and Mn be the corresponding method in this paper
respectively. Firstly, Mn is able to produce the same formulae as
M1, and is also able to provide the solution for the case between
a canal surface and an ellipsoid, or the case between two canal
surfaces (see Fig. 2).

Secondly, regardless of whether a case is degenerated in M2
or not, Mn is able to deal with it uniformly. In principle, Mn
is able to deal with the cases between two implicit algebraic
surfaces of degree more than 2.

Thirdly, M3 presents formulae for the cases between an
ellipsoid and a cylinder, a cone, a torus or a parametric surface,
and Mn is able to produce the same formulae as M3. Given
two surfaces, M3 needs to describe two normal congruences
for the two surfaces, one in parametric form, and the other in
implicit form. Usually M3 deals with the cases between an
implicit algebraic surface and a parametric surface. To obtain
a normal congruence for a general implicit surface, one needs
to eliminate seven unknown variables from 10 polynomial
equations (or eliminate four variables from seven polynomial
equations by simplification), which is a non-trivial task. On the
other hand, in Mn , λ is easily eliminated by turning the equation
system (5) into

Np ×( f2x (p +µNp), f2y(p + µNp), f2z(p + µNp))
T

= 0,

(27)

and one only needs to eliminate µ from the equation
system (3) and the above equation system (27), which is
much easier. Furthermore, the parametric expression of an
ellipsoid excludes one point on the ellipsoid, which should
be considered additionally. For example, given two ellipsoids
S1 : f1(x, y, z) = x2

+ y2/4 + (z + 3)2/9 − 1 = 0 and
S2 : f2(x, y, z) = x2/4 + y2/9 + z2/49 − 1 = 0. The
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Fig. 2. The minimum distance between two surfaces. The first surface is a canal surface, and the second one is (a) an ellipsoid or (b) a canal surface.

Fig. 3. The minimum distance between two implicit surfaces. The first surface is an ellipsoid, and the second one is (a) a cylinder or (b) a cone.
minimum distance is 1.0, and the location of the minimum
distance is ((0, 0, −6)T, (0, 0, −7)T). S1 can be parameterized

as ( 2u
1+u2+v2 , 4v

1+u2+v2 ,
−6(u2

+v2)

1+u2+v2 ), which excludes the closest

point (0, 0, −6)T.
M2, M3 and Mn are all able to obtain two resulting bivariate

equations, in the unknown variables Lagrange multipliers,
parameters of one surface and the coordinates of the closest
point on one surface respectively. Figs. 3 and 4 show the
cases between an ellipsoid and a cylinder, a cone, an elliptic
paraboloid, or a torus, and the corresponding degrees of the
two resulting bivariate equations are indicated in Table 1. In
Table 1, the first surface S1 is always a general quadric surface,
the second surface S2 is a general quadric surface, an ellipsoid,
a cylinder, a cone, an elliptic paraboloid, a hyperboloid, or a
torus. The pair (m, n) of numbers denotes the degrees of the two
bivariate equations, and the single number denotes the degree
of the resulting univariate polynomial. As shown in Table 1,
the two bivariate equations obtained by our method have lower
degrees than those in other methods.

We have implemented the algorithm proposed in this paper
on a 1.7 GHz Windows PC using C + +, including the case
between an ellipsoid and a cylinder, a cone, an ellipsoid, or
a torus. we first use the method in [39] to obtain the initial
solution, and then apply a standard Newton method in two
variables. The average computation time for the initial solution
is about 20 µs for the cases between an ellipsoid and a cylinder,
a cone, or a torus, and 40 µs for the case between two ellipsoids.
Table 2 shows the corresponding average computation time of
Table 1
Degree analysis for the case between two quadric surfaces

S2 M1 M2 M3 Mn

A general quadric – (6, 6) or 24 (8, 16) (6, 6) or 24
An ellipsoid – (6, 6) or 24 (8, 16) (6, 6) or 24
A cylinder – (4, 4) or 8 (4, 4) (2, 2) or 4
A cone – (4, 6) or 12 (4, 8) (3, 4) or 8
An elliptic paraboloid – (5, 6) or 18 – (4, 5) or 16
A hyperboloid – (6, 6) or 24 (8, 16) (6, 6) or 24
A torus – – (4, 8) (4, 5) or 16

Table 2
Average computation time for an ellipsoid and a quadric by iterative search

Quadric Cylinder (µs) Cone (µs) Ellipsoid (µs) Torus (µs)

T2 4.69 12.81 19.86 23.84
T3 10.69 21.53 28.75 21.32
Tn 1.87 6.47 16.25 11.72

M2, M3, and Mn by iterative search, and the total time should
be the sum of the computation time for initial solution and for
iterative search. As Table 2 shows, Mn is much faster than M2
and M3. Since Mn produces a resulting univariate polynomial
equation of degree 4, we are able to directly compute all the
discrete solutions in less than 5 µs, which is much less than the
computation time for the initial solution.

For the case between an ellipsoid and a torus, the above
iterative search methods may fall into a local minimum, and
it may be necessary to compute all the discrete solutions. The
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Fig. 4. The minimum distance between two implicit surfaces. The first surface is an ellipsoid, and the second one is (a) a paraboloid or (b) a torus.
algebraic and hybrid method explained in [31] is useful for
computing all the discrete solutions, which turns the bivariate
equation system into a univariate polynomial equation using
the resultant method. The real root isolating method explained
in [37] works with huge polynomials of degree 1000 and more,
which is useful for solving the resulting univariate polynomial.
To compute all the discrete solutions for the case between an
ellipsoid and a torus, the average computation times for M2,
M3 and Mn are 3235.0, 5417.2 and 2154.7 µs. Again, Mn is
much faster than M2 and M3.

6. Conclusions

An offset method for computing the minimum distance
between two implicit algebraic surfaces is presented in this
paper. The offset method also works with the cases between
an implicit algebraic surface and a parametric surface. Quadric
surfaces, tori and canal surfaces are used to illustrate our
method. Our method generalizes the method in [17]. As Table 1
shows, the two resulting bivariate equations in the new method
have lower degrees than those in the methods explained in [22]
and [39], which may lead to less computation time cost (see
Table 2). Our method is able to produce the same (possibly
simpler) formulae as the method in [39], but is much easier, for
it only needs to eliminate one variable from three polynomial
equations, while the method in [39] needs to eliminate four
variables from seven polynomial equations.

The minimum distance computation problem usually
involves non-linear equation systems. It is possible, with great
difficulty, to compute all the roots for the corresponding general
non-linear equation systems, but it is not necessary to do so. In
the future, we will investigate an efficient method for finding
a good candidate solution or for pruning redundant solutions.
Another future task is to extend the offset method to the cases
between two parametric surfaces.
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[15] Jiménez P, Thomas F, Torras C. 3D collision detection: A survey.
Computers & Graphics 2001;25(2):269–85.

[16] Johnson DE, Cohen E. A framework for efficient minimum distance
computations. In: IEEE International Conference on Robotics and
Automation. 1998. p. 3678–84.



X.-D. Chen et al. / Computer-Aided Design 38 (2006) 1053–1061 1061
[17] Kim K-J. Minimum distance between a canal surface and a simple surface.
Computer-Aided Design 2003;35(10):871–9.

[18] Kim K-J, Kim M-S. Torus/sphere intersection based on a configuration
space approach. Graphical Models and Image processing 1998;60(1):
77–92.

[19] Krishnan S, Manocha D. An efficient surface intersection algorithm based
on the lower dimensional formulation. ACM Transactions on Graphics
1997;16(1):74–106.

[20] Latombe JC. Robot motion planning. Boston (MA): Kluwer Academic
Publishers; 1991.

[21] Lazard S, Penaranda LM, Petitjean S. Intersecting quadrics: an efficient
and exact implementation. In: Proceedings of the twentieth annual
symposium on computational geometry. 2004. p. 419–28.
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[28] Mourrain B, Técourt JP, Teilaud M. On the computation of an
arrangement of quadratics in 3d. Computational Geometry 2005;30:
145–64.

[29] Mullenheim G. On determining start points for surface/surface
intersection algorithm. Computer Aided Geometric Design 1991;8(5):
401–8.

[30] PatriKalakis NM. Surface-to-surface intersections. IEEE Computer
Graphics and Applications 1993;13(1):89–95.

[31] PatriKalakis NM, Maekawa T. Shape interrogation for computer aided
design and manufacturing. Berlin: Spring-Verlag; 2002.

[32] Peternell M, Pottmann H. A laguerre geometric approach to rational
offsets. Computer Aided Geometric Design 1998;15(3):223–49.

[33] Peternell M, Pottmann H, Ravani B. On the computational geometry of
ruled surfaces. Computer-Aided Design 1999;31(1):17–32.

[34] Ponamgi MK, Manocha M, Lin MC. Incremental algorithms for collision
detection between solid models. In: Proceedings of ACM symposium on
solid modeling. 1995. p. 293–304.

[35] Pratt M, Geisow A. Surface/surface intersection problems. In: The
mathematics of surface I. 1986. p. 117–42.

[36] Quinlan S. Efficient distance computation between non-convex objects.
In: IEEE International Conference on Robotics and Automation. 1994. p.
3324–29.

[37] Rouillier F, Zimmermann P. Efficient isolation of polynomials real roots.
Journal of Computational and Applied Mathematics 2004;162:33–50.

[38] Shacham M. Numerical solution of constrained nonlinear algebraic
equations. International Journal for Numerical Methods in Engineering
1986;23(1):1455–81.
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