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should determine the number n of the control points and the cor-
responding knot vector Un of C(t) as well. The approximation re-
sult depends on the selection of n and Un. There are some notable
works based on the optimization approach [13,14], but many chal-
lenges still remain to be tackled.When n is equal tom, the curve fit-
ting problem degenerates to a general interpolation problem [15].
A knot removal approach can then be used to reduce the number
of control points, which is to progressively remove a selected num-
ber of knots that have the least significance to the approximation
curve until the error reaches the tolerance level [4,16,17]. A knot
increment approach can also be used for the curve fitting problem,
which is to use less number of knots at first, and then add more
knots to obtain the desired accuracy. Usually, the knot increment
approach tends to require less number of control points than the
knot removal approach [1].When the number of the control points
is determined, knot placement becomes the most important issue.
Recently, Park and Lee provide a dominant point basedmethod for
knot placement [1]. Several initial dominant points are selected
at local extreme curvatures. More dominant points are then iter-
atively added to make the approximation curve rapidly converge
to the sequence of points. In practical applications, since the num-
ber of the control points n is difficult to be obtained in advance ac-
cording to the preset tolerance, n may be frequently changed and
all the control points need to be recalculated. Thus, almost all of
the previous computations are wasted.
This paper presents an adaptive method for the B-spline curve

approximation problem, which is based on a curve unclamping
technique. Firstly, it constructs a cubic Bézier curve by using the
inner point interpolation method in [18] for the 2D case or the
geometric Hermite method in [19] for the 3D case to approximate
the first segment of the given curve (or part of the ordered point
sequence) within the tolerance. This cubic Bézier curve is regarded
as the seed segment of the final approximation B-spline curve,
which is to be extended to other tangent points, one by one,
by the curve unclamping technique. The given curve and the
approximation curve are tangent with each other at the tangent
points. A heuristic method is provided for selecting the locations
of the tangent points. It is proved in this paper that such tangent
approximation curve exists, and the approximation effect is shown
by numerical examples.
The rest of the paper is organized as follows. In Section 2,

we briefly review B-spline curve and the conventional B-spline
interpolation methods. In Section 3, we introduce methods for
constructing the seed cubic Bézier curve. In Section 4, we
demonstrate the constructive tangent B-spline curve by curve
unclamping. Section 5 discusses the selection of the tangent points.
Section 6 shows that the approximation effect can be improved by
adding one ormore tangent points. Examples and comparisons are
shown in Section 7, and conclusions are drawn at the end of this
paper.

2. Conventional B-spline interpolation methods

Given a knot vector

U = (u0, u1, u2, · · · , ur), u0 ≤ u1 ≤ · · · ≤ ur ,

the associated B-spline functions Ni,p are defined as follows:

Ni,1(u) =
{
1, for ui ≤ u < ui+1,
0, otherwise,

and

Ni,p(u) =
u− ui

ui+p−1 − ui
Ni,p−1(u)+

ui+p − u
ui+p − ui+1

Ni+1,p−1(u),

for p ≥ 2 and i = 0, 1, . . . , r − p.
A B-spline curve with n+ 1 control points is then defined as

C(u) =
n∑
i=0

qiNi,p(u), u ∈ [up−1, un+1].

With n+ 1 data points p0, . . . , pn, one can find an interpolation B-
spline curve. In any case, one needs to assign a location parameter
τi to each of the data points, define a knot vector U, and finally
compute the control points [3,5]. The location parameters τi can
be assigned based on the chord length as

τ0 = 0, τi = τi−1 +
‖pi − pi−1‖
n∑
i=1
‖pi − pi−1‖

,

or by using a centripetal method as

τ0 = 0, τi = τi−1 +

√
‖pi − pi−1‖

n∑
i=1

√
‖pi − pi−1‖

.

The knot vector U can be defined as
u0 = · · · = up−1 = 0, ur−p+1 = · · · = ur = 1,

uj+p−1 =
1
p− 1

j+p−2∑
i=j

τi, j = 1, . . . , n− p+ 1.

A standard interpolation problem is to solve a linear system

C(τi)− pi = 0, 0 ≤ i ≤ n.

When there are m + 1 data points, i.e., {p̄j}mj=0, with m > n, the
corresponding location parameters {τ̄j} and the knot vector Ū can
also be derived from the data points {p̄j} in a similar way. Suppose
that the new approximation curve corresponding to Ū is C̄(u), then
the least-squares method is to solve the new control points by
minimizing
m∑
j=0

‖C̄(τ̄j)− p̄j‖2.

Usually, the least-squares method produces well-behaved results
compared to those of the standard interpolation method, but it
cannot ensure that the resulting curve exactly interpolates the data
points {p̄j}.

3. Constructing the seed curve

The seed curve is constructed as a cubic Bézier curve and can be
written as

A(t) = (1− t)3q0 + 3(1− t)2tq1 + 3(1− t)t2q2 + t3q3,
where {qi}3i=0 are the control points. Suppose that the given curve
has two end points p0 and p1, and the corresponding tangent
vectors at the end points are t0 and t1, respectively. From the
tangent constraint at the end points, we have

q0 = p0, q1 = p0 + αt0, q2 = p1 − βt1, q3 = p1.
When the values of α and β are determined, the corresponding
cubic Bézier curve is then defined. The geometric Hermitemethods
such as the one in [19] can be used for determining the values of
of α and β . The least-squares method can also be used, which is to
minimize∫ 1

0
‖A(t)− C(t0 + (t1 − t0)t)‖2dt,

where t0 and t1 are the parameters of points p0 and p1 on the given
curve C(t), respectively.
For the 2D case, we also use the inner point interpolation

method in [18], which is to select an inner point where the given
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curve and the approximation curve are tangent with each other.
Suppose that the inner point of the given curve is p? = (x?, y?),
and t? = (t?x , t

?
y ) is the corresponding tangent vector of the given

curve at p?. Let A(t) be (X(t), Y (t)). Then we haveX(t)− x
?
= 0,

Y (t)− y? = 0,
X ′(t)t?y − Y

′(t)t?x = 0.
(2)

The equation system (2) has three unknown variables; i.e., α, β
and t , and three equations as well. The first two equations in the
equation system (2) are linear with respect to α and β . The terms
α and β can then be directly solved as α(t) and β(t). Substituting
α(t) and β(t) into the third equation of the equation system (2),
we obtain a univariate equation in t , which can be simplified into
a univariate cubic polynomial equation H(t). A brief overview of
related details can be found in Appendix. By solving H(t) = 0,
we finally obtain the values of t , α and β . Thus, the resulting
approximation cubic Bézier curve is also obtained.

4. Constructing the tangent cubic B-spline curve by curve
unclamping

In this section, we construct a cubic B-spline curvewhich is tan-
gent with the given curve D(u) at positions {pi}ki=0 with respective
parameters {ūi}ki=0. The derivative vector ti of the curve at point pi
can be directly computed. Firstly, we construct a cubic Bézier curve
C1(u) discussed in the previous section and the curve is tangent
with the given curve at the two end points p0 and p1. If k is equal
to 1, then the cubic Bézier is the resulting approximation curve.
When k is large than 1, we progressively extend the curve Ci(u) by
curve unclamping in [5,20] to obtain Ci+1(u)which is tangent with
the given curve at point pi+1, i = 1, . . . , k − 1 starting from the
seed curve C1(u). The curve Ck(u) is the resulting approximation
cubic B-spline curve.
Curve unclamping works as follows. Suppose that the curve

Ci(u) is defined by control points {pij}
n
j=0 and knot vector

Ui = {0, 0, 0, 0, u4, . . . , un, 1, 1, 1, 1},
where n = i+ 2. We want to turn the curve Ci(u) into a new curve
C?i (u) by curve unclamping, and then obtain the new control points
{qij}

n
j=0 based on a new knot vector

U?i = {0, 0, 0, 0, u4, . . . , un, 1, u, u, u}.
It can be verified that

qij = pij, j = 0, . . . , n− 2,

qin−1 = pin−1 +
(u− 1)
(1− un−1)

(pin−1 − pin−2),

qin =
(u− un)2

(1− un)2
pin +

(u− 1)2

(1− un)(1− un−1)
pin−2

−

[
(u− un)(u− 1)
(1− un)2

+
(u− 1)(u− un−1)
(1− un−1)(1− un)

]
pin−1

= Qi0(u− 1)
2
+ Qi12(u− 1)(2− u)+ Qi2(2− u)

2,

(3)

where

Qi0 =
(2− un)2

(1− un)2
pin +

1
(1− un)(1− un−1)

pin−2

−

[
(2− un)
(1− un)2

+
(2− un−1)

(1− un−1)(1− un)

]
pin−1,

Qi1 =
2− un
1− un

pin −
1

1− un
pin−1,

Qi2 = pin.

The new control points {qij}
n
j=n−1 are dependent on the parame-

ter u. For the 2D case, u can be simply set as ut , which is one of the
real roots of the quadric polynomial equation
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Fig. 1. The locus of qin has no intersection point with the tangent line in a 3D case.
The solid curve in red, the dotted curve in black, the dashed curve in green and the
dash-dotted curve in blue are the given curve, the locus of qin , the tangent line at
point pi+1 and the extended segment between pi and pi+1 , respectively.

(Qi0(u− 1)
2
+ Qi12(u− 1)(2− u)

+Qi2(2− u)
2
− pi+1)× ti+1 = 0, (4)

where ‘‘×’’ denotes the cross product. Let Ci+1(u) be defined by
control points

qi+1j = qij, j = 0, . . . ., n, and qi+1n+1 = pi+1,

and the knot vector

U?i+1 = {0, 0, 0, 0, u4, . . . , un, 1, ut , ut , ut , ut}.

The curve Ci+1(u) and the given curve are tangent with each other
at point pi+1. Usually, the knot vector U?i+1 is normalized to be
rewritten as

{0, 0, 0, 0, u4/ut , . . . , un/ut , 1/ut , 1, 1, 1, 1}.

In the 3D case, as shown in Fig. 1, the locus of qin (in black) may has
no intersection point with the tangent line (in green) of the given
curve at point pi+1, and the univariate equation system (4) which
consists of three quadric polynomial equations may have no such
solution. One alternative method is to use two pieces of the ap-
proximation curves between each two adjacent points pi and pi+1,
which ensures that the approximation curve and the given curve
are tangent with each other at pi+1. Suppose that the curve Ci(u) is
unclamped to the new knot vector

Ui = {0, 0, 0, 0, u4, . . . , un, 1, un+2, ut , ut},

with its new control points {q̄ij}. Let the curve C?i+1(u) be deter-
mined by control points

qi+1j = q̄ij, j = 0, . . . ., n, qi+1n+1 = pi+1 − αti+1 and

qi+1n+2 = pi+1,

and the knot vector

Ui+1 = {0, 0, 0, 0, u4, . . . , un, 1, un+2, ut , ut , ut , ut}.

It can be verified that the curve C?i+1(u) and the given curve are
tangent with each other at point pi+1 (also see Fig. 1). The result-
ing values of α, un+2 and ut for the 3D case depend on the choice
of the objective optimization function which is beyond the scope
of this paper, and here we omit the details.
Another solution is to simply set u as one of the real roots of the

quadric polynomial equation

(Qi0(u− 1)
2
+ Qi12(u− 1)(2− u)

+Qi2(2− u)
2
− pi+1) · vi+1 = 0,
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Fig. 2. Illustration for the existence of ut ∈ (1, 2]: (a) the dashed normal line, the dashed tangent line and the dotted locus of qin divide the extended region into three parts
A, B and C, respectively, and the existence of ut is obvious for the cases when the extended curve locates in part A or C; and (b) the possibility of the existence of ut in the
case B.
where ‘‘·’’ denotes the inner product and vi+1 is the normal
directional vector at point pi+1. In this case, the tangent lines of
the approximation curve and the given curve at point pi+1 lie in
the same tangent plane determined by point pi+1 and the normal
vector vi+1, which is similar to that of the method in [10].

5. Selecting the tangent points {pi}

Suppose that the tangent points and their parameters {ūi} are
obtained. The first segment of the approximation cubic B-spline
curve can be obtained by the methods mentioned in Section 2,
which approximates the given curve D(u) in the interval [ū0, ū1].
We then extend the approximation B-spline curve by curve
unclamping which is tangent with the given curve D(u) at point
D(ūi) in order, i = 2, . . . , l + 1. We first discuss the existence
of the ut ∈ (1, 2] in the extension process, and then provide a
constructive method for determining the values of {ūi}.
In principle, ut can be of an arbitrary value in the interval

(1,+∞). Without loss of generality, we only discuss the existence
of ut ∈ (1, 2]. As shown in Fig. 2(a), the solid curve denotes the
given curveD(u). pin−2, p

i
n−1 and p

i
n are the last three control points

of the approximation curve Ci(u). The dotted curve is the quadratic
Bézier curve Qi(u) with the control points Qi2, Q

i
1 and Qi0. The line

L1 is passing through point pin and is perpendicular with the vector
−−−→
pinp

i
n−1, while the ray line R2 starts at point p

i
n and passes through

point Qi1. The line L1, the ray line R2 and the quadratic Bézier curve
Qi(u) locally partition the corresponding region into three sub-
regions, marked as A, B and C. The local segment of D(u) which
is on the right side of the line L1 may be located in sub-region A,
B or C. If the case of sub-region A occurs, the curvature of D(u) at
point pin is larger than that of the quadratic Bézier curve Q

i(u). If
the case of sub-region B occurs, the curvature ofD(u) at point pin is
smaller than that of the quadratic Bézier curve Qi(u). If the case of
sub-region C occurs, the point pin is likely to be an inflexion point.
In cases when sub-region A or C occurs, there exists a tangent line
of D(u) at point D(u?) that intersects with the curve Qi(u), which
means that there exists ut ∈ (1, 2]. It seems not so good in the
case when sub-region B occurs. However, even in this case, the
end tangent line is able to intersect with curve Qi(u) as shown in
Fig. 2(b). We have the following theorem.

Theorem 1. If the ratio of the curvatures of the given curve D(u) and
the approximation curve Ci(u) at the tangent point pi is larger than
3/4, then the case of sub-region B cannot occur (also see Fig. 2 (a)).
Thus, it ensures the existence of the tangent approximation curve by
curve unclamping.

Proof. Without loss of generality, suppose that Ci(u) is just a cubic
Bézier curve with control points {p1j }

4
j=1, where p

1
4 coincides with

the tangent point pi. It can be verified that the curvatures of the
approximation curve Ci(u) and the quadratic Bézier curve Qi(u) at
the tangent point pi is

c1 = 18K/27

and

c2 = K/2,

respectively, where

K =
‖(p14 − p13)× (p

1
4 − 2p

1
3 + p12)‖

‖p14 − p13‖3
.

Let the curvature of the given curve D(u) at point pi be cd. From
the assumption, we have cd > 3/4c1. Note that c2 = 3/4c1, we
have cd > c2. As Fig. 2(a) shows, if the case of sub-region B occurs,
cd must be smaller than c2. Thus, the case of sub-region B cannot
occur, and we have completed the proof. �

We then provide a heuristicmethod for selecting the points {pi}
or the corresponding parameters {ūi}. Suppose that {ûi}li=0 are the
parameters where the given curve D(u) reaches its local extreme
signed curvature. Firstly, we construct a cubic Bézier curve tangent
with the given curve D(u) at three points with the parameters u =
0, û0, ū1, where the initial value of ū1 is set as (û0+û1)/2. The value
of ū1 can be further refined between û0 and (û0 + û1)/2 according
to the approximation effect, including curvature approximation
at the point D(ū1). Once the first approximation curve segment
C1(u) is obtained, we progressively extend the approximation
curve to the points {D(ūi)} by curve unclamping. Then the initial
parameters {ūi}l+1i=0 of the tangent points {pi} can be simply set as

ū0 = 0,
ūi = (ûi + ûi−1)/2, i = 1, . . . , l,
ūl+1 = 1.

(5)

As shown in Fig. 3, this simple selection is able to obtain a good
approximation. The selection of {ūi}l+1i=0 can be further refined for
the planar case which is based on the following observation. Each
extended segment is a Bézier curve and is tangent with the given
curve at the two end points. Fig. 4 shows three different cases
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Fig. 3. Selecting tangent points with Eq. (5). The solid curve in red is a quintic B-
spline curve and the dotted curve in black is the cubic approximation B-spline curve.
The two curves are tangent with each other at both the two end-points and three
inner points denoted by solid circles in red, which has a good approximation effect.

according to the number of inner intersection points between the
approximation Bézier curve and the given curve; i.e., zero, one and
two. The solid curve in red and the dotted curve in black are the
given curve and the approximation curve, respectively. In Fig. 4(a)
and (c), both of the curvatures of the approximation curve at the
end points are smaller or larger than those of the given curve. In
Fig. 4(b), one of the curvatures of the approximation curve at the
end points is smaller than that of the given curve, and the other
is larger than that of the given curve. The inner product between
the normal vector at point D(ûi−1) and the vector

−−−−−−−−−→
C(ûi−1)D(ûi−1)

will be helpful to further distinguish cases Fig. 4(a) and Fig. 4(c).
Similarly as the analysis in [21,19,22], the optimal approximation
orders of Fig. 4(a ∼ c) are 4, 5 and 6, respectively. As shown in
Fig. 4, the higher the optimal approximation order, the better the
approximation effect. The approximation effect tends to be poor
at places having local maximum curvatures. We sample several
points in the interval [ûi−1, ûi], and select the one such that the
corresponding optimal approximation order is the highest and
the distance between the point C(ûi−1) and the approximation
curve is the smallest. The extended segment which passes through
point C(ûi−1) with local extreme curvature tends to have a better
approximation effect in both the position and the curvature. Fig. 5
shows such an example by using the heuristic method. Fig. 5(a)
shows the given curve D(u) in red and the approximation curve
C(u) in black. Fig. 5(b) shows the selected parameters {ūi} which
are denoted by dotted lines, and the corresponding curvature plots
of the two curves. As shown in Fig. 5, the newmethod is able to lead
to a good approximation in both the position and the curvature.

6. Adaptive method with a given tolerance

The new method is to firstly construct a cubic Bézier curve for
approximating the first segment of the final curve as a seed seg-
ment. Then by using the curve unclamping method, the approxi-
mation curve is extended to the remainder tangent points {pi} one
by one.Wewill discuss the existence of the tangent approximation
B-spline curve and the corresponding approximation effect after
introducing a theorem with which one more tangent point can be
used in the extending process.
Fig. 6 shows a C-shape case. As shown in Fig. 6, the solid curve in

black is the approximation B-spline curve Ci(u), the dashed curve
in black is the extended segment to point pi+1, the dashed line in
green is the tangent line of the given curve at pi+1, which intersects
with the dotted quadratic Bézier curve in blue at point n. The point
m is a new tangent point of the given curvewhich is between point
pi and pi+1. When the approximation curve is extended to pointm,
we obtain the new approximation curve Cj(u), the corresponding
quadratic Bézier curve is a dash-dotted one in red with its control
points Qj0, Q

j
1 and Qj2, respectively. We have then the following

theorem.
Fig. 4. Three cases of optimal approximation order: (a) 4: without inner intersection point; (b) 5: with one inner intersection point; and (c) 6: with one tangent inner point
or two inner intersection points. The solid curve in red and the dotted curve in black are the given curve and the approximation curve, respectively.
Fig. 5. Illustration for selecting the tangent points: (a) the solid curve in red and the dotted curve in black are the given curve and the approximation curve, respectively;
and (b) the parameters of the tangent points which are shown by dotted lines, and the corresponding curvature plots of the two curves. The given curve is bounded by a box
with sizes of 80×30.



528 X.-D. Chen et al. / Computer-Aided Design 42 (2010) 523–534
Fig. 6. Illustration of the existence of the tangent approximation B-spline curve
while adding one more tangent point.

Theorem 2. There exists a new tangent point m of the given curve
between pi and pi+1 such that the approximation curve Ci(u) can be
extended to points m and pi+1 where the approximation curve and
the given curve are tangent with each other.
Proof. Since the segment of the given curve between points pi and
pi+1 is with C-shape, following the convexity of the given curve
and for any tangent point m of the given curve between pi and
pi+1, the tangent line of the given curve at m intersects with the
dotted quadratic Bézier curve in blue at a point between n and
pi, which means that the approximation Ci(u) can be extended to
point m and is tangent with the given curve at point m. Suppose
that point m is close enough to point pi+1, such that the tangent
line at point pi+1 intersects with both the line segments Q

j
2Q
j
1 and

Qj2Q
j
0. Following the convex hull property of a Bézier curve, the

tangent line at pointpi+1 intersectswith the dash-dotted quadratic
Bézier curve in red whose control points are Qj0, Q

j
1 and Q

j
2, which

means that the approximation curve can also be extended to point
pi+1 such that the new approximation curve and the given curve
are also tangent with each other at point pi+1. Thus, we have
completed the proof. �

Wenow show that the local approximation can be substantially
improved by adding onemore new tangent point. In Fig. 7, the solid
curve in red is the given curve, and the solid segment in black is the
approximation curve C1(u) between points p0 and p1. The dashed
segment in blue is obtained by directly extending to point p2, and
the dotted curve in brown is obtained by adding a new inner point
q̄14 of the given curve. The dashed segment E1(u) in blue, which is
between points p0 and q14, is defined by control points q

1
0, q

1
1, q

1
2,

q13 and q
1
4 with knot vector Û = {0, 0, 0, 0, 1, ut , ut , ut , ut}, while

extending the approximation curveC1(u) to point q̄14, we obtain the
dotted curve E2(u) in brown with control points q10, q

1
1, q

1
2, q

1
3 and

q̄14 and with the same knot vector Û. The only difference between
segments E1(u) and E2(u) is just their last control point, which
is q14 and q̄14, respectively. As shown in Fig. 7, point q̄

1
4 is on the

given curve, and the approximation using E2(u) is obviously better
than that using curve E1(u). In conclusion, the dotted segments
in brown is obtained by adding one more tangent point q̄14, while
the dashed segments in blue is obtained by directly extending
the approximation curve C1(u) to point p2. It is clear that the
approximation to the given curve using the dotted segments in
brown ismuch better than that using the dashed segments in blue.
Fig. 7. Improve the approximation effect by adding one more tangent point. The
solid curve in red is the given curve. The dashed curve in blue is obtained by directly
extending the solid approximation curve in black to pointp2 , while the dotted curve
in brown is obtained by adding a new inner point q̄14 .

We also provide the concept of the minimum shape deforma-
tion angle (MSDA) of an inner point for improving the selection
of the new added tangent point between p1 and p2. As shown in
Fig. 8(a), the solid curve in red is the given curve segment, p1 and
p2 are the two end points of the segment, m is an inner point of
the given curve, L1, L2 and L3 are the tangent line segments of the
given curve at points p1,m and p2, respectively. In Fig. 8(b), {αi}4i=1
are four inner angles determined by the tangent line segments L1,
L2, L3 and points p1,m, p2. The minimum shape deformation angle
ofm is determined as
MSDA(m) = min{αi|i = 1, 2, 3, 4}.
To insert an inner point in an interval [us, ue] of the given curve
D(u), we try to find a parameter ǔ ∈ (us, ue) such that
MSDA(D(ǔ)) = max

u∈[us,ue]
MSDA(D(u)).

In other words, when selectingm for insertion, we try tomaximize
the minimum shape deformation angle of m. To simplify the
computation, we take an average sample of several points in the
interval [us, ue], and select the one with the maximum value of
MSDA as the resulting approximate solution.
When the given curve D(u) is a circular arc, for example, the

value of
MSDA(D(u))
reaches its maximum at the middle of the parameter interval,
which is intuitively the best selection. In principle, the MSDA
takes both the positions and the tangent vectors into account and
makes a trade-off selection. Fig. 9 illustrates the effectiveness of
the proposed selection method. In Fig. 9, the solid curve in red
is the given curve, and the dotted curve in black and the dashed
curve in brown are obtained by using inner points m1 and m2,
respectively. It can be verified that MSDA(m2) > MSDA(m1), and
the corresponding Hausdorff distance by usingm2 is smaller than
that ofm1.

7. Two applications of the newmethod

This section discusses two applications of the newmethod. The
first one is to recover a cubic B-spline curve from a set of sampled
points and their normal vectors. The other one is to approximate a
curve with straight line segments.
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Fig. 8. Illustration of the minimum shape deformation angle of an inner point m between p1 and p2: (a) three points and their derivative vectors; and (b) the minimum
shape deformation angle of the inner pointm.
Fig. 9. The dotted segment in black and the dashed segment in brown are obtained
by using inner pointsm1 andm2 , respectively. It can be verified thatMSDA(m2) >
MSDA(m1), and the corresponding Hausdorff distance by usingm2 is smaller.

7.1. Recovering a cubic B-spline curve

Assume a set of ordered points {pi}ni=0 and their tangent direc-
tional vectors {ti}, which are sampled from a cubic B-spline curve.
We assume that the set of points include knot points (positions)
whose parameters are the knot values. It is also assumed that there
are at least two different sampled points between two adjacent
knot points. We now prove that the new method can recover the
given cubic B-spline curve.

Lemma 1. The first segment of the given cubic B-spline curve can be
recovered by the inner point interpolation method.

Proof. From the assumption, the first four points {pi}3i=0 are on
the first segment of the cubic spline curve, which is essentially a
cubic Bézier curve. We use points p0 and p3 as the two end points,
and point p1 as the inner point. From the inner point interpolation
method, we obtain a cubic univariate polynomial equation, which
has at most three different real roots. Then, we also obtain at
most three different cubic Bézier curves, which includes the first
segment. Usually, there is a unique cubic Bézier curve interpolating
both the positions and the tangent directional vectors of the four
points {pi}3i=0, the one that also interpolates both point p2 and its
tangent directional vector t2 is denoted as C̄1(u), which is the best
choice.
Next, we show a simple method to find the first knot point,

which is also the end point of the first segment. We extend the
cubic Bézier curve C̄1(u) by using the curve unclamping technique
to obtain two new curves C1n(t) and C2n(t) interpolating both the
point pk and its tangent directional vector tk. If there is no knot
point between p3 and pk, at least one of the two new curves
is essentially a Bézier curve and is at least C4-continuous at p3.
Otherwise, if both C1n(t) and C2n(t) are not C

4-continuous at p3, it
means that there is at least one knot point between p3 and pk. The
minimum k such that point pk is a knot point can be found by the
binary search method.
Finally, we extend the curve C̄1(u) to the first knot point by

using the curve unclamping technique and obtain the resulting
cubic Bézier curve,which is just the first segment of the given cubic
B-spline curve. We have thus completed the proof. �

Lemma 2. The second segment of the given cubic B-spline curve
can be recovered from the first segment C̄1(u) by using the curve
unclamping technique.

Proof. Suppose the first knot point is pk. From the assumption,
both point pk+1 and point pk+2 are the inner points of the second
segment. We extend C̄1(u) to point pk+2 and obtain two possible
new curves C1n(t) and C2n(t). And then, we select the one which
interpolates both the point pk+1 and its tangent directional vector
tk+1. The segment between point pk and pk+2 is essentially a cubic
Bézier curve and denoted as C̄2(u). Similarly, by using the method
mentioned in Lemma 1, we can find the second knot point. By
extending C̄2(u) to that knot point, we finally recover the second
segment. This completes the proof of the lemma. �

Remark 1. Suppose that the curve C1n(t) is obtained by extending
C̄1(u) to pointpk+1 andpointpk+2 in order, inwhich the knot points
pk, pk+1 and pk+2 are of parameters ū0, ū1 and ū2, respectively.
Also suppose that the curve C2n(t) is obtained by directly extending
C̄1(u) to point pk+2, in which the knot points pk and pk+2 are of
parameters û0 and û1, respectively. Assume that C1n(t) is essentially
the same as C2n(t), then point pk+1 is a point on the curve C

2
n(t) of

parameter

ū1 − ū0
ū2 − ū0

(û1 − û0)+ û0.

We have now the following theorem.

Theorem 3. All of the segments of the given cubic B-spline curve can
be recovered one by one. And thus, the given cubic B-spline curve is
finally recovered.

Proof. Following Lemmas 1 and 2, the first two segments can
be recovered. From Lemma 2, the remainder segments of the
given curve can also be recovered in order. From each unclamping
process, both the knot vector and the control points are recovered.
When all the segments are recovered,we obtain the resulting cubic
B-spline curve. In principle, the resulting curve is just the given
cubic B-spline curve. This completes the proof of the theorem. �
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Fig. 10. Example for approximating a curve with straight line segments: (a) the given curve; (b) the resulting approximation curve and all of its 13 control points as well;
and (c) the solid given curve in red and the dotted resulting approximation curve in black.
7.2. Approximating a curve with straight line segments

The curve used in this section is G1-continuous and consists of
two line segments and two circular arcs. The final approximation
results are shown in Fig. 10(b ∼ c). As shown in Fig. 10(c), the
dotted approximation curve in black almost coincides with the
solid given curve in red. Suppose that we have obtained a B-spline
curve C1(t) approximating one of the circular arcs. Then we show
how to approximate a line segment. The details are as follows. For
any point p picked on the line segment, the tangent directional
vector is always t = (1, 0)T . Thus, the equation
(qin − p)× t = 0

has a unique root u = 1, where qin is determined in Eq. (3). In this
case, the curve C1(t) is always itself after the unclamping process.
Suppose that C1(t) has control points {qi}ki=0 and knot vector
U = {0, 0, 0, 0, u4, . . . , uk, 1, 1, 1, 1}.
Let

q̄k+1 = qk, q̄k = qk − ε1t, q̄i = qi, . . . i = 0, . . . , k− 1,
where ε1 is a small positive real number. We modify C1(t) to be a
new curve C̄1(t)with control points {q̄i}k+1i=0 and knot vector

Ū = {0, 0, 0, 0, u4, . . . , uk, 1− ε, 1, 1, 1, 1},
where ε is a small positive real number. It can be verified that
the first k − 3 segments of curve C̄1(t) are the same as those of
curve C1(t), and C̄1(t) is still tangent with the original curve at
the end point qk. The four points q̄k−1,q̄k,q̄k+1 and p are on the
same line determined by p and the directional vector t. Thus, by
using the unclamping technique with some knot ut , the C̄1(t) can
be extended to a new curve interpolating both the point p and its
tangent directional vector t, and the last segment of the new curve
is a straight line segment.

Remark 2. The segment with the four control points q̄k−1,q̄k,q̄k+1
and p can represent a straight line. However, the distribution of
the control points may be uneven, which may cause a saltation of
curvature of the next segment at point p. This can be improved by
inserting more control points for the straight line segment nearby
the point p.

Remark 3. Note that the resulting approximation curve in Fig. 10
(b) is not symmetric. When a given curve is a symmetric one,
suppose that Q̄ is an intersection point between the given curve
and the symmetric axis. To obtain a symmetric one, one can select
symmetric tangent points on both sides of the symmetric axis
and the points on the symmetric axis as well, and then constrain
the second order derivative vector of the approximation curve at
point Q̄ has the same the direction as that of the symmetric axis.
Finally, the segments on both sides of the symmetric axis can be
merged into a symmetric B-spline curve at point Q̄. Here the detail
is omitted.

8. Further examples and comparisons

In some practical applications in CAD/CAM, or even font recon-
struction, some key points may be required on the approximation
curve.When the data points are determined, the control points can
be directly solved by standard interpolation method, while its ap-
proximation effect needs to be improved further. Usually, the new
method is able to accurately interpolate the data points and has
a better approximation effect than that of the standard interpola-
tion method. If it is not required to apply exact interpolation con-
straints, most of the previous methods use least-squares B-spline
curve fitting technique and produce much better approximation
than the interpolation method [23,11,1,24,25]. However, for some
practical requirements, some key points must be accurately inter-
polated, which cannot be ensured in the least-squaresmethod (de-
noted as LSM). Note that the least squares method is to minimize
the function E(b0, . . . , bn) in Eq. (1), the best selection of parame-
ter {ti} should satisfy the claim that pointC(ti) is the closest point to
pi. Though there are several notableworks on the parameterization
of {ti} [3,5,4], it still remains a challenge to this problem, especially
in the cases when the number of the control points is small. The
new approach is easy to ensure that the key points are on the ap-
proximation curve. It interpolates the given curve (or the sampled
points) in both position and direction of the derivative vector at
key positions. Numerical examples of planar curve approximation
show the corresponding approximation effect of the new method.
Firstly, we compare the least squares method (LSM) with

the new method. Each extended segment in the new method
interpolates both the positions and the directions of the tangent
vectors at two end points, as shown in Fig. 4. It usually has the
approximation order 4, 5, or 6, while the LSM method usually has
the approximation order at most 4. In the optimization opinion,
the new method makes a local optimization on the parameter or
the knot by using both the positions and the tangents. Numerical
examples also show that the new method is able to produce
a better approximation than the LSM method, even with less
control points. Fig. 11 shows a face-shape curve and its resulting
approximation curves by using different methods. The solid curve
in red is the given curve, the dashedone in green and thedotted one
in black are from the least-squares method and the new method,
which have 19 and 16 control points, respectively. Fig. 11(b) shows
the resulting error plots. In Fig. 11(b), the dashed one in green and
the dotted one in black are from the LSM method and the new
method, respectively. The maximum errors produced by the LSM
method and the newmethod are 0.192 and 0.120, respectively. The
corresponding average errors producedby the LSMmethod and the
newmethod are 0.0432 and 0.0352. In this case, the approximation
using the new method is much better than that using the LSM
method.
Fig. 12 shows two other examples. Fig. 12(a) and (c) show the

original curve and its approximation curves, while Fig. 12(b) and
(d) show the corresponding error plots. In these two examples,
both of the two larger dimensions of their bounding boxes are
1. The original curve is in red, while the curves in green and in
black are the resulting curves from the LSM method and the new
method, respectively. The two frames at the rightwhich are in blue
and in brown provide a local scale-up view shown in the figure. In
Fig. 12(a), the numbers of the control points of curves in green and
in black are 18 and 13, respectively, while the resulting curves in
Fig. 12(c) are of 29 and 20 control points. As shown in Fig. 12(b)
and (d), the resulting curve in black which is from the newmethod
has a better approximation effect. Comparedwith the LSMmethod,
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Fig. 11. Results from different methods: (a) the resulting curves with a local magnified view; and (b) the error plots. The solid curve in red is the given curve, while the
dashed curve in green and the dotted curve in black are from the LSM method and the newmethod, respectively. The larger dimension of the bounded box of the given curve
is 80.
Fig. 12. Examples of curves with a straight line segment: (a) a running path shape curve and its approximation curves with local magnified views; (b) the corresponding
error plots; (c) a curve of a stave note shape and its approximation curves with local magnified views; and (d) the corresponding error plots. The solid given curve is in red,
while the dashed curve in green and the dotted one in black are the resulting curves from the LSM method and the new method, respectively.
the new method may have three advantages: (1) it is able to accu-
rately represent the line segments; (2) the error distance between
the given curve and the approximation curve can bemuch less than
that of the LSM method, even if it uses a much smaller number
of control points; (3) it does accurately interpolate the dominant
points.
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Fig. 13. Example of an involute curve: (a) the resulting curves with a local magnified view; and (b) the corresponding error plots. The solid curve in red is the given curve,
while the dashed curve in green and the dotted curve in black are the results from the method in [10] and the new method, respectively.
Secondly, we compare the interpolating method in [10] with
the new method. In many cases, there is no curve with n control
points accurately interpolating both the positions and the normal
vectors of n data points. For example, known from the inner point
interpolationmethod, there are atmost three possible cubic Bézier
curves interpolating both the positions and the normal vectors of
3 points in many cases, and there is no cubic Bézier curve interpo-
lating both the positions and the normal vectors of 4 points. The
method in [10] is usually an approximate interpolation method.
The resulting curve of the newmethod has n+1 control points and
it is able to exactly interpolate both the positions and the normal
vectors of n points. Examples show that the approximation effect
to a given curve in these two methods is similar. In principle, the
computation time of the method in [10] is (n − 2)t̄mK , where n is
the number of data points, K is the number of the iterative steps,
and t̄m is the computation time for computing the closest point on
the approximation B-spline curve to a data point, which usually
needs to solve a quintic polynomial equation several times for the
cubic case. With the newmethod, no iterative step is required. The
total computation time is (n − 3)tm + tk, where n is the number
of the given points, tm is the computation time for each unclamp-
ing process with one point which needs to solve a quadratic uni-
variate polynomial equation one time, tk is the computation time
of the inner point interpolation method in [18] for solving the first
cubic Bézier curve, which needs to solve a cubic univariate polyno-
mial equation one time. Note that the roots of a quadratic or cubic
univariate polynomial equation can be explicitly expressed from
the formulae and there is no analytic formula for solving a quin-
tic polynomial equation; both the computation times tm and tk are
usually less than t̄m. Fig. 13 shows an example of an involute curve
determined by

x(t) = 9(cos t + t sin t), y(t) = 9(sin t − t cos t),
t ∈ [π/10, 2π ].

The data points are sampled at parameters {i/10π}20i=1. The curves
in green and in black are obtained by the method in [10] and the
newmethod, and they have 20 and 21 control points, respectively.
Fig. 13(a) shows the resulting curves from both the method in [10]
and the new method. In principle, the curve in green does not ac-
curately interpolate both of the positions and the normal vectors at
the data points, while the newmethod does in this case. As shown
in Fig. 13(b), the maximum errors in the method in [10] and the
new method are 0.18 and 0.003, respectively. It is clear that the
new method has a better approximation effect than that of the
method in [10]. Fig. 14 shows an epitrochoid curve in [26] param-
eterized as
x(t) = (a+ b) cos(2π t)− h cos
(
2
a+ b
b

π t
)
,

y(t) = (a+ b) sin(2π t)− h sin
(
2
a+ b
b

π t
)
,

where a = 10, b = 1 and h = 2. The curvature of an epitrochoid
curve ismore complicated than that of an involute curve. There are
101 points sampled at {i/100}100i=0 and their normal vectors as well.
In this case, the newmethod can exactly interpolate both the posi-
tions and the normal vectors of the data points directly by the curve
unclamping technique, and the resulting cubic B-spline curve has
102 control points. The corresponding error plots from both the
method in [10] and the new method show, in this case, that the
method in [10] has a better approximation effect than that of the
newmethod. In principle, themethod in [10] canmeet an arbitrary
small error at the given points, and the newmethod can accurately
interpolate both the positions and the directional vectors of the
tangent vectors of the given points. The newmethod is able to give
the explicit formula for computing the resulting curve and usually
requires less computation time than that of the method in [10].
In some cases (e.g., for the 3D case) the new method cannot

accurately interpolate all of the positions and the normal vectors
of the data points. To avoid this, one can slightly change the
positions or the normal vectors of some data points for the curve
unclamping process. Another possible way for improving the
approximation effect of the resulting curve of the newmethod is to
only interpolate the positions of the points. Once the position of the
extended point is chosen (e.g., D(ūi+1)) the extended segment of
the approximation curve is essentially a cubic Bézier curve, whose
control points depend on the parameter u in Eq. (3). And then, the
alternative method leads to a local optimization problem, which
can be computed by minimizing a univariate equation

H(u) =
∫ ūi+1

ui
‖Cu(φ(t))− D(t)‖2dt,

where Cu(t) is the extended curve segment depending on the
parameter u, and φ(t) is a linear function such that φ(ūi) = 1 and
φ(ūi+1) = u.

9. Conclusions

This paper discusses the cubic B-spline approximation problem
and presents a simple but efficient method based on the curve
unclamping technique. It interpolates both the positions and the
directions of the derivative vectors of the points, and at the same
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Fig. 14. Example of an epitrochoid curve: (a) the resulting curves with a local magnified view; (b) the resulting error plot from the method in [10]; and (c) the resulting
error plot from the new method.
time it tends to approximate the curvature as well. The first
segment is solved by the inner point interpolation method in the
2D case or the Geometric Hermite Interpolation method in the
3D case, and the remainder segments are obtained by successive
unclamping processes. For each unclamping process, there is a
need to solve a quadratic univariate polynomial equation for
determining the unclamping parameter ut such that the resulting
curve interpolates both the position and the direction of the
tangent vector at the new data point. In principle, the newmethod
is able to recover a cubic B-spline curve. Examples show that it can
well approximate a curve with straight line segments and can also
accurately represent the line segments.
The new method has a local approximation property. Given an

error bound or a tolerance, it can adaptively approximate the data
points or the given curve segment by segment. The new method
usually has a better approximation than the standard interpolation
method. When the number of the control points is small, the new
method can also have a better approximation than that of the LSM
method. Given n suitable data points and their normal vectors, the
new method is able to produce a resulting cubic B-spline curve
with n + 1 control points that interpolates both of the positions
and the normal vectors of the n points. However, with the new
method, there is room to further improve curvature approximation
comparedwith themethodof [10]. In some cases, the procedure for
knots placement can also be further improved.
As for future work, there is still plenty of room for further de-

velopment. The current solution for selecting the next data point
and its tangent vector as well for the unclamping process is not
an optimal solution yet. In some practical cases, there may also be
constraints for knots placement. Can the new method produce a
cubic B-spline curve such that the error is bounded and the knot
vector of the resulting B-spline curve meets the given constraints?
With the new method, it should also be possible to use a B-spline
curve of any degree, not just the cubic case, for curve approxima-
tion, which should be further studied in future work as well.
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Appendix. The inner point interpolation method

Suppose that the given curve C(u) has two end points Q0 and
Q1, and two derivative vectors T0 and T1, respectively. Under the
tangent constraint, the control points {Pi} of the approximation
cubic Bézier curve must satisfy

P0 = Q0, P3 = Q1, P1 = P0 + αT0,
P2 = P3 − βT1. (6)

Thus, the remaining work is to determine the values of α and β .
Let C(0) = (p0, q0)T ,C(1) = (p1, q1)T , C′(0) = (s0, t0)T , C′(1) =

(s1, t1)T , X ′C (u1) = mi,Y
′

C (u1) = ni, XC (u1) = δi,YC (u1) = θi. We
ensure that the approximation Bézier curve and the given curve
C(u) are tangent with each other at the point C(u1). For the sake of
convenience (if necessary, under a suitable transformation of the
coordinate system), suppose that

(p0, q0) = (0, 0) and (s0, t0) = (0, 1). (7)

By selecting one inner point with parameter u1, we obtain the
following system of equations
a1(v1)α + b1(v1)β + c1(v1)− δ1 = 0,
a2(v1)α + b2(v1)β + c2(v1)− θ1 = 0,
(a′1(v1)α + b

′

1(v1)β + c
′

1(v1))n1
−(a′2(v1)α + b

′

2(v1)β + c
′

2(v1))m1 = 0,

(8)

where c1(v1) = p0(B03(v1)+B
1
3(v1))+p1(B

2
3(v1)+B

3
3(v1)), a1(v1) =

s0B13(v1), b1(v1) = −s1B
2
3(v1), c2(v1) = q0(B

0
3(v1) + B

1
3(v1)) +

q1(B23(v1)+ B
3
3(v1)), a2(v1) = t0B

1
3(v1) and b2(v1) = −t1B

2
3(v1).

The first two equations in the system of Eq. (8) are linear in α
and β . Solving from these two equations, we obtain
α =

b1(v1)(c2(v1)− θ1)− b2(v1)(c1(v1)− δ1)
b2(v1)a1(v1)− b1(v1)a2(v1)

,

β =
a2(v1)(c1(v1)− δ1)− a1(v1)(c2(v1)− θ1)

b2(v1)a1(v1)− b1(v1)a2(v1)
.

(9)

Substituting Eq. (9) into the third equation in the system of Eq. (8),
we obtain

H(v1) = (r3v31 + r2v
2
1 + r1v1 + r0),

where r3 = (−t0s1q1 + t0s1q0 − s0t1q1 + s0t1q0 + 2t1t0p1 −
2t1t0p0)m1 + (−p1s1t0 + s0t1p0 + p0s1t0 − s0t1p1 − 2s0s1q0 +
2s0s1q1)n1, r2 = (−3t0(s1q0− s1q1+ t1p1− t1p0))m1+ (3s0(s1q0−
s1q1 + t1p1 − t1p0))n1, r1 = (−3(−q0 + θ1)(t0s1 − s0t1))m1 +
(3(−p0 + δ1)(t0s1 − s0t1))n1, r0 = (t0s1θ1 − t1t0p0 + t1t0δ1 −
t0s1q0+2s0t1q0−2s0t1θ1)m1+ (s0t1δ1− s0t1p0+ s0s1θ1− s0s1q0−
2δ1s1t0 + 2p0s1t0)n1.
Suppose that v? ∈ [0, 1] is the root of r3t3 + r2t2 + r1t + r0

which is the closest to parameter u1. By substituting v? instead
of v1 into Eq. (9), we obtain the values of α and β . Thus, we can
determine the values ofα andβ by solving a univariate polynomial
r3t3 + r2t2 + r1t + r0 whose degree is 3.
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