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Abstract: We formulate a general poromechanics model – within the frame-
work of a two-phase mixture theory – compatible with large strains and without
any simplification in the momentum expressions, in particular concerning the
fluid flows. The only specific assumptions made are fluid incompressibility and
isothermal conditions. Our formulation is based on fundamental physical prin-
ciples – namely, essential conservation and thermodynamics laws – and we thus
obtain a Clausius-Duhem inequality which is crucial for devising compatible
constitutive laws. We then propose to model the solid behavior based on a
generalized hyperelastic free energy potential – with additional viscous effects
– which allows to represent a wide range of mechanical behaviors. The resulting
formulation takes the form of a coupled system similar to a fluid-structure in-
teraction problem written in an Arbitrary Lagrangian-Eulerian formalism, with
additional volume-distributed interaction forces. We achieve another important
objective by identifying the essential energy balance prevailing in the model,
and this paves the way for further works on mathematical analyses, and time
and space discretizations of the formulation.
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Interaction fluide-structure entre un écoulement

poreux et un solide hyperélastique – Des

principes thermodynamiques aux estimations

d’énergie

Résumé : Nous présentons, dans le cadre de la théorie des mélanges, un
model poromécanique général valide en grands déplacements et sans simplifi-
cation sur le bilan de conservation des moments, en particulier pour le système
fluide. Les seules hypothèses faites sont l’incompressibilité du fluide et des con-
ditions isothermes. Notre formulation s’appuie sur les principes de la thermody-
namiques et nous obtenons une inégalité de Clausius-Duhem fondamentale pour
l’obtention de lois de comportement adaptées. Nous proposons alors de mod-
éliser le solide avec un potentiel d’énergie libre hyperélastique généralisé auquel
s’ajoute un potentiel visqueux, permettant ainsi de représenter une large gamme
de comportements mécaniques. La formulation résultante prend la forme d’un
système couplé similaire à ceux rencontrés en interaction fluide-structure de type
ALE comprenant un couplage volumique supplémentaire. Nous sommes alors
en mesure d’écrire sur le modèle complet des estimations d’énergie qui seront à
l’origine de travaux futurs, que ce soit pour l’analyse mathématique du système
ou la formulation de discrétisations en temps et en espace adaptées.

Mots-clés : poromecanique, mélanges, hyperélasticité, thermomécanique,
thermodynamique, biomécanique
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1 Introduction

Poromechanics has been a very active subject of research for some decades – as
shown e.g. in the survey [12] – originally mostly motivated by civil engineering
applications, see [35, 3], and well-established theories rigorously grounded in
fundamental physical and thermodynamical principles are available [10, 26, 5].
Such approaches are frequently based on the so-called “mixture theory”, a purely
macroscopic framework in which the porous medium is considered to be made of
a superposition of solid and fluid phases at each point – for a saturated medium
to which we restrict our attention. We note in passing that the detailed mi-
crostructure can be considered in alternative approaches, e.g. with homogeniza-
tion procedures applied to relate the microscopic and macroscopic behaviors
[21, 30], but we do not dwell on these approaches which are much more difficult
to translate into effective computational modeling tools.

More recently, some novel applications have brought renewed modeling and
computing challenges in the field, hence spurred further research to circumvent
various limitations of the existing theories. In particular, potential challenging
applications abound in biomechanics, for instance to model the blood perfusion
of living (passive or active) tissues [27, 33], the circulation of gases in the lungs
[34, 22, 2], or the effect of wind on plants [13], to cite just a few noteworthy
examples in this emerging context.

In this context, in [7] a poromechanics formulation was proposed with the
primary motivation of describing perfusion in the cardiac muscle. As the heart
typically undergoes strains of 10 to 20%, the focus of this work was accordingly
placed on the ability of the model to represent large displacements and finite
strains, with general constitutive laws compatible with living tissue behavior
[18, 20]. In addition, special care was exercised to make the proposed formula-
tion consistent with – partial or complete – incompressibility of the solid and
fluid constituents. However, a significant – although quite widespread – simpli-
fication was made in this work by totally neglecting the fluid inertia. As the
coronary arteries are known to be host to rapid blood flows with high varia-
tions during the cardiac cycle, such a simplification is clearly quite drastic, and
furthermore does not allow the formulation of discretization procedures which
would preserve physical energy balances – with the kinetic energy as one of the
major contributions.

Some other poromechanics formulations taking into account finite strains
– and with or without fluid inertia – have already been proposed, see e.g. [14,
1, 25]. However, these formulations are mostly directly focused on constitutive
assumptions – and indeed pertain to specific types of constitutive behaviors
– rather than explicitly derived from the general setting of conservation and
thermodynamics principles. Hence, it is difficult to see whether these essential
principles are all satisfied, and how more general constitutive behaviors can
be adequately modeled within the proper corresponding physical framework, in
particular as regards energy considerations.

The objective of the present work is thus twofold. We first aim at present-
ing a general poromechanics theory compatible with large strains and porous
fluid flows without any simplification in the momentum expressions, based on
fundamental physical principles – namely, essential conservation and thermody-
namics laws. This allows us to meet a second objective, namely, to identify the
essential energy balances which must be satisfied in such formulations. This is
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General coupling of porous flows and hyperelastic formulations 4

crucial in order to allow further mathematical analyses and the derivation of
consistently stable time and space discretization procedures. Our motivation
is – indeed – strongly oriented towards computational modeling, and we will
show in the forthcoming paper [28] how such time schemes can be obtained,
as the first important step in the numerical simulation workflow. We note in
passing that – when applied to cardiac perfusion – this formulation should allow
to comparatively assess the impact of the simplifications made in earlier works.

We would like to finally emphasize that our approach owes much to the
work of O. Coussy and collaborators, see e.g. [15, 10, 11] and references therein,
and we essentially follow the same major construction steps as in [10]. Our
main contributions thus lie in the detailed generalization of this framework to
nonlinear constitutive behaviors modeled by hyperelastic potentials and viscous
effects – both in the solid and in the fluid – and in the incorporation of fluid mass
source terms in the formulation, the latter being motivated in particular by the
modeling of muscle tissue in its interaction with various blood compartments
[7].

The outline of the paper is as follows. In Section 2 we introduce the notation
and kinematical description, and we derive the mass conservation laws. We then
establish in Section 3 the adequate principle of virtual work by invoking the
conservation of momentum. In Section 4 we obtain the energy conservation law
based on the first fundamental principle of thermodynamics, before proceeding
to apply the second principle in Section 5, which – combined with the previous
results – leads to a Clausius-Duhem inequality allowing to formulate consistent
constitutive laws. Finally, in Section 6 we summarize and further analyze the
governing equations of the complete model – both in strong and weak forms –
and we establish a fundamental energy balance, before giving some concluding
remarks in Section 7.

2 Notation, kinematical description and mass con-

servation

In this section we start by introducing the notation and kinematical description,
and proceed to derive the mass conservation laws.

2.1 Classical definitions and kinematical relations

We consider a deformable solid which occupies at time t the space domain Ω(t)
– denoted by Ω when there is no ambiguity– with boundary ∂Ω(t). The total
Lagrangian formulation consists in describing the position history of each ma-
terial point with respect to a reference configuration (Ω0, ∂Ω0) – not necessarily
equal to (Ω(0), ∂Ω(0)). Thus, the deformation is a one-to-one mapping ϕ from
the reference configuration to the current configuration providing the position
of each material point in time:

ϕ :

{

Ω0 → R
3

ξ 7→ x = ϕ(ξ, t)

We denote by y the displacement field

y(ξ, t) = x− ξ = ϕ(ξ, t)− ξ,
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General coupling of porous flows and hyperelastic formulations 5

and F is the deformation gradient

F (ξ, t) = ∇
ξ
ϕ = 1+∇

ξ
y,

such that the deformed volume is given by JdΩ where J = detF and dΩ is
the volume measure (here in the reference configuration), while the deformed
area vector is given by JF−T ·dS. Furthermore, we introduce the right Cauchy-

Green deformation tensor C = FT · F . We finally recall that the local changes
of geometry are conveniently described by the Green-Lagrange strain tensor
denoted by e and defined by

e =
1

2
(C − 1) =

1

2

(

∇
ξ
y + (∇

ξ
y)T + (∇

ξ
y)T · ∇

ξ
y
)

,

with linearized expression ε given by

ε(y) =
1

2

(

∇
ξ
y + (∇

ξ
y)T

)

.

2.2 Mixture and material derivatives

Classical two-phase poromechanics is a mixture theory in which the material
contains at each point a volume fraction φ of fluid phase, and a remaining
fraction (1 − φ) of solid phase called the “skeleton”. The fluid volume fraction
φ is also referred to as the “porosity”. Unless otherwise specified, we henceforth
denote the quantities specifically associated with the fluid and the skeleton with
“f” and “s” subscripts, respectively. As an exception, we will retain all the
notation introduced in the above Section 2.1 to denote all kinematical quantities
associated with the skeleton – without the “s” subscript, since this also describes
the motion of the fluid domain. Note that J then only represents an apparent
change of volume of the skeleton, since it can be accompanied by a variation of
the porosity.

For a field us(x, t) associated with the solid skeleton, we recall the classical
concept of material derivative defined by

dus
dt

=
∂(us ◦ ϕ)

∂t

∣

∣

∣

ξ
=
∂us
∂t

∣

∣

∣

x
+∇xus · vs, (1)

where the velocity vs is defined by

vs =
∂x

∂t

∣

∣

∣

ξ
.

Hence, when us(x, t) denotes the volume density associated with an extensive
quantity U =

∫

Ω′

t

us(x, t) dΩ defined on the solid skeleton in a Eulerian frame-

work – for an arbitrary subdomain Ω′
t ⊂ Ωt associated with Ω′

0 ⊂ Ω0 in the
reference configuration – the material time derivative of the integrated density
gives

d

dt

∫

Ω′

t

us dΩ =
d

dt

∫

Ω′

0

us(x(ξ, t), t)J(ξ, t) dΩ

=

∫

Ω′

0

(

J
∂us
∂t

∣

∣

∣

x
+ J∇xus · vs + us

∂J

∂t

∣

∣

∣

ξ

)

dΩ.
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Using the identity

∂J

∂t
=

∂

∂t
detF = tr(JF−1 ·

∂F

∂t
) = J tr(F−1 · ∇

ξ
vs) = J tr(∇

x
vs) = J∇x · vs,

we get
d

dt

∫

Ω′

t

us dΩ =

∫

Ω′

t

(∂us
∂t

∣

∣

∣

x
+∇x · (us ⊗ vs)

)

dΩ, (2)

which also holds when us is a tensor of arbitrary order.
We can also introduce material derivatives for quantities associated with the

fluid
dfuf
dt

=
∂uf
∂t

∣

∣

∣

x
+∇xuf · vf . (3)

Remark 1 – We point out that we could of course also introduce a Lagrangian
formalism for the fluid giving when differentiating an integral quantity on Ω′

t

df
dt

∫

Ω′

t

uf dΩ =

∫

Ω′

t

(∂uf
∂t

∣

∣

∣

x
+∇x · (uf ⊗ vf)

)

dΩ. (4)

Let us now consider an integral quantity U =
∫

Ω′

t

u(x, t) dΩ defined as the
sum of two terms

U =

∫

Ω′

t

(us + uf) dΩ.

As above, the first term us is associated with the solid skeleton, i.e. its velocity
is that of the skeleton, namely, vs. The second term follows the fluid with the
velocity vf .

Definition 1 (Total time derivative of a mixture quantity)
We define the total time derivative of U as

DU
Dt

=
d

dt

∫

Ω′

t

us dΩ+
df
dt

∫

Ω′

t

uf dΩ.

Introducing w the mass weighted relative velocity of the fluid defined by

w = ρfφ (vf − vs) = ρfφ vr,

and um the proportion of uf per unit mass

um =
uf
ρfφ

,

then we have the following rule of differentiation, directly inferred from (2) and
(4).

Lemma 2 (Differentiation lemma)
For a tensor g of arbitrary order, we have

DU
Dt

=

∫

Ω′

t

(∂u

∂t
+∇x · (u⊗ vs) +∇x · (um ⊗ w)

)

dΩ. (5)
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These relations have equivalent forms when considering Lagrangian coordi-
nates attached to the skeleton and the corresponding derivatives. Defining

U(ξ, t) = u(x(ξ, t))J(ξ, t)

as the Lagrangian volume density, the first two terms of (5) correspond to the
classical partial time derivative of a function defined in the skeleton reference
configuration. Therefore, defining W as

W = JF−1w

such that for any infinitesimal area dS0 transported into dS we have

W · dS0 = w · dS,

the Stokes formula gives
∫

Ω′

0

∇ξ · (um ⊗W ) dΩ =

∫

Ω′

t

∇x · (um ⊗ w) dΩ. (6)

This directly implies

DU
Dt

=

∫

Ω0

(∂U

∂t
+∇ξ · (um ⊗W )

)

dΩ. (7)

Note that in the above formulae we use the same notation for a function of ξ
and of x – in this case for um. We will systematically commit this slight abuse
of notation for all fields in the sequel.

2.3 Mass conservation laws

Lemma 2 can be used to obtain mass conservation laws for the entire system or
for the fluid subsystem alone. Starting with the fluid, we consider a distributed
mass source term θ – which represents a source per se if θ ≥ 0 and a sink
otherwise [7]. We have for any subdomain Ω′

t

D

Dt

∫

Ω′

t

ρfφ dΩ =

∫

Ω′

t

θ dΩ. (8)

Therefore, invoking Lemma 2 with u = ρfφ, i.e. um = 1, we get

∂

∂t
(ρfφ) +∇x · (ρfφ vs + w) = θ. (9)

We point out that since ρfφ is a fluid quantity we can also express the conser-
vation law by the simple identity

df
dt

∫

Ω′

t

(ρfφ) dΩ =

∫

Ω′

t

θ dΩ. (10)

Let us now consider the total mass conservation. Introducing the total den-
sity

ρ = ρs(1− φ) + ρfφ, (11)

RR n° 7395
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we have as in (8),
D

Dt

∫

Ω′

t

ρ dΩ =

∫

Ω′

t

θ dΩ. (12)

Then, taking u = ρ in Lemma 2 – namely, still um = 1 – we get

∂ρ

∂t
+∇x · (ρvs + w) = θ. (13)

Hence, we obtain by subtraction the conservation law for the skeleton

∂

∂t
(ρs(1− φ)) +∇x · (ρs(1− φ)vs) = 0. (14)

Remark 2 – In the three relations (9), (13) and (14), the time derivative
identity (1) allows to extract the density from the divergence term by simply
substituting for ∂

∂t
the time derivative with respect to the skeleton d

dt
. For

example, (9) gives

d

dt
(ρfφ) + ρfφ∇x · vs +∇x · w = θ.

We conclude this section by giving the corresponding mass conservation
law in the Lagrangian framework attached to the skeleton. Let us denote by
ρ0 = ρs0(1−φ0)+ρf0φ0 the density in the reference configuration Ω0. We define
by m the Lagrangian density of added mass that represents the local change of
fluid mass at every point ξ in the domain

ρ(ξ, t)J(ξ, t) = ρ0(ξ) +m(ξ, t). (15)

Since the solid mass is conserved, we directly have

m = ρfJφ− ρf0φ0. (16)

Using the differentiation formula in Lagrangian framework (7) with U = ρ0+m
and um = 1 we get

dm

dt
+∇ξ ·W = Θ, (17)

where Θ = Jθ is the Lagrangian source density associated with θ.

3 Principle of virtual work for the mixture

In this section, we derive the principle of virtual work for the mixture, mainly
based on the conservation of momentum.

3.1 Expression of accelerations

For the skeleton, the definition of the acceleration is straightforward and corre-
sponds to

γ
s
=

dvs
dt

=
∂vs
∂t

+∇
x
vs · vs, (18)

but for the fluid we need to use the material derivative with respect to the fluid
particles, hence we have

γ
f
=

dfvf
dt

=
∂vf
∂t

+∇
x
vf · vf = γ

s
+

dvr
dt

+∇
x
(vs + vr) · vr. (19)
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3.2 Momentum conservation laws

We now focus on the extension of the momentum conservation law to porome-
chanics systems. The system considered is open, hence we have for any sub-
domain Ω′

t

D

Dt

∫

Ω′

t

(

ρvs + ρfφ vr
)

dΩ =

∫

Ω′

t

θvf dΩ+

∫

Ω′

t

ρf dΩ+

∫

∂Ω′

t

t dS, (20)

where θvf is the variation of momentum due to the fluid source term. Consid-
ering the left-hand side, we use Lemma 2 with g = ρvs + ρfφ vr and g

m
= vf =

vs + vr to obtain

D

Dt

∫

Ω′

t

(ρvs + ρfφ vr) dΩ =

∫

Ω′

t

∂

∂t

(

ρvs + ρfφ vr
)

dΩ

+

∫

Ω′

t

(

∇x ·
(

(ρvs + ρfφ vr)⊗ vs
)

+∇x ·
(

(vs + vr)⊗ w
)

)

dΩ.

Developing the right hand side we get

∂

∂t

(

ρvs + ρfφ vr
)

+∇x ·
(

(ρvs + ρfφ vr)⊗ vs
)

+∇x ·
(

(vs + vr)⊗ w
)

=

ρ
(∂vs
∂t

+∇
x
vs · vs)

)

+ ρfφ
(∂vr
∂t

+∇
x
vr · vs +∇

x
(vs + vr) · vr

)

)

+
(∂ρ

∂t
+∇x · (ρvs + w)

)

vs +
( ∂

∂t
(ρfφ) +∇x · (ρfφ vs + w)

)

vr.

Therefore, using the mass conservation laws and the acceleration definitions, we
obtain

∂

∂t

(

ρvs + ρfφ vr
)

+∇x ·
(

(ρvs + ρfφ vr)⊗ vs
)

+∇x ·
(

(vs + vr)⊗ w
)

= ρs(1− φ)γ
s
+ ρfφ γf + θ(vs + vr),

and the (first) momentum conservation law yields
∫

Ω′

t

(

ρs(1− φ)γ
s
+ ρfφ γf

)

dΩ =

∫

Ω′

t

ρf dΩ+

∫

∂Ω′

t

t dS. (21)

3.3 Principle of virtual work

The fundamental law of dynamics is deduced from the momentum conservation
law when classically introducing the Cauchy stress tensor σ, which gives

∇x · σ + ρf − (ρs(1− φ)γ
s
+ ρfφ γf) = 0, in Ωt.

Remark 3 – We recall that σ can be proven to be symmetric using the second
momentum conservation law on the cross product between the position and the
momentum (see e.g. [10]).

In order to simplify the writing of the principle of virtual work, let us define
γ = 1

ρ
(ρs(1 − φ)γ

s
+ ρfφ γf). The weak formulation of the above fundamental

law of dynamics is given on the space of admissible displacements V (Ωt) by

∀v∗ ∈ V (Ωt),

∫

Ωt

σ : ∇
x
v∗ dΩ =

∫

Ωt

ρ(f − γ) · v∗ dΩ+

∫

∂Ωt

t · v∗ dS.

RR n° 7395



General coupling of porous flows and hyperelastic formulations 10

Considering the symmetry of the Cauchy stress tensor, we can symmetrize ∇
x

by using the linearized deformation tensor in the deformed configuration ε(v∗),
so that

∀v∗ ∈ V (Ωt),

∫

Ωt

σ : ε(v∗) dΩ =

∫

Ωt

ρ(f − γ) · v∗ dΩ+

∫

∂Ωt

t · v∗ dS.

The change of variable x → ξ allows to convert the last expression in the con-
figuration attached to the skeleton. In fact,

∇
x
v∗ = ∇

ξ
v∗ · ∇

x
ξ = ∇

ξ
v∗ · (∇

ξ
x)−1 = ∇

ξ
v∗ · F−1,

hence, we get

∀v∗ ∈ V (Ω0),

∫

Ω0

σ : ∇
ξ
v∗ · F−1J dΩ =

∫

Ω0

(ρ0 +m)(f − γ) · v∗ dΩ

+

∫

∂Ω0

J‖F−T · n0‖ t · v∗ dS.

Considering the second Piola-Kirchhoff stress tensor in order to keep a sym-
metric tensor

Σ = JF−1 · σ · F−T ,

and introducing t0 = J‖F−T · n0‖ t the transported traction on the boundary,
standard manipulations yield the corresponding Lagrangian form for the weak
formulation of the equation of motion

∀v∗ ∈ V (Ω0),

∫

Ω0

(ρ0 +m)γ · v∗ dΩ+

∫

Ω0

Σ : dye · v∗ dΩ

=

∫

Ω0

(ρ0 +m)f · v∗ dΩ+

∫

∂Ω0

t0 · v∗ dS, (22)

with dye the differential of e given by

dye · v∗ =
1

2

(

FT · ∇ξv
∗ + (∇ξv

∗)T · F
)

,

and the associated strong formulation is

∇ξ · (F · Σ) + (ρ0 +m)(f − γ) = 0, in Ω0.

The weak formulation, also called principle of virtual work, can be finally
summarized as

∀v∗ ∈ V (Ω), Pi(v
∗) + Pint(v

∗) = Pext(v
∗), (23)

with


























































Pi(v
∗) =

∫

Ωt

(ρs(1− φ)γ
s
+ ρfφγf) · v

∗dΩ

=

∫

Ω0

(ρs0(1− φ0)γs + (ρf0φ0 +m)γ
f
) · v∗dΩ

Pint(v
∗) =

∫

Ωt

σ : ε(v∗) dΩ =

∫

Ω0

Σ : dye · v∗ dΩ

Pext(v
∗) =

∫

Ωt

ρf · v∗ dΩ+

∫

∂Ωt

t.v∗ dS

=

∫

Ω0

(ρ0 +m)f · v∗ dΩ+

∫

∂Ω0

t0 · v∗ dS

(24)
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General coupling of porous flows and hyperelastic formulations 11

4 Kinetic energy and first law of thermodynam-

ics

The objective of this section is to express the first law of thermodynamics applied
to the poromechanics system considered.

4.1 Kinetic energy theorem

By definition, the kinetic energy of the mixture is

K = Ks +Kf =
1

2

∫

Ωt

(

ρs(1− φ)v2s + ρfφ v
2
f

)

dΩ

=
1

2

∫

Ω0

(

ρ0(1− φ0)v
2
s + (ρf0φ0 +m) v2f

)

dΩ.

(25)

We then have the following identity.

Lemma 3
When considering the total derivative of the mixture kinetic energy, we have

DK
Dt

=

∫

Ωt

(

(ρs(1− φ)γ
s
+ ρfφ γf) · vs + ρfφ γf · vr +

1

2
θv2f

)

dΩ

=

∫

Ω0

(

(ρs0(1− φ0)γs + ρf0φ0γf) · vs + (ρf0φ0 +m)γ
f
· vr +

1

2
Θv2f

)

dΩ0.

(26)

Proof. Straightforward by noting that

df
dt

∫

Ωt

1

2
ρfφ v

2
f dΩ =

∫

Ωt

1

2

(

v2f
df
dt

(ρfφdΩ) + ρfφ
dfv

2
f

dt
dΩ

)

=

∫

Ωt

(1

2
θv2f + ρfφγf · vf

)

dΩ

using the fluid mass conservation (10). �

Therefore, introducing the relative contribution of the fluid in the inertial
virtual work

P f
i (v

∗) =

∫

Ωt

ρfφ γf · v
∗ dΩ, (27)

and the kinetic energy variation due to the source term

JKθ =
1

2

∫

Ωt

θv2f dΩ, (28)

we have the following result directly obtained by combining (23) applied with
v∗ = vs and (26).

Theorem 4 (Kinetic Energy Theorem)

DK
Dt

− P f
i (vr) + Pint(vs) = JKθ + Pext(vs). (29)
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4.2 First law of thermodynamics

Let us introduce the internal energy and its corresponding volume-distributed
form

E =

∫

Ωt

e dΩ.

Part of the internal energy is associated with the fluid phase, which is repre-
sented by a fluid energy per unit mass em. As is standard in fluid thermody-
namics we also introduce the fluid enthalpy per unit mass, defined by

hm = em +
p

ρf
, (30)

and

JHθ
=

∫

Ωt

θhm dΩ

corresponds to the variation of enthalpy due to the source term [26]. Finally,
we denote the external work specifically applied on the fluid by

P f
ext(v

∗) =

∫

Ωt

ρfφf · v∗ dΩ+

∫

∂Ωt

φ (σ
f
· n) · v∗ dS, (31)

where σ
f

is the fluid Cauchy stress tensor, with the usual decomposition into
pressure and viscous parts, namely,

σ
f
= σ

vis
(vf)− p1,

such that when applied to the relative velocity, we obtain the following power

P f
ext(vr) =

∫

Ωt

f · w dΩ−
∫

∂Ωt

p

ρf
n · w dS +

∫

∂Ωt

1

ρf
(σ

vis
· n) · w dS

=

∫

Ωt

f · w dΩ+

∫

Ωt

∇x ·
( 1

ρf
σ
f
· w

)

dΩ.

Principle 1 (First law of thermodynamics)
For an open system, the variation of the total energy of the system – which is
the sum of the internal energy and the kinetic energy – equals the power of the
external loads added to the heat rate Q, and to the rates of kinetic energy and
enthalpy due to the source terms, namely,

DET
Dt

=
DK
Dt

+
DE
Dt

= JKθ
+ JHθ

+ Pext(vs) + P f
ext(vr) +Q. (32)

Remark 4 – As already seen for several integrated quantities, we can decom-
pose the power of external forces into two contributions, the first one given here
by the power of forces working on a global velocity field vs considered on the
whole mixture, and the second one for forces acting only on the fluid phase and
working on the relative velocity vr, namely,

Ptotal
ext = Pext(vs) + P f

ext(vr).
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The heat rate can be decomposed into the volume-distributed heat source
term and the heat flux at the boundaries as follows

Q =

∫

Ωt

q dΩ−
∫

∂Ωt

j
q
· ndS

=

∫

Ω0

QdΩ−
∫

∂Ω0

JQ · n0 dS,

with JQ = JF−1j
q
. We can then apply the differentiation lemma to the volume-

distributed internal energy e, and define em such that

DE
Dt

=

∫

Ωt

(∂e

∂t
+∇x · (evs) +∇x · (emw)

)

dΩ,

and – as in fact the first principle can be applied to any subsystem associated
with a subdomain Ω′

t ⊂ Ωt – we infer the corresponding local formulation using
(29)

∂e

∂t
+∇x · (evs) = θhm −∇x · (hmw) + σ : ε(vs) +∇x ·

( 1

ρf
σ

vis
· w

)

+ w · (f − γ
f
) + q −∇x · jq, (33)

or equivalently

de

dt
+ e∇x · vs = θhm −∇x · (hmw) + σ : ε(vs) +∇x ·

( 1

ρf
σ

vis
· w

)

+ w · (f − γ
f
) + q −∇x · jq, (34)

which also gives in the total Lagrangian framework

dE

dt

= Θhm −∇ξ · (hmW ) + Σ :
(

dye · vs
)

+∇ξ ·
( 1

ρfJ
ΠT

vis
· F ·W

)

+
(

F ·W
)

· (f − γ
f
) +Q−∇ξ · JQ, (35)

with Π
vis

the first Piola-Kirchhoff stress tensor with respect to the skeleton
configuration for the fluid viscous stresses, namely,

Π
vis

= Jσ
vis

· F−T .

5 Constitutive laws derived from the second prin-

ciple

In this section, we proceed to apply the second law of thermodynamics, which
will provide Clausius-Duhem inequalities allowing to infer adequate constitutive
laws.
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5.1 Second law of thermodynamics

As we did for the internal energy, we introduce the entropy and its corresponding
volume-distributed form

S =

∫

Ωt

s dΩ,

and the entropy rate due to the source term

JSθ
=

∫

Ωt

θsm dΩ.

Principle 2 (Second law of thermodynamics)
Let us consider an open system within a temperature field T , and submitted to
a heat source q and a heat flux j

q
, then we have

DS
Dt

≥ JSθ
+

∫

Ωt

q

T
dΩ−

∫

∂Ωt

j
q
· n
T

dS =

∫

Ωt

(

θsm +
q

T
−∇x ·

(j
q

T

))

dΩ.

As we have done in the first principle, we can convert this into a space-
distributed inequality, namely,

ds

dt
+ s∇x · vs ≥ θsm −∇x · (smw) +

q

T
− 1

T
∇x · jq +

1

T 2
j
q
· ∇xT. (36)

In order to deal with thermodynamics functions of T and other variables – e
and m for the fluid-solid mixture and p for the fluid – we classically introduce

• for the fluid-solid mixture, the Helmholtz free energy

ψ(e,m, T ) = e(e,m, s)− Ts,

• for the fluid, the Gibbs free energy (sometimes also called free enthalpy)

gm(p, T ) = hm(p, sm)− Tsm.

As usual, we will also consider the Lagrangian counterparts of such quantities,
namely densities per unit volume in the reference configuration of the skeleton,
denoted by upper case letters such as S or Ψ. We also recall the fundamental
identities (see e.g. [10])

∂gm
∂p

=
1

ρf
,

∂gm
∂T

= −sm, (37)

the first of which being the state equation of the fluid.

Remark 5 – It is very interesting – and by no means straightforward – that
the internal energy and the Helmholtz free energy of the mixture only depend
on the above compact sets of variables. Indeed, for example we have for the
Helmholtz free energy in Lagrangian form

Ψ = Ψs

(

e, J(1− φ), T
)

+mf ψm

( 1

ρf
, T

)

, (38)
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where Ψs is the free energy of the skeleton (per unit volume of the reference
configuration) which satisfies

dΨs = Σ̄ : de− p d
(

J(1− φ)
)

− Ss dT,

with Σ̄ = ∂Ψs

∂e
, while mf = m + ρf0φ0 and ψm is the Helmholtz free energy of

the fluid per unit mass with

dψm = −p d
( 1

ρf

)

− sf dT.

We infer, recalling the identity ψm = gm − p
ρf

,

dΨ = dΨs +mf dψm + ψm dm

= Σ̄ : de− p dJ + p d(Jφ)−mfp d
( 1

ρf

)

+
(

gm − p

ρf

)

dm− S dT

= Σtot : de+ gm dm− S dT,

with Σtot = Σ̄− pJC−1, and where the last simplification directly follows from

the identitymf
1
ρf

= Jφ, which shows the expected result, and further establishes
the fundamental identities

∂Ψ

∂T
= −S, ∂Ψ

∂m
= gm. (39)

We can now combine (34) and (36) to eliminate (q −∇x · jq), which yields

σ : ε(vs) + w(f − γ
f
) +∇x ·

( 1

ρf
σ

vis
· w

)

+ θgm − dψ

dt
− ψ∇x · vs −∇x · (hmw) + T∇x · (smw)− s

dT

dt
−
j
q

T
· ∇xT ≥ 0.

Then, using the Gibbs free energy gm that satisfies from (37)

∇xgm =
∂gm
∂p

∇xp+
∂gm
∂T

∇xT =
1

ρf
∇xp− sm∇xT,

we get, also substituting θ using the mass conservation (9),

σ : ε(vs) +∇x ·
( 1

ρf
σ

vis
· w

)

+ gm

(∂ρfφ

∂t
+∇x · (ρfφvs)

)

− dψ

dt
− ψ∇x · vs − s

dT

dt
+
w

ρf

(

−∇xp+ ρf(f − γ
f
)
)

−
j
q

T
· ∇xT ≥ 0, (40)

which can be rearranged into

σ : ε(vs) + φσ
vis

: ε(vr) + gm

(∂ρfφ

∂t
+∇x · (ρfφvs)

)

− dψ

dt
− ψ∇x · vs

− s
dT

dt
+
w

ρf

(

−∇xp+ ρf(f − γ
f
) +

1

φ
∇x · (φσvis

)
)

−
j
q

T
· ∇xT ≥ 0, (41)
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or in a Lagrangian framework using the Lagrangian counterpart of each quantity

Σ :
(

dye · vs
)

+ φΣ
vis

:
(

dye · vr
)

+ gm
dm

dt
− dΨ

dt
− S

dT

dt

+
W

ρf
·
(

−∇ξp+ ρfF
T · (f − γ

f
) +

1

φ
FT · ∇ξ · (φΠvis

)
)

−
JQ

T
· ∇ξT ≥ 0. (42)

These inequalities are known as “Clausius-Duhem inequalities”, another version
of which can be obtained by noting that, here for the Lagrangian form,

dΨ

dt
=
∂Ψ

∂e
: dye · vs +

∂Ψ

∂m

dm

dt
+
∂Ψ

∂T

dT

dt
=
∂Ψ

∂e
: dye · vs + gm

dm

dt
− S

dT

dt
,

recalling (39). Hence, we can rewrite the inequality (42) in the following manner.

Theorem 5 (Clausius-Duhem inequality)

(Σ− ∂Ψ

∂e
) :

(

dye · vs
)

+ φΣ
vis

:
(

dye · vr
)

+
W

ρf
·
(

−∇ξp+ ρfF
T · (f − γ

f
) +

1

φ
FT · ∇ξ · (φΠvis

)
)

−
JQ

T
· ∇ξT ≥ 0. (43)

5.2 Constitutive laws

Clausius-Duhem inequalities can be seen as providing the crucial conditions for
devising constitutive laws, for which the second principle of thermodynamics
should be satisfied. We therefore use (43) to infer the following result.

Theorem 6
The second principle is verified with the following conditions:

• For the heat rate, we suppose that Fourier’s law is satisfied, namely,

JQ = −λQ∇ξT.

• For the stress tensor, we assume it is the sum of the three contributions

Σ = φΣ
vis

+
∂Ψ

∂e
+
∂Ψdamp

∂ė
,

with Ψdamp(e, ė) a viscous pseudo-potential convex in the variable ė =
de

dt
= dye · vs and satisfying

∂Ψdamp

∂ė
(e, 0) = 0, which entails

∂Ψdamp

∂ė
: ė ≥ 0.
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• For the fluid viscous term, we assume we always have the dissipation
inequality

σ
vis

: ε(vf) ≥ 0.

• For the relative velocity of the fluid, there exists a positive definite second
order tensor K

f
such that

W

ρf
= K

f
·
(

−∇ξp+ ρfF
T · (f − γ

f
) +

1

φ
FT · ∇ξ · (φΠvis

)
)

,

meaning in the Eulerian framework that

w

ρf
= k

f
·
(

−∇xp+ ρf(f − γ
f
) +

1

φ
∇x · (φσvis

)
)

, (44)

with k
f
= 1

J
F ·K

f
· FT .

Proof. We easily verify that, under the assumptions made,

(Σ− ∂Ψ

∂e
) : dye · vs + φΣ

vis
: dye · vr

+
W

ρf
·
(

−∇ξp+ ρfF
T · (f − γ

f
) +

1

φ
FT · ∇ξ · (φΠvis

)
)

−
JQ

T
· ∇ξT

=
1

J
σ

vis
: ε(vf) +

∂Ψdamp

∂ė
: ė+

W

ρf
·K−1

f
· W
ρf

+ λQ∇ξT · ∇ξT ≥ 0. (45)

�

Note that (44) can be seen as a generalized form of Darcy’s law, which
would correspond to the pressure gradient term alone. The contribution of
the viscous stresses is often referred to as the Brinkman term, but the second
principle leads to this most general form including also inertia and external
force effects, see also [36] for a survey of such laws. The tensors k

f
and K

f
are called permeability tensors, and the positive definite property requirement
stated above leaves much room for complex modeling taking into account the
specificities of the material considered – anisotropy, in particular – and the effect
of the porosity variations on this tensor, see e.g. [10] and references therein.
We further point out that, considering that the privileged directions of the
permeability tensor should follow the underlying deformations of the material
principal directions, the form K

f
is more intrinsic in nature than k

f
.

5.3 Further modeling assumptions

First, we suppose that the temperature is constant and uniform, as is e.g. well-
justified when modeling living tissues. Furthermore, we emphasize that we
have not – so far – made any particular assumption on the fluid state equa-
tion, namely, on the expression of gm(p, T ). From now on, we will focus on
incompressible fluid behavior, namely

ρf = ρf0,

which is not a restriction for most of the applications that we envision. In
particular blood perfusion undoubtedly falls into that category, and it is also
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the case of pulmonary air flows given the range of applicable Reynolds number
[2]. This directly entails

gm =
p− p0
ρf0

, (46)

where p0 represents a reference pressure. Note that in this case we have

ψm = gm − p

ρf
= − p0

ρf0
, (47)

hence ψm is constant, which means that the fluid does not store any usable free
energy, as can be expected with an incompressible behavior, indeed.

5.4 Construction of an admissible Helmholtz free energy

functional

With the assumptions made on the fluid constitutive behavior and considering
isothermal conditions, the Helmholtz free energy expression (38) reduces to

Ψ = Ψs

(

e, Js
)

− p0Jφ, (48)

with Js = J(1 − φ). Note that this makes Ψ a function of e and m only, since
Js = J−Jφ and Jφ = m

ρf0
+φ0. This leads to the following constitutive equations

providing the stress tensor in reversible transformations, namely, disregarding
dissipation effects,

Σ =
∂Ψ(e,m)

∂e
=
∂Ψs

∂e
+
∂Ψs

∂Js

∂J

∂e
=
∂Ψs

∂e
− pJC−1, (49)

with

p = −∂Ψs

∂Js
, (50)

as discussed in Remark 5.
We are thus led to modeling the solid Helmholtz free energy Ψs. Abundant

work has already been devoted to this matter, although the literature is much
more scarce on finite strain formulations, see e.g. [12] and references therein.
Here, our goal is not to give detailed formulations focused on specific types of
porous materials, but rather to propose a general strategy inspired from hy-
perelastic concepts and well-adapted to computational purposes. The specific
types of hyperelastic potentials to be selected will then depend on the materials
considered in each application, and the corresponding constitutive parameters
should be calibrated based on appropriate experimental trials, which the sim-
plicity of the formulation should facilitate.

We propose to construct the free energy functional in the following – indeed,
most natural – manner

Ψs =W skel(e) +W bulk(Js), (51)

where W skel is a hyperelastic potential representing the constitutive behavior
of the skeleton as a structure, while W bulk describes how the energy depends
on the solid phase volume changes, against which the fluid interstitial pressure
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exerts mechanical work. For the bulk term, we can for example use the form
classically employed in hyperelastic formulations, see e.g. [9, 23],

W bulk(Js) = κ

(

Js
1− φ0

− 1− ln
( Js
1− φ0

)

)

,

with κ a bulk modulus which can be chosen to be large in order to enforce nearly-
incompressible behavior in the solid, hence total (approximate) incompressibility
since the fluid was already assumed to be incompressible. We further emphasize
thatW skel should also incorporate some global bulk deformation energy, namely,
provide a stress contribution which produces work on deformations associated
with changes of volumes. In other words, we should have “∂W skel/∂J 6= 0”. In
fact, when considering an experiment in which the porous medium is “inflated”
by increasing the fluid pressure while maintaining zero total stresses, this gives
from (49)

∂W skel

∂J
=
∂W skel

∂e
:
C

3J
= p, (52)

which shows how this bulk energy provides resistance to internal pressure, as
desired.

Note that the expression (51) gives a material which exactly satisfies the so-
called “Terzaghi effective stress principle” – see e.g. [10] and references therein
– since we then have

Σ+ pJC−1 =
∂W skel

∂e
(e),

where the right-hand side only depends on the macroscopic strain tensor e,
which means that the stress quantity Σ+pJC−1 entirely determines the (static)
deformations of the skeleton. If we want to specifically characterize a porous
material that departs from this principle, we can instead consider

Ψs =W skel(e) +W bulk
(

Js
1− φ0
J̄s(J)

)

, (53)

where J̄s(J) is a function representing the variations of solid volume directly
due to macroscopic volume changes in the absence of pore pressure, namely, the
Poisson effect occurring “across the thickness” of the skeleton. For example, we
could reasonably assume a linear ratio in the changes of volume, i.e.

J̄s(J)

1− φ0
− 1 = α(J − 1) ⇔ J̄s(J) = (1− φ0)(1− α+ αJ), (54)

where the ratio α should be less than one, and small when the compressibility
of the solid material is low. Assuming (53), the stress tensor expression is now

Σ =
∂W skel

∂e
− pJC−1 − (W bulk)′

(1− φ0)Js(J̄s)
′

(J̄s)2
JC−1,

where the last term shows that the formulation no longer satisfies the effective
stress principle. An alternative expression can be obtained by incorporating
(50), leading to

Σ =
∂W skel

∂e
−

(

1− Js(J̄s)
′

J̄s

)

pJC−1.
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The Biot modulus b being defined as the coefficient of the pressure term in the
stress expression for infinitesimal transformations, we then have with the linear
law (54) and upon linearization of the constitutive relation

b = 1− α(1− φ0).

We also recall that the Biot modulus should tend to one when approaching
solid incompressible behavior – namely, in which case we recover the effective
stress principle – as is well-known and quite clear from our above discussion
since α should vanish for incompressible materials. This justifies the use of the
simpler construction (51) when considering nearly-incompressible behavior in
the skeleton material.

Furthermore, as argued in [7], when large strains are considered special care
must be exercised to maintain positive porosity. This can be achieved by in-
cluding an additional penalization term in Ψs, such as

W por = −η ln
( m

ρf0
+ φ0

)

,

which makes the fluid pressure tend to minus infinity through (50) when the
porosity approaches zero, as is most natural. Accordingly, with this additional
contribution the “inflated skeleton” equilibrium identity (52) is transformed into

p =
∂W skel

∂e
:
C

3J
− η

( m

ρf0
+ φ0

)−1

, (55)

which can also be considered for negative values of the pressure – namely, de-
flation.

Remark 6 – The additional porosity constraint φ ≤ 1 is naturally satisfied
with the type of bulk potential proposed above, since Js approaching zero then
makes the free energy tend to infinity.

We point out that an alternative approach for formulating a poromechanics
Helmholtz free energy functional is proposed and discussed in detail in [19] based
on a decomposition of the strain tensor which, however, requires an isotropy
assumption, see also [4] for related ideas. Our construction involves no such
isotropy assumption and we – indeed – have among our chief objectives the
modeling of living tissues, which are frequently made of highly anisotropic ma-
terials [18, 29]. Moreover, in our approach, a natural extension can also be
formulated to take into account an active contribution, in order to model mus-
cle contraction – e.g. in the heart, see [31, 7, 8] – which will be the subject of
some further work.

Remark 7 – In this discussion, we have significantly departed from the ap-
proach taken in [7], in which the free energy functional was constructed by ex-
tending the linear theory of poromechanics. Note that the strategy proposed in
the present paper is more general, and makes the enforcement of incompressible
conditions more natural, in particular.
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6 Governing equations and energy balance of the

porous model

In this section, we summarize and further analyze the governing equations of
the complete poromechanics model constructed according to the guidelines dis-
cussed in the previous sections. We recall that we have obtained the following
coupled system























(ρ0 +m)γ −∇ξ · (F · Σ) = (ρ0 +m)f, in Ω0

ρfγf + k−1

f
· w
ρf

+∇xp−
1

φ
∇x · (φσvis

) = ρff, in Ωt

1

J

dm

dt
+∇x · w = θ, in Ωt

(56)

6.1 Strong formulation

As a first important remark, it is quite straightforward to see that we can trans-
form the first equation of this system to express the conservation of momentum
for the skeleton alone by subtracting the Lagrangian form of the second equation
multiplied by φ. This gives

ρs0(1− φ0)γs −∇ξ · (F · Σ
s
)− Jφ2k−1

f
· (vf − vs) = ρs0(1− φ0)f,

where Σ
s

denotes the skeleton contribution in the stress tensor, namely,

Σ
s
= Σ− φΣ

vis
+ φpJC−1.

Next, we proceed to reformulate the fluid inertia to make the second equation
of System (56) explicit in the fluid velocity. We note that due to the conservation
of fluid mass on an arbitrary subdomain Ω′

t,

df
dt

∫

Ω′

t

ρfφ dΩ =

∫

Ω′

t

θ dΩ,

we have
∫

Ω′

t

ρfφγf dΩ =
df
dt

∫

Ω′

t

ρfφvf dΩ−
∫

Ω′

t

θvf dΩ.

Using (5) we have

df
dt

∫

Ω′

t

ρfφvf dΩ =

∫

Ω′

t

( ∂

∂t
(ρfφvf)

∣

∣

∣

x
+∇x · (ρfφvf ⊗ vf)

)

dΩ

=

∫

Ω′

t

( ∂

∂t
(ρfφvf)

∣

∣

∣

x
+∇x · (ρfφvf ⊗ vs)

)

dΩ

+

∫

Ω′

t

∇x · (ρfφvf ⊗ (vf − vs)) dΩ

=
d

dt

(

∫

Ω′

t

ρfφvf dΩ
)

+

∫

Ω′

t

∇x · (ρfφvf ⊗ (vf − vs)) dΩ

=
d

dt

(

∫

Ω′

0

Jρfφvf dΩ
)

+

∫

Ω′

t

∇x · (ρfφvf ⊗ (vf − vs)) dΩ

=

∫

Ω′

0

∂

∂t
(Jρfφvf)

∣

∣

∣

ξ
dΩ+

∫

Ω′

t

∇x · (ρfφvf ⊗ (vf − vs)) dΩ,RR n° 7395
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which provides the identity

ρfφγf =
1

J

d

dt
(Jρfφvf) +∇x · (ρfφvf ⊗ (vf − vs))− θvf . (57)

Gathering the above equations, we thus obtain the following summary.

System of porous medium equations – Strong formulation























































ρs0(1− φ0)
dvs
dt

−∇ξ · (F · Σ
s
)− Jφ2k−1

f
· (vf − vs)

= ρs0(1− φ0)f, in Ω0

1

J

d

dt
(Jρfφvf) +∇x ·

(

ρfφvf ⊗ (vf − vs)
)

− θvf

+φ2k−1

f
· (vf − vs) + φ∇xp−∇x · (φσvis

) = ρfφf, in Ωt

1

J

d

dt
(Jρfφ) +∇x ·

(

ρfφ(vf − vs)
)

= θ, in Ωt

(58)

where each of the two phases in the porous medium can have Dirichlet or Neu-
mann boundary conditions on various parts of the boundary, the most common
combinations being as follows:

• Dirichlet boundary conditions for both phases, namely, prescribed skeleton
displacements and fluid velocities:

y = ypr, vf = vpr
f ,

on the subpart of the boundary which we denote by ΓD
0 in the reference

configuration and ΓD
t in the current configuration;

• Neumann boundary conditions for both phases, with proportional repar-
tition of boundary traction:

σ · n = t⇔ F · Σ · n0 = t0, σ
f
· n = t,

on ΓN
0 (or ΓN

t );

• Neumann boundary condition for the global mixture, but vanishing fluid
flux and proportional repartition of tangential boundary traction:

σ · n = t⇔ F · Σ · n0 = t0, Πτ (σf
· n) = Πτ (t), (vf − vs) · n = 0,

on ΓNnof
0 (or ΓNnof

t ), where Πτ = 1 − n ⊗ n denotes the projection onto
the tangential plane;

• Neumann boundary condition for the global mixture with fluid velocity
coinciding with the solid velocity (no sliding):

σ · n = t⇔ F · Σ · n0 = t0, vf = vs,

on ΓNnos
0 (or ΓNnos

t ).
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Remark 8 – We recognize in (58)2 an equation very similar to the conservative
form of the so-called Arbitrary Lagrangian Eulerian (ALE) formulation of the
compressible Navier-Stokes equations [17, 24], where here the domain velocity
is given by the skeleton physical velocity and the product ρfφ plays the role of
a varying fluid mass density. However, compared with standard fluid-structure
interaction problems, we have the additional distributed coupling term k−1

f
·

(vf − vs) representing the interaction between the two phases.

6.2 Weak formulation

From the above system written in strong form, we can obtain an equivalent
weak form – in other words, a variational formulation – by multiplying each
equation by a corresponding test function. This gives the following system.

System of porous medium equations – Weak formulation































































































































∫

Ω0

ρs0(1− φ0)
dvs
dt

· v∗s dΩ+

∫

Ω0

Σ
s
: dye · v∗s dΩ

−
∫

Ωt

(vf − vs) · φ2k−1

f
· v∗s dΩ

=

∫

Ω0

ρs0(1− φ0)f · v∗s dΩ+

∫

ΓN

0

(1− φ)t0 · v∗s dS

+

∫

ΓNnof

0

⋃
ΓNnos

0

t0 · v∗s dS −
∫

ΓNnof
t

φ (Πτ t) · v∗s dS −Rf(v
∗
s )

P f
i (v

∗
f ) +

∫

Ωt

(vf − vs) · φ2k−1

f
· v∗f dΩ

+

∫

Ωt

(

− p

ρf
∇x · (ρfφv∗f ) + φσ

vis
: ε(v∗f )

)

dΩ

=

∫

Ωt

ρfφ f · v∗f dΩ+

∫

ΓN
t

⋃
ΓNnof
t

φ t · v∗f dS
∫

Ω0

dm

dt
q∗ dΩ+

∫

Ωt

∇x · (ρfφ (vf − vs)) q
∗ dΩ =

∫

Ωt

θ q∗ dΩ

(59)

to be verified for any admissible test functions v∗s , v
∗
f and q∗, and with the

virtual power of fluid inertia forces given by

P f
i (v

∗
f ) =

∫

Ω0

d

dt
(Jρfφvf) · v∗f dΩ+

∫

Ωt

∇x · (ρfφvf ⊗ (vf − vs)) · v∗f dΩ

−
∫

Ωt

θvf · v∗f dΩ, (60)
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while

Rf(v
∗
s ) =

∫

ΓNnos
t

φ
(

σ
f
· n

)

· v∗s dS +

∫

ΓNnof
t

φ
(

σ
f
· n

)

· n (v∗s · n) dS

= P f
i (v

∗
s ) +

∫

Ωt

(vf − vs) · φ2k−1

f
· v∗s dΩ

+

∫

Ωt

(

− p

ρf
∇x · (ρfφv∗s ) + φσ

vis
: ε(v∗s )

)

dΩ

−
∫

Ωt

ρfφ f · v∗s dΩ−
∫

ΓN
t

φ t · v∗s dS −
∫

ΓNnof
t

φ (Πτ t) · v∗s dS

is the residual of the second equation (namely, the virtual work of fluid reaction
forces) with respect to the fluid-related Dirichlet boundary conditions prescribed
on the boundaries ΓNnos

t and ΓNnof
t . The complete Dirichlet boundary condi-

tions for this system are










y = ypr, vf = vpr
f , on ΓD

0

vf · n = vs · n, on ΓNnof
t

vf = vs, on ΓNnos
t

and the respective test functions must accordingly satisfy the corresponding
homogeneous conditions. Note that in this variational formulation we have
used a combination of Lagrangian and Eulerian terms according to which is the
most effective form for computational purposes. In addition, the conservation
of mass equation is now written with the added mass variable m, which is quite
natural since the Helmholtz free energy functional is a function of this variable.

6.3 Variants of equations

Of course, we have an equivalent system when substituting (59)1 with the total
conservation of momentum in a weak form – namely, we simply substitute the
expression of the residual term Rf(v

∗
s ) – which gives the following alternative

formulation.

System of porous medium equations – Second weak formulation


































∫

Ω0

ρs0(1− φ0)
dvs
dt

· v∗s dΩ+ P f
i (v

∗
s ) +

∫

Ω0

Σ : dye · v∗s dΩ

=

∫

Ω0

(ρ0 +m)f · v∗s dΩ+

∫

ΓN

0

⋃
ΓNnof

0

⋃
ΓNnos

0

t0 · v∗s dS

(59)2
(59)3

(61)

Note that this form substantially simplifies the expression of the virtual work
of external forces.

Furthermore, we can obtain alternative expressions of the fluid inertia power,
as is usually done in standard fluid-structure interaction formulations. For ex-
ample, the form employed in [23] is obtained by noting that

∂

∂t
(Jρfφvf)

∣

∣

∣

ξ
=

∂

∂t
(Jρfφ)

∣

∣

∣

ξ
vf + Jρfφ

∂vf
∂t

∣

∣

∣

ξ
,
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while

Jρfφ
∂vf
∂t

∣

∣

∣

ξ
=

√

Jρfφ
( ∂

∂t

(
√

Jρfφ vf
)

∣

∣

∣

ξ
− 1

2
√
Jρfφ

∂

∂t

(

Jρfφ
)

∣

∣

∣

ξ
vf

)

.

We then infer

∂

∂t
(Jρfφvf)

∣

∣

∣

ξ
=

√

Jρfφ
∂

∂t

(
√

Jρfφ vf
)

∣

∣

∣

ξ
+

1

2

∂

∂t
(Jρfφ)

∣

∣

∣

ξ
vf

=
√

Jρfφ
∂

∂t

(
√

Jρfφ vf
)

∣

∣

∣

ξ
+
J

2

(

θ −∇x · (ρfφ (vf − vs))
)

vf ,

where we have used (16) and the Eulerian form of (17) in the last substitution.
Hence, we can transform (57) into the second fluid inertia identity

ρfφγf =
1

J

√

Jρfφ
d

dt

(
√

Jρfφ vf
)

− 1

2
∇x · (ρfφ (vf − vs))vf

+∇x · (ρfφvf ⊗ (vf − vs))−
1

2
θvf , (62)

or equivalently in a weak form

P f
i (v

∗) =

∫

Ω0

d

dt

(
√

Jρfφ vf
)

·
√

Jρfφ v
∗ dΩ− 1

2

∫

Ωt

∇x ·
(

ρfφ (vf−vs)
)

vf ·v∗ dΩ

+

∫

Ωt

∇x ·
(

ρfφvf ⊗ (vf − vs)
)

· v∗ dΩ− 1

2

∫

Ωt

θvf · v∗ dΩ. (63)

As we will see in the next section, this form is particularly useful when dealing
with energy balances. Hence, we also expect this expression to be instrumental
when devising energy-consistent discretization schemes.

6.4 Energy balance

We now make use of the above-derived system equations to reformulate di-
rectly the energy principle for the porous medium, in a form providing explicit
estimates for the solution of the system (58) – or the associated weak forms
(59)-(61). This type of estimate is crucial in particular for analyzing the math-
ematical properties of the solutions and their discretizations. Defining the total
Helmholtz free energy

W =

∫

Ω0

Ψ dΩ,

we have the following result.

Theorem 7
The solution of the general poromechanics problem written in (58) and (59)-(61)
in strong and weak forms, respectively, satisfies the following energy balance

dK
dt

+
dW
dt

= −
∫

Ω0

∂Ψdamp

∂ė
: ė dΩ−

∫

Ωt

φσ
vis

: ε(vf) dΩ

−
∫

Ωt

(vf − vs) · φ2k−1

f
· (vf − vs) dΩ+ Ptotal

ext + JKb + JKθ + JWb + JGθ, (64)
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with

JKb = −1

2

∫

∂Ωt

ρfφv
2
f (vf − vs) · ndS, JKθ =

1

2

∫

Ωt

v2f θ dΩ,

the incoming rates of fluid kinetic energy due to the boundary flow and source
term, respectively, and

JWb = −
∫

∂Ωt

ρfφψm(vf − vs) · ndS, JGθ =

∫

Ωt

gmθ dΩ,

similar incoming rates of Helmholtz and Gibbs free energies.

Proof. First we consider the fluid inertia power in the form (63) applied to the
fluid velocity. We start with the following identities

∇x · (ρfφv2f (vf − vs)) = v2f ∇x · (ρfφ(vf − vs)) + 2(vf · ∇x
vf) ρfφ (vf − vs),

and

∇x · (ρfφvf ⊗ (vf − vs)) · vf = v2f∇x · (ρfφ(vf − vs)) + (vf · ∇x
vf) ρfφ (vf − vs).

Hence,

∇x · (ρfφvf ⊗ (vf − vs)) · vf =
1

2
v2f∇x · (ρfφ(vf − vs)) +

1

2
∇x · (ρfφv2f (vf − vs)),

which gives

P f
i (vf) =

∫

Ω0

d

dt

(
√

Jρfφ vf
)

·
√

Jρfφ vf dΩ

+

∫

Ωt

1

2
∇x · (ρfφv2f (vf − vs)) dΩ− 1

2

∫

Ωt

θv2f dΩ

=
dKf

dt
+

∫

∂Ωt

1

2
ρfφv

2
f (vf − vs) · ndS − 1

2

∫

Ωt

θv2f dΩ

=
dKf

dt
− JKb − JKθ.

Therefore, adding the weak form (61)1 tested with vs to the weak form (59)2
tested with (vf − vs) we obtain

dKs

dt
+
dKf

dt
+

∫

Ω0

∂Ψ

∂e
: dye·vs dΩ+

∫

Ωt

(

− p

ρf
∇x·(ρfφ(vf−vs))+φσvis

: ε(vf)
)

dΩ

= −
∫

Ω0

∂Ψdamp

∂ė
: dye·vs dΩ−

∫

Ωt

(vf−vs)·φ2k−1

f
·(vf−vs) dΩ+Ptotal

ext +JKb+JKθ.

Note that this identity also holds when prescribing non-homogeneous Dirichlet
boundary conditions – even though the test functions in the variational system
are assumed to satisfy homogeneous conditions – since then the remaining resid-
uals are exactly compensated by adequate terms in the power of external forces,
by definition of these residuals. Finally, testing (59)3 with p−p0

ρf
we have

∫

Ωt

p− p0
ρf

∇x · (ρfφ(vf − vs)) dΩ+

∫

Ω0

p− p0
ρf

dm

dt
dΩ =

∫

Ωt

p− p0
ρf

θ dΩ,
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which by the Stokes formula gives

−
∫

Ωt

p

ρf
∇x · (ρfφ(vf − vs)) dΩ =

∫

Ω0

p− p0
ρf

dm

dt
dΩ

−
∫

∂Ωt

ρfφ
p0
ρf

(vf − vs) · ndS

−
∫

Ωt

p− p0
ρf

θ dΩ

=

∫

Ω0

gm
dm

dt
dΩ− JWb − JGθ.

Therefore, using ė = dye · vs, we have
∫

Ω0

(∂Ψ

∂e
: dye · vs + gm

dm

dt

)

dΩ =

∫

Ω0

(∂Ψ

∂e
: ė+

∂Ψ

∂m
ṁ
)

dΩ =
dW
dt

,

which concludes the proof. �

In Theorem 7, the first three contributions appearing in the right-hand side
of the balance (64) are negative and respectively correspond to dissipation effects
in the solid, in the fluid and in the interaction between the two components.
The last four contributions correspond to source terms and external forces, hence
they vanish for an isolated system.

Remark 9 – An incoming rate of Gibbs free energy can be naturally interpreted
as the sum of external power performed on the corresponding added mass and
increase of fluid Helmholtz free energy associated with this mass, as e.g.

JGθ =

∫

Ωt

(

p
θ

ρf
+ ψmθ

)

dΩ.

The reason why it is the Helmholtz free energy which appears in JWb is that the
external work exerted on the incoming flow on the boundary is already included
in Ptotal

ext .

Remark 10 – When restricting the model to the case of small perturbations, a
straightforward linearized form of (58) can be considered leading to equations
equivalent to the Biot system [3, 37], which has been mathematically studied
using Galerkin approximations [32] or semi-group theory [16] in the light of an
energy balance similar to (64). More precisely, in order to recover the Biot
system from (58) we just need to remark that, in the linearized case for an
incompressible fluid, p and m are linearly linked to the skeleton deformation
tensor trace. Indeed, we get from (50) after linearization

p = −K
(

tr ε(y)− m

ρf

)

,

with K a positive constant involving the skeleton bulk modulus. Thus we can
rewrite the mass conservation as

1

K

dp

dt
+∇ · vs +∇ ·

(

φ(vf − vs)
)

= θ,

similar to the classical form of the mass conservation in the Biot system.
Note finally that, even in large displacement cases, when existence results

exist they usually make use of energy estimate like (64), see for instance [6] for
comparable systems.
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7 Concluding remarks

We have proposed a complete framework for modeling finite strain porome-
chanics in a very general setting, the only specific assumptions made being fluid
incompressibility and isothermal conditions. Our construction entirely relies on
the crucial conservation and thermodynamics principles, and as a consequence
we very naturally established a global energy balance for the resulting coupled
system, directly from the weak formulation.

This fundamental energy balance is very important for further mathematical
analyses of the system. Moreover, it also provides a milestone for discretizing
the formulation, as fulfilling similar balances for the discretized solution is a key
step in the stability analysis. This type of approach is for example already very
effectively used in the numerical analysis of fluid-structure interaction problems
– see e.g. [24] – to which we showed that our proposed formulation bears some
resemblance. In this respect, adequate time discretization strategies will be
presented in a follow-up to this work [28].

Finally, we emphasize that the proposed formulation leaves much room for
modeling very general constitutive behaviors. This holds both for the fluid com-
ponent – within the incompressibility assumption – for which we can consider
e.g. non-Newtonian stress laws and various forms of permeability modeling, and
also for the skeleton which is modeled based on a generalized hyperelastic po-
tential, with optional additional dissipative effects. The hyperelastic potential
allows to represent a wide range of mechanical behaviors – both compressible
and incompressible, finite strain conditions, arbitrary anisotropy in particular–
and with some extensions could also include some plasticity effects and active
components. We expect this wide range of applicability to be of utmost value in
many fields, including – but not restricted to – soft tissue biomechanics which
originally motivated this work.
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