Parallel Hybrid Evolutionary Algorithms on GPU

Thé Van Luong 1 Nouredine Melab 1 El-Ghazali Talbi 1
1 DOLPHIN - Parallel Cooperative Multi-criteria Optimization
LIFL - Laboratoire d'Informatique Fondamentale de Lille, Inria Lille - Nord Europe
Abstract : Over the last years, interest in hybrid metaheuristics has risen considerably in the field of optimization. Combinations of methods such as evolutionary algorithms and local searches have provided very powerful search algorithms. However, due to their complexity, the computational time of the solution search exploration remains exorbitant when large problem instances are to be solved. Therefore, the use of GPU-based parallel computing is required as a complementary way to speed up the search. This paper presents a new methodology to design and implement efficiently and effectively hybrid evolutionary algorithms on GPU accelerators. The methodology enables efficient mappings of the explored search space onto the GPU memory hierarchy. The experimental results show that the approach is very efficient especially for large problem instances.
Type de document :
Communication dans un congrès
IEEE Congress on Evolutionary Computation (CEC), 2010, Barcelone, Spain. 2010
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger
Contributeur : Thé Van Luong <>
Soumis le : jeudi 23 septembre 2010 - 12:44:54
Dernière modification le : jeudi 11 janvier 2018 - 06:22:13
Document(s) archivé(s) le : vendredi 24 décembre 2010 - 02:47:48


Fichiers produits par l'(les) auteur(s)


  • HAL Id : inria-00520466, version 1


Thé Van Luong, Nouredine Melab, El-Ghazali Talbi. Parallel Hybrid Evolutionary Algorithms on GPU. IEEE Congress on Evolutionary Computation (CEC), 2010, Barcelone, Spain. 2010. 〈inria-00520466〉



Consultations de la notice


Téléchargements de fichiers