N
N

N

HAL

open science

Parallel Hybrid Evolutionary Algorithms on GPU
Thé Van Luong, Nouredine Melab, El-Ghazali Talbi

» To cite this version:

Thé Van Luong, Nouredine Melab, El-Ghazali Talbi. Parallel Hybrid Evolutionary Algorithms on
GPU. IEEE Congress on Evolutionary Computation (CEC), 2010, Barcelone, Spain. inria-00520466

HAL 1d: inria-00520466
https://inria.hal.science/inria-00520466

Submitted on 23 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00520466
https://hal.archives-ouvertes.fr

Parallel Hybrid Evolutionary Algorithms on GPU

Thé Van Luong, Member, IEEE Student, Nouredine Melab, Member, IEEE El-Ghazali Talbi

Abstract— Over the last years, interest in hybrid meta-
heuristics has risen considerably in the field of optimization.
Combinations of methods such as evolutionary algorithms and
local searches have provided very powerful search algorithms.
However, due to their complexity, the computational time of
the solution search exploration remains exorbitant when large
problem instances are to be solved. Therefore, the use of GPU-
based parallel computing is required as a complementary way
to speed up the search. This paper presents a new methodology
to design and implement efficiently and effectively hybrid
evolutionary algorithms on GPU accelerators. The methodology
enables efficient mappings of the explored search space onto the
GPU memory hierarchy. The experimental results show that the
approach is very efficient especially for large problem instances.

I. INTRODUCTION

In combinatorial optimization, metaheuristics allow to
iteratively solve in a reasonable time NP-hard complex
problems. According to the number of solutions handled
at each iteration, two main categories of metaheuristics are
often distinguished: evolutionary algorithms (EAs) and local
searches (LSs). EAs are population-oriented as they manage
a whole population of individuals, what confers them a
good exploration power. Indeed, they allow to explore a
large number of promising regions in the search space.
On the contrary, LSs work with a single solution which is
iteratively improved by exploring its neighborhood in the
solution space. Therefore, they are characterized by better
local intensification capabilities.

Theoretical and experimental studies have shown that the
hybridization between EAs and LSs improves the effective-
ness (quality of provided solutions) and the robustness of the
metaheuristics [1]. Nevertheless, as it is generally CPU time-
consuming it is not often fully exploited in practice. Indeed,
experiments with hybrid EAs are often stopped without con-
vergence being reached. That is the reason why, in designing
hybrid EAs, there is often a compromise between the number
of individuals to use and the computational complexity to
explore it. As a consequence, in such algorithms, there is
often a reduction of the size of the explored space at the
expense of the effectiveness. To deal with such issues, only
the use of parallelism allows to design efficient hybrid EAs.

Nowadays, GPU computing is recognized as a powerful
way to achieve high-performance on long-running scientific
applications [2]. With the arrival of the general-purpose com-
putation on graphics processings units (GPGPU) paradigm,
EAs on GPU have generated a growing interest. Many works

T.V. Luong, N. Melab and E-G. Talbi are from both INRIA Lille - Nord
Europe and CNRS/LIFL Labs, Université de Lillel, France (e-mail: The-
Van.Luong @inria.fr; Nouredine.Melab@lifl.fr; El-Ghazali.Talbi @lifl.fr)

on GPU have been proposed: genetic algorithm [3], genetic
programming [4], and evolutionary programming [5].

Parallel hybrid EAs for solving real-world problems are
good challenges for GPU computing. However, to the best
of our knowledge very few research works have been investi-
gated on hybrid EAs on GPU. Unlike the parallel evaluation
of the population on GPU for traditional EAs, the parallel
evaluation of the neighborhood on GPU for LSs is not
straightforward. Indeed, several scientific challenges mainly
related to the hierarchical memory management have to
be faced. The major issues are the efficient distribution of
data processing between CPU and GPU, the optimization of
data transfer between the different memories, the capacity
constraints of these memories, etc.

The main objective of this paper is to deal with such
issues for the re-design of hybrid EAs to allow solving of
large scale optimization problems on GPU architectures. We
propose a new general methodology for building efficient
hybrid EAs on GPU. This methodology is based on a three-
level decomposition of the GPU hierarchy allowing a clear
separation between generic and problem-dependent hybrid
evolutionary features. Several challenges are dealt with: (1)
the distribution of the search process among the CPU and the
GPU minimizing the data transfer between them; (2) finding
the efficient mapping of the neighborhood of the currently
processed solution to GPU threads. (3) using efficiently the
coalescing and texture memory in the context of hybrid EAs.

The remainder of the paper is organized as follows. On
the one hand, Section II highlights the principles of hybrid
EAs. On the other hand, for a better understanding of the
difficulties of using the GPU architecture, its characteristics
are described according to the three-level decomposition.
Section III provides a depth look on the three-level decompo-
sition. First, generic concepts for designing parallel hybrid
EAs on GPU are presented (high-level). Second, efficient
mappings between state-of-the-art optimization structures
and GPU threads are performed (intermediate-level). Then,
the memory management on GPU adapted to hybrid EAs is
depicted (low-level). To validate the approaches presented in
this paper, Section IV reports the performance results ob-
tained for the quadratic assignment problem (QAP). Finally,
a discussion and some conclusions of this work are drawn
in Section V.

II. PARALLEL HYBRID EVOLUTIONARY
ALGORITHMS ON GPU
A. Hybrid Evolutionary Algorithms

Two completing goals govern the design of a metaheuris-
tic: exploration and exploitation. Exploration is needed to
ensure that every part of the space is searched enough to

provide a reliable estimate of the global optimum. Exploita-
tion is important since the refinement of the current solution
will often produce a better solution.

EAs are powerful in the exploration of the search space
and weak in the exploitation of the solutions found whereas
LS algorithms such as tabu search are powerful optimization
methods in terms of exploitation. The two classes of algo-
rithms have complementary strengths and weaknesses. The
LSs will try to optimize locally, while the EAs will try to
optimize globally. In this paper, we focus on hybrid EAs in
which a LS is embedded into an EA. This class of hybrid
algorithms is very popular and has been applied successfully
to many optimization problems [6].

In these hybrid metaheuristics, instead of using a blind
operator acting regardless of the fitness of the original indi-
vidual and the operated one, a heuristic operator considers an
individual as the origin of its search applies itself, and finally
replaces the original individual by the enhanced one. The
evolutionary operators replaced or extended are generally
mutation, crossover or initialization.

In general, evaluating a fitness function for each solution is
frequently the most costly operation of metaheuristics. That
is the reason why, for hybrid EAs, executing the iterative pro-
cess of a LS on large neighborhoods requires a large amount
of computational resources. Consequently, parallelism arises
naturally when dealing with a neighborhood, since each of
the solutions belonging to it is an independent unit. Due to
this, the performance of LS algorithms and thus of hybrid
EAS is particularly improved when running in parallel.
Parallel design and implementation of metaheuristics have
been studied as well on different architectures [7], [8].

B. GPU Hierarchy Decomposition

Driven by the demand for high-definition 3D graphics on
personal computers, GPUs have evolved into a highly paral-
lel, multithreaded and many-core environment. Indeed, this
architecture provides tremendous computational horsepower
and very high memory bandwidth compared to traditional
CPUs. Since more transistors are devoted to data processing
rather than data caching and flow control, GPU is specialized
for compute-intensive and highly parallel computation. A
complete review of GPU architecture can be found in [2].

The adaptation of hybrid EAs on GPU requires to take into
account at the same time the characteristics and underlined
issues of the GPU architecture and the metaheuristics parallel
models. Since the evaluation of the neighborhood is generally
the time-consuming part of hybrid EAs, we focus on the
re-design of LS algorithms on GPU. In this section, we
propose a three-level decomposition of the GPU adapted to
the popular parallel iteration-level model [1] (generation and
evaluation of the neighborhood in parallel) allowing a clear
separation of the GPU memory hierarchical management
concepts (Fig. 1). The different aspects of this model will
be discussed throughout this section.

In the high-level layer, task distribution is clearly defined:
the CPU manages the whole sequential hybrid evolutionary
process and the GPU is dedicated to the parallel evaluation

of solutions at the other levels. The intermediate-level layer
focuses on the generation and partitioning of the LS neigh-
borhood on GPU. Afterwards, GPU memory management of
the evaluation function computation is done at low-level.

1) High-level Layer - General GPU Model: This level
describes common GPU concepts which are language-
independent. In general-purpose computing on graphics pro-
cessing units, the CPU is considered as a host and the GPU
is used as a device coprocessor. This way, each GPU has
its own memory and processing elements that are separate
from the host computer. Data must be transferred between
the memory space of the host and the memory of the GPU
during the execution of programs. In optimization problems,
the types of data which are manipulated are the data inputs
of the tackled problem and the solution representation.

Each processor device on GPU supports the single pro-
gram multiple data (SPMD) model, i.e. multiple autonomous
processors simultaneously execute the same program on
different data. For achieving this, the concept of kernel is
defined. The kernel is a function callable from the host and
executed on the specified device simultaneously by several
processors in parallel. Regarding the iteration-level parallel
model, generation and evaluation of neighboring candidates
are done in parallel. Therefore, according to the Master-
Worker paradigm, these two steps can be executed in parallel
on GPU. In other words, a kernel is associated with the
generation and evaluation of the neighborhood.

Memory transfer from the CPU to the device memory is
a synchronous operation which is time consuming. In the
case of LS methods, memory copying operations from CPU
to GPU are essentially the solution duplication operations
which generate the neighborhood. Afterwards, the kernel
representing the generation and evaluation of the neighbor-
hood is processed at both intermediate-level and low-level.
Regarding transfers from GPU to CPU, the results of the
evaluation function (fitnesses) of each candidate solution of
the neighborhood are stored in an array structure.

2) Intermediate-level Layer - Threads Mapping: The
intermediate-level layer focuses on the neighborhood gen-
eration on GPU. This kernel handling is dependent of the
general-purpose language. For instance, CUDA or OpenCL
are parallel computing environments which provide an ap-
plication programming interface. These toolkits introduce a
model of threads which provides an easy abstraction for
single-instruction and multiple-data (SIMD) architecture. A
thread on GPU can be seen as an element of the data to
be processed. Compared to CPU threads, GPU threads are
lightweight. That means that changing the context between
two threads is not a costly operation. Therefore, GPU threads
management is clearly identified as the main task of the
generation step of LS neighborhood.

Regarding their spatial organization, threads are organized
within so called thread blocks. A kernel is executed by
multiple equally threaded blocks. Blocks can be organized
into a one-dimensional or two-dimensional grid of thread
blocks, and threads inside a block are grouped in a similar

Optimization -

Bind on texture memory i

""" GPU memory allocation | high-level

CPU - GPU

Copy
Solution

Copy

4

CPu>GPUY T
ncremental evaluation kernel | ~St_
. L cpueapru- I

,,,,,,
,,,,

Copy

i intermediate-level
Mapping

pp
Thread id < Move id

7
/
Incremental 4
. 7/
evaluation codg’

(Move_id)”

incremental evaluation code .-~

Data problem inputs

@Reads <

Solution «

. ! . low-level
Intermediate allocations a» registers, local memory

:I A~ global memory

Write into fithesses structure a~» global memory

--- Optimization
Reads on texture memor)

Fig. 1.

way. All the threads belonging to the same thread block
will be assigned as a group to a single multiprocessor,
while different thread blocks can be assigned to different
multiprocessors. Thus, a unique id can be deduced for each
thread to perform computation on different data. Regarding
LS algorithms, a move which represents a particular neighbor
candidate solution can also be associated with a unique id.
However, according to the solution representation of the
problem, finding a corresponding id for each move is not
straightforward.

3) Low-level Layer - Kernel Memory Management: The
low-level layer focuses on the specific part of the evaluation
function. As stated before, each GPU thread executes the
same kernel i.e. each candidate solution of the neighbor-
hood executes the same evaluation function code. From a
hardware point of view, graphics cards consist of streaming
multiprocessors, each with processing units, registers and on-
chip memory. Since multiprocessors are used according to
the SPMD model, threads share the same code and have
access to different memory areas.

Communication between the CPU host and its device is
done through the global memory. For hybrid EAs, more
exactly for the evaluation function, the global memory stores
the data input of problems and their solution representation.
Since this memory is not cached and its access is slow, one
needs to minimize accesses to global memory (read/write
operations) and reuse data within the local multiprocessor
memories. Graphics cards provide also read-only texture
memory to accelerate operations such as 2D or 3D mapping.
Texture memory units are provided to allow faster graphic
operations. In the case of hybrid EAs, binding texture on
global memory can provide an alternative optimization. Reg-
isters among streaming processors are partitioned among the

The three-level decomposition of the GPU hierarchy in accordance with the hybrid evolutionary process.

threads running on it, they constitute fast access memory. In
the evaluation function kernel code, each declared variable is
automatically put into registers. Local memory is a memory
abstraction and is not an actual hardware component. In fact,
local memory resides in the global memory allocated by
the compiler. Complex structures such as declared array will
reside in local memory.

The memory management in the low-level layer is
problem-specific. A clear understanding of the characteristics
described above is required to provide an efficient implemen-
tation of the evaluation function. According to the SPMD
model, the same code is executed by all the neighbors in
parallel and the resulting fitnesses must be stored into the
fitnesses structure (global memory) previously mentioned.

III. DESIGN AND IMPLEMENTATION OF HYBRID
EVOLUTIONARY ALGORITHMS ON GPU

In this section, the focus is on the design and the im-
plementation of hybrid EAs according to the three-level
decomposition model presented in the previous section.

A. The Proposed Scheme of Parallelization

In the high-level layer, the CPU sends the number of
expected running threads to the GPU, then candidate neigh-
bors are generated and evaluated on GPU (at intermediate-
level and low-level), and finally newly evaluated solutions
are returned back to the host. This model can be seen
as a cooperative model between the CPU and the GPU.
Indeed, the GPU is used as a coprocessor in a synchronous
manner. The resource-consuming part i.e. the generation and
evaluation kernel, is calculated by the GPU and the rest is
handled by the CPU. Adapting traditional hybrid EAs to GPU
is not a straightforward task because hierarchical memory

management on GPU has to be handled. As previously said,
memory transfers from CPU to GPU are slow and these
copying operations have to be minimized. We propose (see
Fig. 2) a methodology to adapt hybrid EAs on GPU in a
generic way.

First of all, at initialization stage, memory allocations on
GPU are made: data inputs and candidate solution of the
problem must be allocated. Since GPUs require massive
computations with predictable memory accesses, a structure
has to be allocated for storing all the neighborhood fitnesses
at different addresses. Additional solution structures which
are problem-dependent can also be allocated to facilitate the
computation of incremental evaluation. Second, problem data
inputs, initial candidate solution and additional structures
associated to this solution have to be copied on the GPU.
It is important to notice that problem data inputs are a
read-only structure and never change during all the execu-
tion of hybrid EAs. Therefore, their associated memory is
copied only once during all the execution. Third, comes the
parallel iteration-level, in which each neighboring solution
is generated (intermediate-level), evaluated (low-level) and
copied into the neighborhood fitnesses structure. Fourth,
since the order in which candidate neighbors are evaluated
is undefined, the neighborhood fitnesses structure has to
be copied to the host CPU. Finally, a specific LS solution
selection strategy is applied to this structure: the exploration
of the neighborhood fitnesses structure is done by the CPU
in a sequential way. The process is repeated until a stopping
criterion is satisfied.

B. Efficient Mapping of the Neighborhood Structure on GPU

In this subsection, a focus is made on the neighborhood
generation in the intermediate-level layer. As suggested in
Fig. 3, the challenging issue of the intermediate-level layer is
to find efficient mappings between a thread id and a particular
neighbor.

1) Binary Representation: In binary representations, a so-
lution is coded as a vector (string) of bits. The neighborhood
representation for binary problems is based on the Hamming
distance. The neighborhood of a given solution is obtained
by flipping one bit of the solution (for a Hamming distance
of one).

A mapping between LS neighborhood encoding and GPU
threads is quiet trivial. Indeed, on the one hand, for a binary
vector of size n, the size of the neighborhood is exactly n. On
the other hand, threads are provided with a unique id. This
way, the kernel associated with the incremental evaluation is
launched with n threads (each neighbor is associated with
a single thread), and the size of the neighborhood fitnesses
structure allocated on GPU is n. As a result, a IN — IN
mapping is straightforward.

2) Discrete Vector Representation: Discrete vector repre-
sentation is an extension of binary encoding using a given
alphabet X. In this representation, each variable takes its
value over the alphabet ¥. Assume that the cardinality of the
alphabet ¥ is k, the size of the neighborhood is (k—1) x n
for a discret vector of size n.

Grid

Block 1

Current solution

Generated
neighborhood

Fig. 3. Mappings between threads and neighbors

Let id be the identity of the thread corresponding to a
given candidate solution of the neighborhood. Compared
to the initial solution which has allowed to generate the
neighborhood, id/(k — 1) represents the position which
differs from the initial solution and id%(k—1) is the available
value from the ordered alphabet 3 (both using zero-index
based numbering).

As a consequence, a IN — IN mapping is possible. (k —
1) x n threads execute the incremental evaluation kernel, and
a neighborhood fitnesses structure of size (k — 1) X n has to
be provided.

3) Permutation Representation: Building a neighborhood
by pair-wise exchange operations (known as the 2-exchange
neighborhood) is a standard way for permutation problems.
For(a [i?rmutation of size n, the size of the neighborhood is
nx(n—

Tfle mapping here is a generalization of the mapping for
traditional permutation problems. For a single permutation
encoding a mapping between a neighbor is composed by
two element indexes and threads are identified by a unique
id. As aresult, a IN — IN x IN mapping has to be considered
to transform one index into two ones.

The incremental evaluation kernel is executed by %’hl)
threads, and the size of neighborhood fitnesses structure
is w Unlike the previous representations, for
permutation encoding a mapping between a neighbor and a
GPU thread is not straightforward. Indeed, on the one hand,
a neighbor is composed by two element indexes (a swap
in a permutation). On the other hand, threads are identified
by a unique id. As a result, a IN — IN x IN mapping has
to be considered to transform one index into two ones.
In a similar way, a IN x IN — IN mapping is required to
transform two indexes into one. Finding a nearly constant
time mapping is clearly a challenging issue for permutation
representation.

CPU

Individuals
@ Local search

GPU
Initialization e Init a solution
_____________ / (ﬁ\
Parents Evaluation
. copy solution N

Selection ,'7,."%
_____________ Threads Block 350
nw — O
==l) - e 5 §
—————————————] Incremental 1 l l 1 i c =

i -
Mutation - evaluation &5 §
_____________ Evaluation function <«—{8 3 3
- . 52 o
Offspring Evaluation P B3

_ ettt ——— . BT

copy fitnesses structure M &

Replacement Py
no
<End >
yes

Fig. 2. In the high-level layer, the CPU manages the whole hybrid evolutionary process. The generation and the evaluation of the LS neighborhood are

performed on parallel on GPU.

Proposition 1: Two-to-one index transformation

Given ¢ and j the indexes of two elements to be exchanged
in the permutation representation, the corresponding index
f(i,7) in the neighborhood representation is equal to
z'.>< (n—1)+(G-1)— w, where n is the permutation
size.

Proposition 2: One-to-two index transformation
Given f (i, j) the index of the element in the neighborhood
representation, the corresponding index ¢ is equal to
9 —_ '7,' —_ — . .
n — 2 — | 8x(m f(;J) L+l 1J and j is equal to

fl,j) —ix (n—1) + w + 1 in the permutation

representation, where n is the permutation size and m the
neighborhood size.

The proofs of these transformations can be found in [9].

C. Memory Management on GPU

In this subsection, the focus is on the memory management
in the low-level layer. Understanding the GPU memory
organization and issues is useful to provide an efficient
implementation of parallel metaheuristics.

1) Memory Coalescing Issues: Each block of GPU
threads is split into SIMD groups of threads called warps. At
any clock cycle, each processor of the multiprocessor selects
a half-warp (16 threads) that is ready to execute the same
instruction on different data. Global memory is conceptually
organized into a sequence of 128-byte segments. The number
of memory transactions performed for a half-warp will be the
number of segments having the same addresses than those
used by that half-warp. Fig. 4 illustrates an example of the
low-level layer for a simple vector addition.

For more efficiency, global memory accesses must be
coalesced, which means that a memory request performed

by consecutive threads in a half-warp is associated with
precisely one segment. The requirement is that threads of
the same warp must read global memory in an ordered
pattern. If per-thread memory accesses for a single half-warp
constitute a contiguous range of addresses, accesses will be
coalesced into a single memory transaction. In the example
of vector addition, memory accesses to the vectors a and
b are fully coalesced, since threads with consecutive thread
indices access contiguous words.

Otherwise, accessing scattered locations results in mem-
ory divergence and requires the processor to perform one
memory transaction per thread. The performance penalty
for non-coalesced memory accesses varies according to the
size of the data structure. Regarding LS evaluation kernels,
coalescing is difficult when global memory access has a data-
dependent unstructured pattern (especially for permutation
representation). As a result, non-coalesced memory accesses
imply many memory transactions and it can lead to a
significant performance decrease for hybrid EAs.

2) Texture Memory: Optimizing the performance of GPU
applications often involves optimizing data accesses which
includes the appropriate use of the various GPU memory
spaces. The use of texture memory is a solution for reducing
memory transactions due to non-coalesced accesses. Texture
memory provides a surprising aggregation of capabilities
including the ability to cache global memory. Indeed, tex-
ture memory provides an alternative memory access path
that can be bound to regions of the global memory. Each
texture unit has some internal memory that buffers data from
global memory. Therefore, texture memory can be seen as a
relaxed mechanism for the thread processors to access global
memory because the coalescing requirements do not apply
to texture memory accesses. The use of texture memory is
well adapted for hybrid EAs for the following reasons:

Block 0 Block 1

Block nB-1

__global__ void add (float* a, float* b, float* ¢, int n)

// Determine element to process from thread index
int i = blockDim.x*blockldx.x + threadldx.x;

if (i< n) cfi] = afi] + b[i];
} Launch kernel
add() on top of

__host__ void test_addvector() nB blocks

{
int n = 64*1024, nbThreads = 256;
int nB = n/ nbThreads;

add<<<nB, nbThreads>>(a,b,c,n);

}

SRS

LLLLLL

&

Blocks are scheduled
onto multiprocessors

SM]SM|SM|SM|SM
SM|SM|SM[SM|SM, GPU
SM|SM|SM|SM|SM

(SM[SMISM[SMISM)

Consecutive threads are
accessing consecutive words

v

«+«—128 bytes——» «——128 bytes——

Fig. 4. An example of kernel execution for vector addition.

e Matrices accesses are frequent in the computation of
incremental evaluation methods. Then, using texture
memory can provide a high performance improvement
by reducing the number of memory transactions.

e Texture memory is a read-only memory i.e. no writing
operations can be performed on it. This memory is
adapted to hybrid EAs since the matrices and the
solution representation are also read-only values.

e Minimizing the number of times that data goes through
cache can increase significantly the efficiency of algo-
rithms. In hybrid EAs, the matrices and the solution
representation do not often require a large amount
of allocated space memory. As a consequence, these
structures can take advantage of the 8KB cache per
multiprocessor of texture units.

e Cached texture data is laid out to give best performance
for 1D/2D access patterns. The best performance will be
achieved when the threads of a warp read locations that
are close together from a spatial locality perspective.
Since the problem inputs of hybrid EAs are often 2D
matrices and 1D solution vectors, these structures can
be bound to texture memory.

IV. EXPERIMENTATION

To validate the approaches presented in this paper, the
QAP has been implemented on GPU. Let A = (a;;) and
B = (b;;) be n x n matrices of positive integers. Finding a
solution of the QAP is equivalent to finding a permutation

7w =(1,2,...,n) that minimizes the objective function:
2(1) =D Y aibeiyn()
i=1 j=1

A. Configuration

For this problem, a hybrid EA with an iterative local
search (ILS) has been implemented on GPU with CUDA. The
embedded method is a tabu search (TS) and the perturbation
applied in the ILS process uses a random number of pair-
wise exchanges. The number of ILS iterations has been fixed
to 3 and the number of TS iterations to 10000. The chosen
neighborhood is based on a Hamming distance of 3 where

and its associated size is equal to M where n

is the instance size. Generating a neighbor is obtained by

performing two swaps from the initial solution. The tabu list

size has been set to 2 X | Wj

Regarding the EA, first, random initializations are per-
formed with a population of 10 individuals. Second, the
selection operator is a deterministic tournament with a size
of 2. Third, the crossover selects the common attributes
in both parents and the remaining entries are chosen at
random (crossover rate fixed to 100%). Fourth comes the
hybridization where the mutation operator is replaced by
the ILS-TS (mutation rate fixed to 100%). Finally, the
replacement strategy is a (u+\) replacement and the number
of generations has been fixed to 10.

The problem has been implemented using a permutation
representation. The incremental evaluation function has a
time complexity of O(n), and the number of created threads
is equal to nx(n=Dxn=2) The ysed configuration for the
experiments is a Core 2 Duo 2.67Ghz with a NVIDIA GTX
280 card (30 multiprocessors).

B. Measures in Terms of Efficiency and Effectiveness

For each instance, a standalone mono-core CPU imple-
mentation, a CPU-GPU, and a CPU-GPU version using
texture memory are considered. The average time has been
measured for 30 runs. Average values of the evaluation func-
tion have been collected and the number of successful tries
(hits) is also represented. The associated standard deviation
for each average measurement is shown in sub-index. Since
the computational time is too exorbitant for the tai80a and
tail00a instances, the average expected time for the CPU
implementation has been deduced from the base of two
executions. Table I reports the obtained results for the hybrid
EA.

Generate and evaluate the neighborhood in parallel on
GPU provides an efficient way to speed-up the search process
in comparison with a single CPU. Indeed, from the instance
tai30a, the GPU version is already faster than the CPU one
(acceleration factor of x5.2). As long as the problem size
increases, the speed-up grows significantly (up to x7.2 for
the tail00a instance).

TABLE I
HYBRID EVOLUTIONARY ALGORITHM FOR DIFFERENT QAP INSTANCES.

Instance | Best known value | Hits | CPU time | GPU time | Acceleration | GPUTexture time | Acceleration
tai30a 1818146 27/30 | 1h 15min | 14min 25s % 5.2 8min 50s x8.5
tai3Sa 2422002 23/30 | 2h 24min | 25 min 36s %x5.6 12min 56s x11.1
tai40a 3139370 18/30 | 3h 54min 39min x5.9 18min 16s x12.8
tai50a 4938796 10/30 | 10h 2min 1h 37min %6.2 45 min x13.2
tai60a 7205962 6/30 | 20h 17min | 3h 9min % 6.4 1h 30min x13.4
tai80a 13511780 4/30 66h %h 48min x6.7 4h 45min x13.8
tail00a 21052466 2/30 177h 24h 29min x7.2 12h 6min x14.6
Due to high misaligned accesses to global memories (flows Percentage of the total running time
and distances in QAP), non-coalescing memory reduces the 1005 -
performance of the GPU implementation. Binding texture wrl ||] [] L B E
80% - m o= i
on global memory allows to overcome the problem. Indeed, oo] o oE o
from the instance tai30a, using texture memory starts pro- 60% | g ? & § % § 0 CPU hybrid process
viding significant acceleration factor of x8.5. GPU keeps 50% 1 [| ? B] [|moaavansies
. . . 40% 1 % 'E- (i I B ﬁ @ GPU evaluation kernel
accelerating the hybrid evolutionary process as long as the ol [= 5B
size grows (up to x14.6). 0% 1 f BB B E
. : o . : os{ 8 B OB OB M B
Regarding the quality of solutions, in comparison with the o L8l B BB B
literature [6], the obtained results by the proposed hybrid 12 3 4 5 6 7
EA is quiet competitive. Indeed, Taillard instances larger Instances

than 30 are well-known for their difficulty and the proposed
algorithm is able to find the best known value with a
significant rate success for most instances.

The conclusion from this experiment indicates that the
use of GPU provides an efficient way to deal with large
neighborhoods. Indeed, since the LS neighborhood is based
on a Hamming distance of 3 (two swaps), the proposed hy-
brid EA is unpractical in terms of single CPU computational
resources for large instances such as tai80a or tail00Oa (more
than 60h per run). So, implementing this algorithm on GPU
has allowed to exploit parallelism in such neighborhood to
improve the robustness/quality of provided solutions.

C. Discussion and Performance of the Proposed Approach

It is well-known that CPU/GPU communication might be
a major bottleneck in the performance of GPU applications.
In our proposed iteration-level parallel model (generation
and evaluation of the neighborhood on GPU), the data
transfers are essentially the fitnesses which are copied from
the GPU to the CPU at each iteration of the LS process
(M fitnesses). At first sight, this number of
copying operations may seem important. Therefore, a natural
way of thinking would be to move the entire LS process on
GPU. This way, it would drastically reduce the data transfers
between the GPU and the CPU.

However, this different approach raises several issues
because the threads execution on GPU works in an asyn-
chronous manner and the threads synchronization is only
local to each threads block. Consequently, in the context of a
fully distributed scheme on GPU, the global synchronization
of GPU threads to find the best admissible neighbor is not
straightforward without a loss of performance.

Fig. 5. Average percentage of the time spent by each operation in the
hybrid EA on GPU. The taillard instances are ordered according to their
size.

A more important point concerns the time spent on data
transfers relative to the total execution time of the hybrid
EA. Indeed, if this time was negligible in comparison with
the total runnning time, then the interest to fully distribute
the LS process on GPU would become limited. To go on this
idea, we propose to make an analysis of the percentage of
the time spent by each major operation in our GPU-based
implementation to evaluate the impact in terms of efficiency
(see Fig. 5).

A first observation that can be made is about the data
transfers between the CPU and the GPU. The time associ-
ated with the transfers keeps decreasing with the problem
size increase. Indeed, from the first instance (tai30a), this
time corresponds to 11% of the total running time and it
reaches the value of 1% for the last instance (tail00a). As a
consequence, the time dedicated to the data transfers in the
iteration-level parallel model is not significant in comparison
with the LS evaluation process.

Another observation concerns the time spent by the gen-
eration and the evaluation of the neighborhood on GPU
(evaluation kernel) which represents most of the total running
time. For instance, for the fourth instance (tai50Oa), the
time associated with the evaluation of the neighborhood
corresponds to 85% of the total execution time. This time
grows accordingly with the instance size (around 90% for
tai60a, tai80a and tail00a).

According to the two previous observations, in the case of

hybrid EAs, the advantage of a fully distributed scheme of
the LS process on GPU over our approach may be limited
in terms of efficiency.

Regarding the time spent by the hybrid EA process, only
the execution time of the LS process without the evaluation
of the neighborhood is reported. Indeed, the time related to
the evolutionary process is insignificant since it has been
measured at less than one second for each instance. Thus,
there is no interest to distribute the evolutionary process on
GPU. Regarding the hybrid evolutionary process including
the LS selection (CPU hybrid process), it varies from 19%
to 7% of the total running time. One might think that a full
distribution of the LS process on GPU might improve the
performance. However, as previously said, the establishment
of a fully distributed scheme of the LS process on GPU is not
natural in accordance with the LS design. Furthermore, even
it was feasible without a loss of performance, the benefits in
terms of speed-up would not be really significant.

V. DISCUSSION AND CONCLUSION

Hybrid EAs having complementary behaviors allow to
improve the effectiveness and robustness in combinatorial op-
timization. Their exploitation for solving real-world problems
is possible only by using a great computational power. High-
performance computing based on the use of computational
GPUs is recently revealed as an efficient way to use the huge
amount of resources at disposal. However, the exploitation of
parallel models is not trivial and many issues related to the
GPU memory hierarchical management of this architecture
have to be considered. To the best of our best of knowledge,
GPU-based parallel hybrid EAs approaches have never been
proposed.

In this paper, the idea of our approach is based on a
three-level decomposition of the GPU hierarchy. This way,
efficient mapping of the iteration-level parallel model on
the hierarchical GPU is proposed. In the high-level layer,
the CPU manages the whole hybrid evolutionary process
and let the GPU be used as a coprocessor dedicated to
intensive calculations. The goal of the intermediate-level
layer is to find efficient mappings between neighborhood
candidate solutions and GPU threads in nearly-constant time.
Memory management is handled at the low-level layer where
optimization based on texture memory is applied to the
evaluation function kernel.

The designed and implemented approaches have been
experimentally validated on the QAP. The experiments in-
dicate that GPU computing allows not only to speed up
the search process, but also to exploit large neighborhoods
structures to improve the quality of the obtained solutions.
For instance, hybrid EAs based on a Hamming distance of
three is unpractical on traditional machines because of their
high computational cost. So, GPU computing has permitted
their achievement and the obtained results are particularly
promising in terms of effectiveness. In this paper, we have
also investigated on how a full distribution of the LS process
on GPU would not improve significantly the performance in
terms of speed-up in comparison with the proposed approach.

Beyond the improvement of the effectiveness, the paral-
lelism of GPUs allows to push far the limits in terms of
computational resources. One possible extension of this work
is to investigate a multi-GPU approach at the iteration-level
to speed up the neighborhood evaluation of the individual
being processed. Indeed, multi-GPU architectures offer an
opportunity to perform independent computations in parallel
on each separate card. Therefore, the main idea to accelerate
the hybrid evolutionary search process is to perform one LS
per GPU in parallel. To achieve this in an efficient way, a
mixed multi-core and GPU approach must be considered.
This way, each CPU core executes in parallel one individual
(LS algorithm) according to the previously designed three-
level decomposition.

A next perspective will be to integrate the GPU-based re-
design of metaheuristics in the ParadisEO platform [10]. This
framework has been developed for the reusable and flexible
design of parallel hybrid metaheuristics dedicated to the
mono and multiobjective optimization. ParadisEO is based
on a clear conceptual separation of metaheuristics concepts,
and can be seen as a white-box object-oriented with reusable
components. The Parallel Evolving Objects (PEO) module of
ParadisEO includes the well-known parallel and distributed
models for metaheuristics. This module will be extended with
multi-core and GPU-based generic components.

REFERENCES

[1]1 E.-G. Talbi, Metaheuristics: From design to implementation.
2009.

[2] S. Ryoo, C. I. Rodrigues, S. S. Stone, J. A. Stratton, S.-Z. Ueng, S. S.
Baghsorkhi, and W. mei W. Hwu, “Program optimization carving for
gpu computing,” J. Parallel Distribributed Computing, vol. 68, no. 10,
pp. 1389-1401, 2008.

[3] S. Tsutsui and N. Fujimoto, “Solving quadratic assignment problems
by genetic algorithms with gpu computation: a case study,” in GECCO
’09. New York, NY, USA: ACM, 2009, pp. 2523-2530.

[4] W. Banzhaf, S. Harding, W. B. Langdon, and G. Wilson, “Accelerating
genetic programming through graphics processing units.” in Genetic
Programming Theory and Practice VI, 2009, pp. 1-19.

[5] T.-T. Wong and M. L. Wong, “Parallel evolutionary algorithms on
consumer-level graphics processing unit,” in Parallel Evolutionary
Computations, 2006, pp. 133-155.

[6] A. Misevicius, “A fast hybrid genetic algorithm for the quadratic
assignment problem,” in GECCO, M. Cattolico, Ed. ACM, 2006,
pp. 1257-1264.

[7]1 E. Alba, E.-G. Talbi, G. Luque, and N. Melab, Parallel Metaheuris-
tics: A New Class of Algorithms, ser. Wiley Series on Parallel and
Distributed Computing. ~ Wiley, 2005, ch. 4. Metaheuristics and
Parallelism, pp. 79-104.

[8] N. Melab, S. Cahon, and E.-G. Talbi, “Grid computing for parallel
bioinspired algorithms,” J. Parallel Distributed Computing, vol. 66,
no. 8, pp. 1052-1061, 2006.

[9] T. V. Luong, N. Melab, and E.-G. Talbi, “Parallel Local Search on
GPU,” INRIA, Research Report RR-6915, 2009. [Online]. Available:
http://hal.inria.fr/inria-00380624/en/

[10] S. Cahon, N. Melab, and E.-G. Talbi, “Paradiseo: A framework for
the reusable design of parallel and distributed metaheuristics,” J.
Heuristics, vol. 10, no. 3, pp. 357-380, 2004.

Wiley,

