E. S. Almeida and R. L. Spilker, Finite element formulations for hyperelastic transversely isotropic biphasic soft tissues, Computer Methods in Applied Mechanics and Engineering, vol.151, issue.3-4, pp.3-4513, 1998.
DOI : 10.1016/S0045-7825(97)82246-3

S. Badia, A. Quaini, and A. Quarteroni, Coupling Biot and Navier???Stokes equations for modelling fluid???poroelastic media interaction, Journal of Computational Physics, vol.228, issue.21, pp.7986-8014, 2009.
DOI : 10.1016/j.jcp.2009.07.019

L. Baffico, C. Grandmont, and B. Maury, Multiscale modelling of the respiratory tract, Mathematical Models and Methods in Applied Sciences (M3AS), pp.59-93, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00343629

M. A. Biot, General Theory of Three???Dimensional Consolidation, Journal of Applied Physics, vol.12, issue.2, pp.155-164, 1941.
DOI : 10.1063/1.1712886

URL : https://hal.archives-ouvertes.fr/hal-01368635

M. A. Biot, Mechanics of Deformation and Acoustic Propagation in Porous Media, Journal of Applied Physics, vol.33, issue.4, pp.1482-1498, 1962.
DOI : 10.1063/1.1728759

URL : https://hal.archives-ouvertes.fr/hal-01368725

J. Bluhm, Constitutive Relations for Thermo-elastic Porous Solids within the Framework of Finite Deformations, IUTAM Symposium on Theoretical and Numerical Methods in Continuum Mechanics of Porous Materials, pp.27-32, 2001.
DOI : 10.1007/0-306-46953-7_4

R. I. Borja, On the mechanical energy and effective stress in saturated and unsaturated porous continua, International Journal of Solids and Structures, vol.43, issue.6, pp.1764-1786, 2006.
DOI : 10.1016/j.ijsolstr.2005.04.045

M. Boulakia, Existence of weak solutions for an interaction problem between an elastic structure and a compressible viscous fluid, Journal de Math??matiques Pures et Appliqu??es, vol.84, issue.11, pp.1515-1554, 2005.
DOI : 10.1016/j.matpur.2005.08.004

R. M. Bowen, Incompressible porous media models by use of the theory of mixtures, International Journal of Engineering Science, vol.18, issue.9, pp.1129-1148, 1980.
DOI : 10.1016/0020-7225(80)90114-7

R. M. Bowen, Compressible porous media models by use of the theory of mixtures, International Journal of Engineering Science, vol.20, issue.6, pp.697-735, 1982.
DOI : 10.1016/0020-7225(82)90082-9

D. Chapelle, J. Gerbeau, J. Sainte-marie, and I. E. Vignon, A poroelastic model valid in large strains with applications to perfusion in cardiac modeling, Computational Mechanics, vol.130, issue.5, pp.91-101, 2010.
DOI : 10.1007/s00466-009-0452-x

URL : https://hal.archives-ouvertes.fr/hal-00592688

D. Chapelle, P. Le-tallec, P. Moireau, and M. Sorine, ENERGY-PRESERVING MUSCLE TISSUE MODEL: FORMULATION AND COMPATIBLE DISCRETIZATIONS, International Journal for Multiscale Computational Engineering, vol.10, issue.2, pp.189-211, 2012.
DOI : 10.1615/IntJMultCompEng.2011002360

URL : https://hal.archives-ouvertes.fr/hal-00678772

P. G. Ciarlet, Three-Dimensional Elasticity, Studies in Mathematics and its Applications, 1988.
URL : https://hal.archives-ouvertes.fr/hal-01077590

R. De-boer, Trends in Continuum Mechanics of Porous Media, 2005.
DOI : 10.1007/1-4020-3144-0

E. De-langre, Effects of Wind on Plants, Annual Review of Fluid Mechanics, vol.40, issue.1, pp.141-168, 2008.
DOI : 10.1146/annurev.fluid.40.111406.102135

URL : https://hal.archives-ouvertes.fr/hal-01022800

S. Diebels and W. Ehlers, DYNAMIC ANALYSIS OF A FULLY SATURATED POROUS MEDIUM ACCOUNTING FOR GEOMETRICAL AND MATERIAL NON-LINEARITIES, International Journal for Numerical Methods in Engineering, vol.1, issue.1, pp.81-97, 1996.
DOI : 10.1002/(SICI)1097-0207(19960115)39:1<81::AID-NME840>3.0.CO;2-B

J. Donea, S. Giuliani, and J. P. Halleux, An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions, Computer Methods in Applied Mechanics and Engineering, vol.33, issue.1-3, pp.1-3689, 1982.
DOI : 10.1016/0045-7825(82)90128-1

L. Dormieux, P. Barboux, O. Coussy, and P. Dangla, A macroscopic model of the swelling phenomenon of a saturated clay, European Journal of Mechanics A-Solids, vol.14, issue.6, pp.981-1004, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00586537

A. C. Eringen and J. D. Ingram, A Continuum theory of chemically reacting media???I, International Journal of Engineering Science, vol.3, issue.2, pp.197-212, 1965.
DOI : 10.1016/0020-7225(65)90044-3

A. Ezziani, Ondes dans les milieux poroélastiques, analyse du modèle de Biot. Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées (ARIMA), pp.95-109, 2006.

M. A. Fernández and J. Gerbeau, Algorithms for fluid-structure interaction problems, In Cardiovascular Mathematics MS&A. Model. Simul. Appl, vol.1, pp.307-346, 2009.
DOI : 10.1007/978-88-470-1152-6_9

Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissues, 1993.

A. Gajo, A general approach to isothermal hyperelastic modelling of saturated porous media at finite strains with compressible solid constituents, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.91, issue.2-3, 2010.
DOI : 10.1007/s10237-004-0063-6

O. Gonzales, Exact energy and momentum conserving algorithms for general models in nonlinear elasticity, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.13-14, pp.13-141763, 2000.
DOI : 10.1016/S0045-7825(00)00189-4

P. Hauret and P. L. Tallec, Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.37-40, pp.4890-4916, 2006.
DOI : 10.1016/j.cma.2005.11.005

URL : https://hal.archives-ouvertes.fr/hal-00111458

U. Hornung, Homogenization and Porous Media, Interdisciplinary Applied Mathematics, vol.6, 1997.
DOI : 10.1007/978-1-4612-1920-0

J. M. Huyghe, T. Arts, D. H. Van-campen, and R. S. Reneman, Porous medium finite element model of the beating left ventricle, Am J Physiol Heart Circ Physiol, vol.262, issue.4, pp.1256-1267, 1992.

J. M. Huyghe and D. H. Van-campen, Finite deformation theory of hierarchically arranged porous solids???II. Constitutive behaviour, International Journal of Engineering Science, vol.33, issue.13, pp.1873-1886, 1995.
DOI : 10.1016/0020-7225(95)00043-W

K. Johnson, P. Sharma, and J. Oshinski, Coronary artery flow measurement using navigator echo gated phase contrast magnetic resonance velocity mapping at 3.0T, Journal of Biomechanics, vol.41, issue.3, pp.595-602, 2008.
DOI : 10.1016/j.jbiomech.2007.10.010

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759278

F. Kuwahara, Y. Sano, J. Liu, and A. Nakayama, A Porous Media Approach for Bifurcating Flow and Mass Transfer in a Human Lung, Journal of Heat Transfer, vol.131, issue.10, p.131101013, 2009.
DOI : 10.1115/1.3180699

P. and L. Tallec, Numerical methods for nonlinear three-dimensional elasticity, Handbook of Numerical Analysis, 1994.
DOI : 10.1016/S1570-8659(05)80018-3

P. , L. Tallec, and P. Hauret, Energy conservation in fluid structure interactions, Numerical methods for scientific computing. Variational problems and applications, pp.94-107, 2003.

C. Li, R. I. Borja, and R. A. Regueiro, Dynamics of porous media at finite strain, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.36-38, pp.36-383837, 2004.
DOI : 10.1016/j.cma.2004.02.014

B. Loret and F. M. Simoes, A framework for deformation, generalized diffusion, mass transfer and growth in multi-species multi-phase biological tissues, European Journal of Mechanics - A/Solids, vol.24, issue.5, pp.757-781, 2005.
DOI : 10.1016/j.euromechsol.2005.05.005

K. May-newman and A. D. Mcculloch, Homogenization modeling for the mechanics of perfused myocardium, Progress in Biophysics and Molecular Biology, vol.69, issue.2-3, pp.463-481, 1998.
DOI : 10.1016/S0079-6107(98)00020-0

M. P. Nash and P. J. Hunter, Computational mechanics of the heart -From tissue structure to ventricular function, Journal of Elasticity, vol.61, issue.1/3, pp.113-141, 2000.
DOI : 10.1023/A:1011084330767

E. Rohan and R. Cimrman, Two-scale modeling of tissue perfusion problem using homogenization of dual porous media, International Journal for Multiscale Computational Engineering, vol.8, issue.1, pp.81-102, 2010.

J. Sainte-marie, D. Chapelle, R. Cimrman, and M. Sorine, Modeling and estimation of the cardiac electromechanical activity, Computers & Structures, vol.84, issue.28, pp.1743-1759, 2006.
DOI : 10.1016/j.compstruc.2006.05.003

URL : https://hal.archives-ouvertes.fr/hal-00839206

J. E. Santos, Elastic wave propagation in fluid-saturated porous media. Part I. The existence and uniqueness theorems, ESAIM: Mathematical Modelling and Numerical Analysis, vol.20, issue.1, pp.113-128, 1986.
DOI : 10.1051/m2an/1986200101131

J. J. Shi, K. R. Rajagopal, and A. S. Wineman, Applications of the theory of interacting continua to the diffusion of a fluid through a non-linear elastic media, Int. J. Engng Sci, vol.19, pp.871-889, 1981.

N. P. Smith and G. S. Kassab, Analysis of coronary blood flow interaction with myocardial mechanics based on anatomical models, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.359, issue.1783, pp.3591251-1262, 1783.
DOI : 10.1098/rsta.2001.0829

H. Tang and Y. C. Fung, Fluid Movement in a Channel With Permeable Walls Covered by Porous Media: A Model of Lung Alveolar Sheet, Journal of Applied Mechanics, vol.42, issue.1, pp.45-50, 1975.
DOI : 10.1115/1.3423551

K. Terzaghi, Theoretical Soil Mechanics, 1943.
DOI : 10.1002/9780470172766

R. Wooding, Steady state free thermal convection of liquid in a saturated permeable medium, Journal of Fluid Mechanics, vol.17, issue.03, pp.273-285, 1957.
DOI : 10.1017/S0022112057000129

O. C. Zienkiewicz and T. Shiomi, Dynamic behaviour of saturated porous media; The generalized Biot formulation and its numerical solution, International Journal for Numerical and Analytical Methods in Geomechanics, vol.2, issue.18, pp.71-96, 1984.
DOI : 10.1002/nag.1610080106