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Nikola Milosavljević ∗, Dmitriy Morozov † , Primož Škraba ‡
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Abstract: We present a new algorithm for computing zigzag persistent homology, an algebraic
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Calcul de l’homologie persistante des zigzags par

multiplication rapide de matrices

Résumé : Nous prsentons un algorithme pour calculer l’homologie persistante des zigzags, une
structure algbrique qui code les changements survenant dans l’homologie d’un complexe simplicial
lors d’une squence d’insertions et de suppressions de simplexes. Sous l’hypothse qu’il existe des
algorithmes capables de multiplier deux matrices n × n en temps M(n), notre algorithme tourne
en temps O(M(n)) log n si M(n) = O(n2) et O(M(n)) sinon, pour une squence de n additions
et suppressions. En particulier, le temps de calcul est O(n2.376) par le rsultat de Coppersmith et
Winograd. L’algorithme le plus rapide connu jusqu’ prsent pour ce problme prenait un temps O(n3)
dans le cas le pire.

Mots-clés : L’homologie persistante des zigzags, multiplication rapide de matrices, complexitié



Zigzag Persistent Homology in Matrix Multiplication Time 3

1 Introduction

Motivation. Since its introduction a decade ago, persistent homology [1] has become an impor-
tant tool in such wide-ranging domains as computational biology, geometric processing, machine
learning, scientific visualization, and sensor networks. Its success rests on two pillars: a solid
theoretical foundation [2], including the celebrated stability result [3], and the availability of fast
algorithms [4].

A more recent development is zigzag persistence [5], which is a generalization of ordinary per-
sistence built on algebraic insights. Together with an efficient algorithm in the homological setting,
zigzag persistence has already resolved open questions in the theoretical study of persistence [6].
In addition to the algebraic generality, it brings an appealing property for algorithm design: one is
not constrained to study growing families of spaces as in ordinary persistence, but instead is free
to choose whether to grow or shrink the space in question on demand. This flexibility has led to
a technique for computing ordinary persistent homology of a real-valued function using space that
depends only on the size of the largest levelset, rather than the entire domain [6].

Despite the growing interest in persistence, the complexity of its computation is not well under-
stood. Both ordinary and zigzag persistence have algorithms that are cubic in the worst case, but
little is known about their optimality. In this paper, we present an algorithm to compute zigzag
persistent homology (and therefore also ordinary persistent homology) that, in the worst case, runs
in the time it takes to multiply two matrices (unless that time is O(n2), in which case our algorithm
is O(n2 log n)).

Related Work. The computation of homology through Gaussian elimination has been known for
some time [7, 8]. The sequential algorithm has the worst case bound of O(n3), which has been the
bound for most persistence computations. The computational complexity equivalence of Gaussian
elimination and matrix multiplication [9] was one of the factors in motivating this work. However,
most of the past work on speeding up homology computations has been based on combinatorial
techniques rather than matrix computations.

The first sub-cubic algorithm incrementally computes the Betti numbers of subcomplexes of
triangulations of the three sphere S

3 [10]. The running time is nα(n), where n is the number
of simplices and α(·) is the inverse Ackermann function. A different approach was given in [11]
to computing Betti numbers using combinatorial Laplacians. It uses the power method on the
Laplacian matrix, hence computing it via matrix-vector multiplication. However, the number of
multiplications depends on the eigenvalues of the matrix and hence is not easily bounded.

The introduction of persistent homology [1, 2], zigzag persistence [5, 6], and other variants [12,
13] came with algorithms based on the sequential Gaussian elimination and so had running time
of O(n3). In [14], an example complex is given where persistence takes cubic time. However,
experimental results show close to linear behavior, most often attributed to the sparsity of the
involved matrices.

In the literature, most work to speed up homology computation has had a different flavor, with
efforts being made to reduce the size of the input complex using combinatorial operations which
preserve the homology [15], most often simplicial collapses. In certain cases, notably 2-manifolds,
it is possible to create an optimal order of collapses to obtain the homology [16]. In the end of this
procedure we end up only with critical cells, allowing us to simply read off the homology. However,
it was also shown that in the general case, there may not exist a way to collapse the complex to the
minimal number of cells [17]. Furthermore, it was shown to be NP-hard to find an order which will
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4 Milosavljević & Morozov & Škraba

result in the minimum number of cells [18]. More recently, a method [19] was given to reduce the size
of the complex in the special case of clique complexes. Such complexes are completely determined
by their graphs, and the work tries to extract a minimal representation based on maximal cliques.
As with the collapsing techniques, it does not come with any guarantees on the size of the output
complex.

In this work we use fast matrix multiplication as a black-box, but we briefly recount the work
which began with the celebrated result of Strassen [20], showing that the matrix inversion can be
done with an exponent of ω ≈ 2.8 rather than 3. This has been followed by numerous improvements,
with the currently best known algorithm of Coppersmith-Winograd [21]. The current estimate for
the exponent is ω = 2.376. Finally, we note that this is still an active area of research, where [22]
proves that if a group with certain properties exists, so must a quadratic time algorithm for matrix
multiplication.

Outline. We review the necessary background in Section 2. We recast the zigzag persistent
homology algorithm of [6] in terms of matrix multiplications in Section 3. By batching some of the
operations together in Section 4, we obtain the claimed running time.

2 Background

In this section, we recount the necessary mathematical and algorithmic background. Since the
emphasis of this paper is algorithmic, we begin with a simplicial complex X rather than the usual
topological space. Furthermore, everything will be done with simplicial homology over a field F.
While mathematically it is often more convenient to work in singular homology, in practice, we
always compute in a combinatorial setting.

We now give a brief overview of homology and zigzag persistence. We refer the reader to
Munkres [7] or Hatcher [23] for background on homology, Edelsbrunner and Harer [4] for persistence,
and Carlsson and de Silva [5] for zigzag persistence. Our primary object is a simplicial complex,
which is a set of simplices such that all faces of a simplex are in the complex and the intersection
of two simplices is a (possibly empty) face of both.

We define the chain group Cp as an Abelian group on the set of oriented p-simplices in the
simplicial complex. A p-chain is a linear combination of simplices with coefficients in a group. We
restrict ourselves to the case where the coefficients lie in a field, therefore each Cp is a vector space.
We also define the boundary operator ∂p : Cp → Cp−1. In a simplicial complex, the boundary
operator is defined on a simplex σ as ∂pσ =

∑

i(−1)i[v0, v1, . . . , v̂i, . . . , vp], where v̂i is deleted
from the sequence. Since the operator is linear, boundary of a chain is the linear combination of
the boundaries of the simplices. The boundary operator connects the chain groups into the chain

complex : . . . → Cp+1
∂p+1

−−−→ Cp
∂p

−→ Cp−1 → . . . The boundary operator is a map between vector
spaces and is most naturally represented as a matrix where the rows represent p-simplices and the
columns represent (p + 1)-simplices.

To define homology, we require two subgroups: the cycle group Z and the boundary group B.
The cycle group Zp, is the kernel of the ∂p, which is the null space of the boundary matrix. The
boundary group Bp is the image of ∂p+1. The homology is the quotient group of the two subspaces:
Hp = Zp/Bp. By the property that ∂p∂p+1 = 0, it is not difficult to see that Bp ⊆ Zp ⊆ Cp, meaning
the above quotient is well defined. Since these are vector spaces, standard Gaussian elimination
can be used to find a basis for each space.

INRIA



Zigzag Persistent Homology in Matrix Multiplication Time 5

A powerful extension to homology was introduced called persistent homology and more recently
zigzag persistence. Since we often construct simplicial complexes from geometry, a single complex
does not always capture the underlying topology of a noisy space. The notion of persistence was
introduced to counter this problem. Rather than building a single complex, we can build several
and if we can relate them in a certain way, persistence tells us which features live across multiple
parameters, and therefore represent prominent features of the underlying space.

The starting point of zigzag persistent homology is a sequence of spaces connected with maps

X1 ↔ X2 ↔ . . .↔ Xn. (1)

The above notation means that the map can point in either direction. For each of these spaces we
can form a a chain complex, which induces maps between the vector spaces, C(X1) ↔ C(X2) ↔
. . .↔ C(Xn). Finally, by passing to homology, we obtain a sequence of vector spaces connected by
homomorphisms.

H(X1)↔ H(X2)↔ . . .↔ H(Xn). (2)

This object is called zigzag module, denoted by V. It is the collection of vector spaces H(Xi) along
with the maps between them. As shown in [5], V has a nice decomposition into a direct sum of
interval modules, V =

⊕

I[b,d]. Each interval module I[b,d] represents a homology class which exists
in all the spaces from H(Xb) to H(Xd) inclusive. Therefore, we say this class persists from b to d.
Note that persistent homology is a special case of zigzag persistence where all the arrows point one
way.

To compute this decomposition, we require compatible bases in all of the individual spaces and
track how they change as we apply the maps. Surprisingly, all the information we require can be
encoded in a single filtration.

Definition. The right filtration of a space H(Xi) is the collection of subspaces of Vi taking the
form Ri = (R0, R1, R2, . . . , Ri), satisfying inclusion relations Rk ⊆ Rl for k ≤ l. The filtra-

tion is then defined inductively. If the map points forward: H(Xi)
f
−→ H(Xi+1), then the filtra-

tion is updated with the images of the map Ri+1 = (f(R0), f(R1), . . . , f(Ri),H(Xi+1)). If the

map points in the other direction: H(Xi)
g
←− H(Xi+1), then the preimages are added. Ri+1 =

(0, g−1(R0), g−1(R1), . . . , g−1(Ri)).

By keeping track of the changes in the right filtration as we process the zigzag in (1), we obtain
the interval decomposition. In the algorithmic setting, without loss of generality, we can assume
that in the sequence of simplicial complexes (1) consecutive complexes differ by a single simplex,
i.e. either Xi+1 = Xi ∪ σi, or Xi = Xi+1 ∪ σi.

3 Sequential Algorithm

In this section we express the algorithm of [6] in terms of matrix update operations.

Representation. We start with a sequence of simplicial complexes (1), where consecutive spaces
differ by a single simplex. Enumerating all the simplices σ1, . . . , σk that appear in the sequence,
we ignore multiplicities: if the same simplex enters, leaves, and then re-enters, we treat it as two
simplices in the enumeration. We associate to each simplex σi its interval I[bi,di] in the chain
complex zigzag, i.e. σi ∈ Xj iff j ∈ [bi, di].

RR n➦ 7393



6 Milosavljević & Morozov & Škraba

As in [6], we maintain the right filtration of the zigzag (2), and represent it after j steps via
the matrices Zj , Bj as well as the matrix Cj , which maintains the bounding chains. Denoting the
boundary matrix of the simplicial complex with D, we have 0 = DZj , ZjBj = DCj . Furthermore,
the right filtration of the group H(Xj) = (Rj

0, R
j
1, . . .) is represented via

Rj
k = span

(

{z + B | z ∈ Z
j
k and B = span(ZjBj)}

)

,

where Z
j
k denotes the subset of the cycle group spanned by the first k columns of the matrix Zj .

We also implicitly maintain the birth vector associated to the right filtration; however, this detail
is irrelevant to our argument, and we ignore it from now on.

In addition to the matrices D,Zj , Cj , Bj of [6], we introduce matrices Ej , F j . The matrices Ej

and F j keep track of the “past” and “future” simplices, respectively. Their columns correspond
to the simplices that have been removed in the case of Ej , or not yet added in the case of F j .
Their boundaries are expressed using the auxiliary matrices Gj , Hj ,Kj , Lj , Rj , Sj , as defined by
Equation (3). We say that the matrix Hj is independent of the matrix Bj if any non-zero row in
matrix Bj is zero in matrix Hj .

Sequential Invariant. After step j of the zigzag, the following conditions must hold:

1.

Dp

[

Ej
p 0 0 0

0 Zj
p Cj

p F j
p

]

=

[

Ej
p−1 0 0 0

0 Zj
p−1 Cj

p−1 F j
p−1

]









Gj
p 0 0 0

Rj
p 0 Bj

p Hj
p

Sj
p 0 0 Kj

p

0 0 0 Lj
p









(3)

For convenience, we abbreviate the matrices in (3) as DΦj
p = Φj

p−1Γj
p.

2. Matrix Bj
p has exactly one non-zero element per column, and at most one per row. Matrix

Hj
p is independent of Bj

p.

3. Matrix Zj
p forms a basis for the p-cycles Zp(Xj). The boundary DCj

p forms a basis for the
(p− 1)-boundaries Bp(Xj).

4. Rj
k = span

(

{z + B | z ∈ Z
j
k and B = span(ZjBj)}

)

.

Additionally, we choose a particular ordering for the rows and columns of our matrices.

Ordering. The rows of the matrices Zj , Cj , Ej , and F j correspond to the individual simplices in
the complex, and we order them by the removal time of those simplices. Consequently, the rows
and the columns of the boundary matrix D are also ordered by the removal time. The columns of
the matrix F j represent future simplices, and we order them by the addition time.

From the invariant and ordering requirements it follows that, initially, L0
p is the boundary matrix

with rows and columns ordered by addition, while F 0
p is a permutation matrix, its columns and

rows are indexed by simplices ordered by addition and removal, respectively. The above ordering is
insignificant in the rest of this section, however, it becomes critical in Section 4 when we describe
how to divide and conquer the necessary computation.

INRIA
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Four cases. In the remainder of the section, we express the update performed to the matrices
after each step as matrix multiplication.

[

Ej+1
p 0 0 0

0 Zj+1
p Cj+1

p F j+1
p

]

=

[

Ej
p 0 0 0

0 Zj
p Cj

p F j
p

]

M j
p (4)









Gj+1
p 0 0 0

Rj+1
p 0 Bj+1

p Hj+1
p

Sj+1
p 0 0 Kj+1

p

0 0 0 Lj+1
p









= (M j
p−1)−1









Gj
p 0 0 0

Rj
p 0 Bj

p Hj
p

Sj
p 0 0 Kj

p

0 0 0 Lj
p









M j
p (5)

Step j of the zigzag can be one of the two possibilities: an addition of a simplex, Xj+1 = Xj ∪σi,
or a removal of a simplex, Xj = Xj+1∪σi. Each of the two cases can have one of the two outcomes:
a birth or a death of a homology class. Before we describe the four possibilities, we establish an
equivalence between the matrices.

Lemma 1 (Forward Step Equivalence Lemma). If the (j + 1)-st step of the zigzag is the addition
of the simplex σi, then (i) Lj

p−1[i] = 0, (ii) Kj
p−1[i] = 0, and (iii) DF j

p [i] = 0 ⇔ Hj
p−1[i] = 0.

Proof. Lj
p−1[i] = 0 is a trivial consequence of Xj being a simplicial complex: when we are adding a

simplex σi, its boundary cannot lie in the future. The column Kj
p−1[i] is zero if DF j

p [i] = 0 since

the boundaries DCj
p−1 form a basis for the (p− 2)-boundaries; consequently, no linear combination

of the columns of Cj
p−1 is zero. If DF j

p [0] 6= 0, it is a cycle, and therefore not in the span of the

bounding chains Cj
p−1. Finally, since the columns of Zj

p−1 are linearly independent, the boundary

of F j
p [i] is zero iff Hj

p−1[i] is zero.

Birth after addition. This case is characterized by DF j [i] = 0, or equivalently Hj [i] = 0.
In particular, F j [i] is the newly born cycle (indeed, it contains the new simplex σi). We append it
to the cycle matrix Zj . The update matrix for this operation is

M j
p =













I 0 0 0 0
0 I 0 0 0
0 0 0 I 0
0 0 1 0 0
0 0 0 0 I













. (6)

Death after addition. This case is characterized by DF j
p [i] 6= 0, or equivalently Hj

p [i] 6= 0.

Moreover, DF j
p [i] = Zj

p−1H
j
p [i] represents the cycle that gets killed by the addition of σi. Indeed,

since Hj
p [i] is independent of Bj

p, and non-zero, it means that Zj
p−1H

j
p [i] is not a boundary before

step j. On the other hand, by definition, DF j
p [i] is a boundary after the addition of simplex σi.

Let a be the last non-zero entry in the column Hj
p [i]. We split the column using this entry into

Hj
p [i] = [hT a 0T ]T , where h is a vector. Suppose a is in the row k. F j

p [i] becomes a bounding

chain, and therefore moves to the matrix Cj
p. Its boundary replaces the column k in matrix Zj

p−1

RR n➦ 7393



8 Milosavljević & Morozov & Škraba

(which is a change of basis in Zj
p−1). We insert a column into the matrix Bj

p with a single 1 in row

k to reflect the death of the cycle Zj
p−1[k]. The necessary update operations are

M j
p−1 =

















I 0 0 0 0 0
0 I h/a 0 0 0
0 0 1/a 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I

















, M j
p =













I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 1 0
0 0 0 0 I













. (7)

We are missing one more operation after both steps. Namely, to maintain the invariant we must
make the matrix Hj

p independent of Bj
p. This update can be performed by multiplication with

the matrix below. In the next section, we will batch these reductions together, and will rely on
the individual matrices M j to have the structure above. However, in the sequential algorithm, the
actual update matrix is the product M j

pW
a
p of the matrices above with

W a
p =









I 0 0 0
0 I 0 0
0 0 I −BT

p Hp

0 0 0 I









. (8)

(The product −BT
p Hp is zero in the case of birth, since the removal of a column does not affect

the independence of Hp. This product contains a single non-zero row, if death happens. This row
is exactly the negative of row k of Hp. We write the full matrix product for consistency with the
next section.)

Remark 1. A subtle, but important consequence of the matrix Hj being independent of the matrix
Bj is that the column F j [i] arrives “ready”: we do not need to reduce it at the beginning of an
individual step. This fact is crucial for the speed-up explained in the next section.

Removing a simplex σi corresponds to nullifying the rows i in the matrices Zj , Cj , and F j .

Birth after removal. This case is characterized by the row i of matrix Zj
p being zero, i.e. there

are no cycles containing simplex σi. Let a be the rightmost non-zero entry in row i of matrix Cj
p,

and suppose it lies in column k, we have Cj
p[i, ·] = [cT a 0T ]; specifically, Cj

p[i, 1..k − 1] = cT ,

Cj
p[i, k] = a. Let Bj

c
be the part of the matrix Bj

p corresponding to the columns cT in Equation (3),

i.e. Bj
c

= Bj
p[·, 1..k].

1: The boundary DCj
p[k] = Zj

p−1B
j
p[k] is the newly born cycle. We prepend it to the matrix Zj .

In the operations below, suppose the 1 in the column Bj
p[k] is in row l.

2: We subtract column Cj
p[k]/a from the other columns in Cj

p.

3: To keep track of the “past”, we move column k from matrix Cj
p to Ej

p (with the corresponding
update in the matrix Γp).

4: The term −(cT /a)(Bj
c
)T below undoes the effect of Step 2 on matrix Bj

p.

INRIA
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Operations

M j
p−1 =

l

















I 0 0 0 0 0
0 0 I 0 0 0
0 1 −(cT /a)(Bj

c
)T 0 0 0

0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I

















,M j
p =

















I 0 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 1 0 −cT /a 0 0
0 0 0 0 I 0
0 0 0 0 0 I

















. (9)

Death after removal. This case is characterized by the row i of matrix Zj
p being non-zero,

i.e. there is a cycle that contains σi. Let a be the leftmost non-zero entry in this row, we have
Zj
p[i, ·] = [0T a zT ]. Furthermore, let Cj

p[i, ·] = cT be the i-th row of matrix Cj
p. We zero out this

row by adding multiples of the column containing element a to the other columns, while moving
that column into the “past” matrix Ej .

Operations

M j
p =

















I 0 0 0 0 0
0 0 I 0 0 0
0 1 0 −zT /a −cT /a 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I

















. (10)

In order to maintain the invariant, we must perform one more update after the removal of a
simplex. Namely, we need to make sure that the row of the freshly removed simplex σi is zero in
the future matrix F j

p . As in the case of addition, in the next section, we rely on the matrices M j
p

to have the structure above, and batch such annihilations of the future together. In the sequential
algorithm, however, the actual updates are the product M j

pW
r
p . Writing fT = F j

p [i, ·] for the i-th

row of the matrix F j
p , we have

W r
p =













I 0 0 0 0
0 1 0 0 −fT /a
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I













. (11)

Remark 2. In the addition cases, we only inspect the column of the matrix Hj
p corresponding to

the j-th step of the zigzag, both to make a decision about birth or death, and to construct the
update matrices. Similarly, in the removal cases we only inspect the rows of the matrices Zj

p or Cj
p

corresponding to the j-th step of the zigzag.

In the next section, we divide our matrices into smaller blocks, always ensuring that the necessary
parts are available to the procedure responsible for the j-th step.

Remark 3. When processing the last step of the zigzag (or, equivalently, if we cut our zigzag at
step n = j + 1), W a

p and W r
p are identity matrices, since no more future steps remain. Therefore,

the updates for this last step are captured completely by the matrices M j
p .

RR n➦ 7393



10 Milosavljević & Morozov & Škraba

Correctness. The above operations are almost the same as in [6]; in Appendix A, we focus on
verifying the new parts of the invariant.

4 Hierarchical Algorithm

In this section we take advantage of the Remarks 1, 2, and 3 above, and construct a divide-and-
conquer algorithm for processing a zigzag of simplicial complexes. For simplicity, we assume that
the number of steps in the zigzag is a power of two. Throughout this section, M(n) denotes time
to multiply two n× n matrices.

Operation tree. The recursive algorithm shown in Figure 1 can be seen as an in-order traversal
of the binary tree in the same figure. The operations performed at the leaves correspond to the

σ+
i σ−

i

algorithm H-ZZPH(v)
if v is a leaf then

return the basic update matrix M j

if v is an internal node then

l← left child of v, r← right child of v
M l ← H-ZZPH(l)
M l ← Left-to-Right(M l, r)
M r ← H-ZZPH(r)
M c ← Combine(M l,M r)
return M c

Figure 1: Leaves correspond to the individual steps in the zigzag. The internal nodes represent
combination operations, where update matrices from the steps below are combined via multiplica-
tions into larger update matrices. Left-to-Right applies M l to parts of matrices corresponding
to r’s leaves.

individual steps of the zigzag. The computation is the same as in the previous section, except
that the updates expressed by matrices M j

p are not applied immediately, but rather propagated
up the tree. The internal nodes combine and apply the updates in batches, as well as perform the
(restricted) updates expressed by the matrices W a

p and W r
p .

Ordering. Notice that because of the row ordering assumed earlier, the two recurrences (on the
left and right children) require only restrictions of the full matrices. In particular, splitting the
matrices Φp and Γp as follows, we obtain the necessary restrictions:

Φp =

[

Zl
p Cl

p
lF l

p
rF l

p

Zr
p Cr

p
lF r

p
rF r

p

]

, Γp =













0 Bp
lHp

rHp

0 0 lKp
rKp

0 0 lLl
p

rLl
p

0 0 0 rLr
p













. (12)
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In other words, H-ZZPH(v) ignores the past, and ignores the future beyond the steps that
correspond to v’s leaves1. Here, matrices with the superscript l correspond to the removals or
additions during the first half of the sequence. So, for example, submatrix Zl

p is the restriction of
Zp to the simplices removed during the steps corresponding to l.

Left-to-Right. Recurring on l with the matrix
[

| Zl
p | C

l
p |

lF l
p

]

, we obtain an update matrix

M l. The first step of Left-to-Right is to apply M l to input matrices Φ and Γ.

Φp ← ΦpM
l
p , Γp ← (M l

p−1)−1ΓpM
l
p . (13)

The result of this is

Φp =

[

lEl
p 0 0 rF l

p
lEr

p Zr
p Cr

p
rF r

p

]

Γp =









lGl
p 0 0 X

lRp 0 Bp
rHp

lSp 0 0 rKp

0 0 0 rLr
p









. (14)

where X is some matrix (which only exists temporarily, has no topological meaning and hence
needs no special notation). Submatrices lE∗

p , lGl
p, lRp, lSp represent cycles and chains that were

destroyed in the subsequence corresponding to l.
The only operation that remains are the updates carried out by matrices W a

p and W r
p in the

previous section. Recall that the former makes the matrix Hp independent of the matrix Bp, while
the latter zeroes out the rows of the removed simplices in Ep in the future matrices ∗F ∗

p . We

can express the two operations as a combined matrix W , and update matrix M l to include the
operations of W :

Φp ← ΦpWp , Γp ←W−1
p−1ΓpWp .

M l
p ←









M l
p

0
0
0

0 0 0 I









Wp , Wp =









I

−(lEl
p)−1(rF l

p)

0
−BT

p (rHp −
lRp(lEl

p)−1(rF l
p))

0 0 0 I









.

(15)

Combine. To combine the update matrices M l and M r into a matrix M c that represents all
the updates performed for steps corresponding to the node on which H-ZZPH is being executed,
we simply multiply the two matrices together, first padding M r to represent the fact that steps
corresponding to r do not affect cycles and chains removed during steps corresponding to l.

M c
p ←M l

p









I 0 0 0

0
0
0

M r
p









. (16)

1We emphasize that this is a purely notational convention (to avoid equations with big matrices that stay almost
unchanged throughout the execution). In a real implementation, entire Φp and Γp would be passed to the procedure
by reference, it would modify small parts of it, and undo the changes before terminating (to simulate pass-by-value).
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12 Milosavljević & Morozov & Škraba

Correctness. We prove correctness of the hierarchical algorithm by applying the following more
general statement to each leaf of the operation tree.

Lemma 2. Let v be a tree node whose leaf descendants are [j + 1, j + k]. Assume that when
H-ZZPH(v) invoked (i.e., after step j), Φj

p and Γj
p satisfy the sequential invariant for step j, and

zigzag restricted to steps [1, j + k]. Then at termination of H-ZZPH(v), its output, denoted
by Φj+k

p and Γj+k
p , satisfies the sequential invariant for step j + k, and zigzag restricted to steps

[1, j + k].

Proof. We proceed by natural induction on the tree.
The base case is k = 1 (v is a leaf). By assumption, Φj

p and Γj
p satisfy the sequential invariant

for step j and zigzag restricted to steps [1, j + 1]. By definition of the hierarchical algorithm, M c
p

are given by (6), (7), (9), (10). By definition of the sequential algorithm, these are also update
matrices of the sequential algorithm when j + 1 is the last step of the zigzag (cf. Remark 3). By
correctness of the sequential algorithm, the sequential invariant is satisfied by Φj+1

p and Γj+1
p . In

particular, Φj+1
p and Γj+1

p are correct when restricted to steps [1, j + 1].
Now suppose k > 1 (v is not a leaf). Let l and r be the left and right child of v, respec-

tively. By inductive hypothesis on l, at termination of H-ZZPH(l), Φ
j+ k

2
p and Γ

j+ k
2

p satisfy the
sequential invariant for step j + k

2 and zigzag restricted to steps [1, j + k
2 ]. At termination of

Left-to-Right(M l, r), we claim that they satisfy the sequential invariant for step j + k
2 and

zigzag restricted to steps [1, j + k]. Once this is established, the main claim follows by inductive
hypothesis on r.

It remains to prove the claim about the effect of Left-to-Right. Observe that the first
update (13) of Left-to-Right(M l, r) applies M l to Φj+ k

2 and Γj+ k
2 , restricted to steps [1, j + k].

So after those updates the matrices restricted to steps [1, j + k] are given by (14). After the last
update (15) of Right-to-Left, the matrices are

Φ
j+ k

2
p =

[

lEl
p 0 0 0

lEr
p Zr

p Cr
p

rF r
p

]

Γ
j+ k

2
p =









lGl
p 0 0 0

lRp 0 Bp
rHp

lSp 0 0 rKp

0 0 0 rLr
p









. (17)

This can be easily verified by applying (15) to (14). Notice that rF l
p has been zeroed out. Of course,

some of the other submatrices have changed too. In particular, Bp and rHp are independent. Now
we are ready to verify parts of the sequential invariant.

1: Equality in (3) follows from the fact that we apply updates to both sides of the equation. The

format of Φ
j+ k

2
p and Γ

j+ k
2

p follows from (17).

2: The structure of B
j+ k

2
p is not affected by Left-to-Right. Independence of B

j+ k
2

p and H
j+ k

2
p

was established above.

3, 4: The matrices involved are not affected by Left-to-Right, and the spaces that they should
represent do not change, because they only depend on the current step, which remains j + k

2 .

Running time. We show that the hierarchical algorithm runs on an n-step zigzag in time
O(M(n) log n) if M(n) = O(n2) and in time M(n) otherwise. The key step is showing that
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Zigzag Persistent Homology in Matrix Multiplication Time 13

H-ZZPH(v), excluding its recursive calls, can be implemented to run in time proportional to the
number of leaf descendents of v. The missing proofs of lemmas below appear in Appendix B.

Theorem 1. Let n be the length of the zigzag. Consider the invocation H-ZZPH(v) where v is an
ancestor of k leaves. The output M c

p of this procedure is of the form M c
p = Pp(I + UpV

T
p ), where

Pp is a permutation matrix, and Up, Vp have at most k columns and full rank. Furthermore, the
output can be computed in O(n

kM(k)) time2.

From this we easily get the main result of the paper.

Corollary 1. Zigzag persistent homology for a sequence of n steps can be computed in time
O(M(n) log n) if M(n) = O(n2), and in time O(M(n)) otherwise.

Before proving Theorem 1, we provide tools for efficient computation that will be invoked
repeatedly.

Definition. An n×n matrix A has width k, for some k ≤ n, if it can be written as A = P (I+UV T ),
where P is an n× n permutation matrix and U , V are n× k matrices.

Lemma 3. Let U , V be n × k matrices, k ≤ n, and let W be a k × k matrix. One can compute
UTV and UW in O(n

kM(k)) time.

Lemma 4. If A has width k1 and B has width k2, then AB has width k1+k2. Given low-width repre-
sentations A and B, low-width representation of AB can be computed in O( n

max{k1,k2}
M(max{k1, k2}))

time. If low width representations of A and B have U -matrices of full rank, the same can be ensured
for the low-width representation of AB within the same asymptotic time bound.

Lemma 5. Let B be an n× k matrix. Given a width-k representation of A, AB can be computed
in O(n

kM(k)) time.

Lemma 6. Given a low-width representation of a width-k matrix, the low-width representation of
its inverse can be computed in O(n

kM(k)) time.

Proof. (of Theorem 1) Let l and r be the left and right child of v, respectively.
By inductive hypothesis applied to l, M l = P (I +UV T ), where U , V have full rank and at most

k
2 columns. It is clear from (15) that Wp also has this structure. Furthermore, one can show that
columns of the top-right submatrix of Wp are spanned by columns of the U -matrix from the low-width

representation of M l. To see why, first note that rows of −(lEl
p)−1(rF l

p) correspond to p-cycles/p-

chains removed in the subsequence of l. Similarly, nonzero rows of −BT
p (rHp −

lRp(lEl
p)−1(rF l

p))
correspond to p-chains added in the subsequence of l. Now, observe that for each of these nonzero
rows, the U -matrix contains a column which is nonzero only in that row. This column was added
by the elementary update for the step in which that cycle/chain was added/removed, because the
corresponding column of Φp/Γp was the pivot column in that elementary update.

So if Wp is applied to M l
p in (15) using Lemma 4 (full rank version), we have that after the

update M l
p still has width k

2 . Combining this with the inductive hypothesis applied to r, the result

M c
p , has width at most k

2 + k
2 = k. This proves the structure part of the claim.

2Assuming that Mp is represented in the above mentioned form, and that Bp is represented in some standard
compact form for binary sparse matrices.
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14 Milosavljević & Morozov & Škraba

It remains to bound the running time of H-ZZPH. If k = 1, the claim is easy to verify – the
algorithm manipulates O(1) rows and columns, by inspecting, moving or copying them to compute
M j .

Suppose k > 1. Assume that M(n) /∈ O(n2), and that for all k′ < k the algorithm runs in time
bounded by A n

k′
M(k′) for an absolute constant A to be determined later. By inductive hypothesis

applied to l, H-ZZPH(l) runs in time A 2n
k M(k

2 ).
First we discuss computing the updates in (13). From (12) it can be seen that Φp is of size at

most k×n by construction, while Γp has width k. Since M l has width at most k
2 , ΦpM

l
p and ΓpM

l
p

can be computed in time O(n
kM(k)) by Lemma 5 and Lemma 4, respectively. Observe that the rank

of ΓpM
l
p is now bounded by 3k

2 . By Lemma 6, so (M l
p−1)−1 can be computed in O(n

kM(k
2 )) time,

and has rank at most k
2 . Therefore, multiplication by (M l

p−1)−1 from the left can be done in time
O(n

kM(2k)) by Lemma 4. However, after this left multiplication the rank of the result (updated
Γp) goes back to at most k. This is because Bp goes back to being sparse, due to construction of
elementary updates (6), (7), (9), (10).

Next we discuss computing the updates in (15). Matrix lEl
p has at most k

2 rows (by construc-

tion), and at most ×k
2 columns (because at most one cycle or chain can be destroyed per zigzag

step). Hence it can be inverted in O(M(k
2 )) time using the algorithm of Bunch and Hopcroft [9].

Multiplication by (Bp)T is performed in O(nk) time using sparsity of Bp. All other matrix multi-
plications in (15) involve a matrix of size at most k

2 ×
k
2 and a matrix of size at most k

2 × n, and

can be computed in time O(n
kM(k

2 )) by Lemma 3.
It is easy to check that W−1

p = 2I −Wp (changing signs in the top-right submatrix), so W−1
p

can be computed in O(nk) time. Also note that both Wp and W−1
p have the low-width structure,

as defined in the statement of the theorem.
It remains to apply Wp and W−1

p to M l, Φp and Γp. It was already mentioned above that

applying to M l is done using Lemma 4, and hence takes O(n
kM(k)) time. The structure of Φp and

Γp is given by (14). Φp is of size at most k × n, so ΦpWp can be computed in time O(n
kM(k

2 ))

by invoking Lemma 5 twice. Γp has width at most k, so W−1
p−1ΓpWp can be computed in time

O(n
kM(k)) by invoking Lemma 4 some small constant number of times.
Finally, the product in Equation (16) of Combine can be computed in O(n

kM(k)) time by

Lemma 4, since it involves two matrices of width at most k
2 , as mentioned above.

So we have shown that the total running time is at most 2A 2n
k M(k

2 ) + C n
kM(2k), where the

first term represents the two recursive calls, and the second term represents Left-to-Right and
Combine (C depends on the number of times the above proof invokes the technical lemmas, and
the big-Oh constants of the latter). This is easily verified to be less than An

kM(k), as long as

A ≥ CM(2k)
M(k)−4M(k/2) , which is bounded by a constant independent of k for large enough k.

If M(n) = O(n2), we postulate running time of An
kM(k) log k, and repeating the analysis under

that assumption we get that H-ZZPH(v) runs in time 2A 2n
k M(k

2 ) log k
2 + C n

kM(2k), which is less

than An
kM(k) log k as long as A ≥ 4C

log 2 .
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A Correctness of the Sequential Algorithm

Since the operations in Section 3 are almost the same as in [6], we focus our proof of correctness
on verifying the new parts of the invariant.

1: DΦj
p = Φj

p−1Γj
p. The equality is satisfied in Equation (3) because we apply the same updates

to both sides of the equation. However, we must still ensure that the specific forms prescribed
to matrices Φj

p and Γj
p remain intact: namely, that the blocks marked zero in (3) remain zero.

If there is a birth after an addition, the product Φj
pM

j
p moves the newly born cycle from

submatrix F j
p into Zj+1

p ; its boundary is zero by the case assumption. Γj
pM

j
p moves the

zero column into the portion of Γj+1
p corresponding to the cycle matrix Zj

p. The product

(M j
p )−1Γp+1 performs the corresponding row update in Γp+1, safely moving a row from the

fourth to the second section of Γp+1. In birth after addition, matrix W a
p is an identity, and

therefore has no effect on the update.

If there is a death after an addition, M j
p is identity that merely repartitions the matrices: the

product Φj
pM

j
p moves the bounding chain from submatrix F j

p into Cj+1
p . M j

p−1 performs a

basis change in Zj
p−1 (with a matching update in Bj

p) that does not affect the structure of the

matrices. Multiplication by W a
p subtracts a multiple of the new column in Bj

p from Hj
p ; these

subtractions only introduce zeros. The effect of (W a
p )−1 on Γj

p+1 is adding rows of Lj
p+1 to

Kj
p+1, a benign update as far as zeros are concerned.

If a simplex is removed, multiplying by matrix M j
p zeros out the outgoing row of matrix Cj

p

(and also Zj
p in case of a death), while multiplying by W r

p zeros out the remainder of the

row in F j
p . As a result, once the row is moved to the past, all but its first portion (now

belonging to matrix Ej+1
p ) is zero. The effect of the matrix (M j

p−1)−1 (from Equation (9)) in

the product (M j
p−1)−1Γj

p does not cross the partition boundaries.
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2: Bj
p has exactly one non-zero element per column, and at most one per row. Hj

p is independent

of Bj
p. In the removal cases, the only change to the matrix Hj

p is that it loses a row, and

so does Bj
p; this loss does not affect the invariant. It’s important to note that in case of the

change of basis in Zj
p after a death, Bj

p cannot stop satisfying the invariant, since the columns

of Zj
p that have a matching 1 in Bj

p cannot contain the outgoing simplex (the 1 would indicate
that the cycles were boundaries, but the outgoing simplex has no cofaces). In case of a birth
after removal, M j

p−1 performs a change of basis in Zj+1
p−1 such that its inverse updates Bj+1

p

to once again satisfy the invariant.

In the case of addition, if birth occurs, matrix Hj
p loses a zero column, which again requires

no update. If there is a death, Bj
p acquires a single column. Pre-multiplication of Γj

p by

(M j
p−1)−1 ensures that Bj

p has a single 1 in that column, which is in the row of the lowest

non-zero entry in the outgoing column of Hj
p ; therefore, Bj+1

p remains a permutation matrix.
We explicitly zero this row out via matrix W a

p . Therefore, in all cases statement 2 of the
Invariant is maintained.

3, 4: In the case of a removal of a simplex, the main updates performed to matrices Z and C are
the same as in [6], with the exception of a few additional changes of basis in Z via left to right
operations (which respect the right filtration). Therefore, the last two parts of the invariant
are maintained.

In the case of an addition, the only difference from [6] is that the first column of the matrix
F j
p already has the correct form, and does not require any additional processing.

In the birth case, this is easy to see: the column F 0
p [i] corresponding to the simplex σi contains

a 1 in the row corresponding to this simplex. None of the operations ever remove this element
from this column. Therefore, when we add σi we have a new cycle (recorded as the column
F j
p [i]), which we append to the matrix Zj

p.

In the death case, the boundary of the column F j
p [i] is in the kernel of the map on the

homology. If the lowest element in the matching column Hj
p [i] is in the row l, then this

cycle is in the span of the first l elements of the right filtration given by the matrix Zj
p−1.

Furthermore, since the matrix Hj
p is reduced with respect to Bj

p, the row l in Bj
p is zero, by

definition. Therefore, there does not exist a cycle in the span of the first l− 1 elements of the
right filtration that’s in the kernel of the homology map. Therefore, our update that adds to
the matrix Bj

p a column with a 1 in row l, indicating that the updated cycle Zj+1
p−1 dies after

the addition of simplex σi is correct. (This analysis reflects the Reduction Lemma in [6].)

In summary, the operations in Section 3 closely mimic the original zigzag persistent homology
algorithm [6], and satisfy the additional Sequential Invariant requirements (1, 2).

B Proofs of running time lemmas

Proof of Corollary 1. This is a special case for k = n (i.e. root of the tree), with Zp, Cp, Bp,
Hp and Kp “empty” (Zp, Cp, Bp with zero columns, Hp, Kp with zero rows), with Fp equal to a
permutation matrix that maps addition order to removal order, and Lp = FT

p−1DpFp.
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Proof sketch of Lemma 3. Split matrices into k × k blocks, and treat blocks as entries. Use a
fast k × k matrix multiplication algorithm to multiply blocks.

Proof sketch of Lemma 4. Let A = P1(I + U1V
T
1 ), B = P2(I + U2V

T
2 ) be low-width represen-

tations of A and B. It is easy to check that AB = P (I + UV T ), where

P = P1P2 U =
[

PT
2 U1 U2

]

, V =
[

PT
2 V1 + V2(UT

2 (PT
2 V1)) V2

]

.

is width-(k1 + k2) representation of AB. If U1 and U2 have full rank, then we claim that UV T =
U ′(V ′)T where U ′ has full rank. To get U ′, V ′, simply subtract from columns of U2 their projections
onto the column space of PT

2 U1, i.e., compute

U ′ = U

[

I 0
−(UT

2 U2)−1UT
2 I

]

V ′ = V

[

I (UT
2 U2)−1UT

2

0 I

]

and then remove zero columns of U ′ and corresponding columns of V ′. Since UT
2 U2 is of size k2×k2,

its inverse can be computed using Bunch and Hopcroft’s algorithm [9] in time O(M(max{k1, k2})).
The running time claim follows by applying Lemma 3 to the above expressions.

Proof sketch of Lemma 5. Let A = P (I + UV T ) be the width-k representation of A. Then
one can compute AB as W + U(V TW ), using Lemma 3.

Proof sketch of Lemma 6. Let P (I + UV T ) be given width-k representation. We have

P ′ = PT , U ′ = −(PU)(I + V TU)−1 , V ′ = PV .

Note that I+V TU is of size at most k×k and can be inverted using Bunch and Hopcroft’s algorithm
in O(M(k)) time. Everything else is computed by Lemma 3.
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