
Inverse Kinematics On-line Learning: a

Kernel-Based Policy-Gradient approach

Emmanuel Daucé
UMR 6233

Ecole Centrale de Marseille
Technopôle de Chateau Gombert

Marseille, France
edauce@centrale-marseille.fr

Alain Dutech
LORIA/INRIA - Maia Team
Campus Scientifique, BP 239

Nancy, France
alain.dutech@loria.fr

September 24, 2010

Abstract

In machine learning, “kernel methods” give a consistent framework
for applying the perceptron algorithm to non-linear problems. In rein-
forcement learning, an analog of the perceptron delta-rule can be derived
from the ”policy-gradient” approach proposed by Williams in 1992 in
the framework of stochastic neural networks. Despite its generality and
straighforward applicability to continuous command problems, quite few
developments of the method had been proposed since. Here we present
an account of the use of a kernel transformation of the perception space
for the on-line learning of a motor command, in the case of eye orienta-
tion and multi-joint arm control. We show first that such a setting allows
the system to solve non-linear problems, like the log-like resolution of a
foveated retina, or the transformation from a cartesian perception space
to the “angular” command of the multi-joint arm. More interestingly, the
on-line recurrent learning we propose is simple and fully operant in chang-
ing environments, and allows for constant improvements of the politics,
on the basis of simple and measurables error terms.

1 Overview

Adaptivity to mechanical or perceptual changes is a crucial expected property
in artificial devices having to deal with the real environment. It is an important

1



source of robustness, if the user changes or adapts its behaviour (in case of
machine/human interfaces, BCI, etc...), if the opponent changes its strategy
(prey/predator), or in case of damage (when the device looses a captor and/or
an effector).

The reinforcement learning framework offers good hints to solve this family of
problem, at the condition that action and movement spaces are considered to be
continuous and not discrete ’grid-like’ states. In the case we consider further on
(inverse kinematics problems), it is not crucial to solve highly instable systems
(like inverted “bang-bang” pendulum). We rather try to exploit at best the
adaptivity capabilities offered by reinforcement in the case of visually controlled
multi-joint arm target reaching. Similarly, it is important to define rewards
that exploit available information to the best. In the case of visually guided
arm movement for instance, using the known visual error instead of a binary
“good/bad” reward can notably improve the speed and accuracy of adaptation.

2 Background

We tackle here the problem of finding a good continuous action u on the basis
of a vector of features x and a reward r. The policy giving the command u is
parametrized by W . Finding the good W ’s when the environment is unknown
is a reinforcement learning problem. A bunch of methods exists in the case of
discrete state and action spaces, ranging from “temporal differences” methods
to “actor/critic” frameworks. The case of continuous states and actions is not
such well documented, despite a wide range of potential applications in robotics
and control. Typical extensions of the actor-critic approach to a continuous
state space imply to use regression methods in order to estimate state values
V (x) or transition values Q(x, u) on the basis of observed samples [1]. Those
value functions are not expected to be linear, and thus all the limitations and
constraints related to nonlinear regression apply (subsampling, overfitting, ...).
The problem is even more drastic as the value function is evaluated on-line (no
resampling, no “bootstrapping”, no cross-validation etc...) for it is expected to
evolve and improve with time.

Our initial intuition is that the problem of learning continuous action should
be more tractable when the regression technique is applied on the parameters of
the politics directly, like in the “direct policy gradient” approach proposed by
Williams [2] and developped by Bartlett and Baxter [3]. The advantage should
come from the fact that, in this setting, the class of the controller is well-known
(parametrized linear combination of feature functions) while the class of the
value fonction is not as the value function is unknown a priori.

The idea of using a gradient ascent algorithm to directly search the space
of parametrized policy (i.e. controller) can be traced back to the family of
Reinforce algorithms proposed by Williams [2]. Mostly binary stochastic
neurones and episodic algorithms were considered. By casting this concept in
the framework of Markov Decision Processes, Baxter and Bartlett added more
theoretical and experimental results [3]. Their work was still focussed on binary

2



stochastic neurons but with results on the estimation of the gradient of the value
function with respect to the parameters of the controller.

In this paper, we use scalar outputs to compute the command. This had
quickly been suggested by Williams for gaussian neurons where first and second
order moments are differentiable and thus updatable using gradient ascent. Dif-
ferent variants of this linear-gaussian approach can be found in the litterature,
for instance in the work of Oyama et al. in learning a visual feedback controller
for a human arm [4]. In their model, the use of noise is also crucial for learning,
but they still need an inverse model of the system in order to properly use the
visual feedback signal to compensate for the cases where a too small noise causes
inaccuracy in the learning.

Recent developments in the field of policy gradient reinforcement learning
have led to several actor-critic algorithm using “natural gradient” [5, 6]. The
natural actor-critic of Peters and Schaal, compatible with scalar command, is
very efficient although episodic and relying on a sort of bootstraping. Besides,
a specific critic term is introduced in order to compute the natural gradient.
Bathnagar et al. very recent work on natural actor-critic leads also to online

algorithms but only for discrete and finite commands.
On-line adaptation of a continuous controller remains an open and chal-

lenging task in the case, of course, when no model of the environment is given
(contrarily to Kalman filtering or optimal feedback control cases), i.e. when
learning the good feedback control relies on “raw” input features and rewards
only.

3 Principles

We pursue in this paper the exploration of the adaptive properties of lin-
ear/stochastic controllers in the on-line/closed-loop case. We recall in this first
section the principles supporting our method.

3.1 Linear-gaussian Policy-gradient principles

In the reinforcement learning framework, a parametrized stochastic neurocon-
troller computes a command u on the basis of observed state x. The environ-
ment, whose dynamics is unknown, is altered by this command and ends up in
a new state x′ while the controller receives a scalar reward r linked to the qual-
ity of the command. The objective is then to find the “best” neurocontroller,
i.e. the set of parameters W which maximizes an objective function J of the
rewards. The algorithm is based on a gradient ascent in the space of parameters
along the gradient of J according to W .

More formally, let us consider that, for a state x, a command u is chosen
according to a density of probability q(x,u,W ). If the reward received at time

3



t is rt, the objective function for an horizon of T is:

J = E

[

1

T

T
∑

t=1

rt

]

. (1)

Then, it has been shown [3, 7] that the gradient of J can be rewritten in term
of the expectation of the gradient of the logarithm of the policy, as

∇W J = E

[

1

T

T
∑

k=1

r(xk)

k−1
∑

i=0

∇W log q(xi,ui,W )

]

. (2)

In the case of a gaussian multivariate noise, the probability density of chosing
a command u is

q(~x, ~u,W ) ∼ ~N (~u−W .~x,Σ) (3)

=
1

(2π)D/2

1

|Σ|1/2
exp

(

−
1

2
(~u−W .~x)

⊤
Σ−1(~u−W .~x)

)

. (4)

where D is the dimension of the command vector. Then, we have

∇W log q(~x, ~u,W ) = ∇W

[

−
1

2
(~u−W .~x)

⊤
Σ−1(~u−W .~x)

]

(5)

= Σ−1(~u−W .~x)~x⊤. (6)

3.2 Basic algorithm

The controller works in a closed loop, i.e. learning is based on a sequential
exploration of the environment where the new observation is a consequence of
the previous commands sent to the environment. As suggested in the on-line
stochastic approximation of the gradient used in the OLPOMDP algorithm of
[7], our algorithm maintains a “trace” of the gradient so as to estimate its
expectation consistently with eq.(2). Using a gradient descent approach, we
modify step by step the value of parameters W by a fraction of the estimate
of the gradient (where α is the “learning rate”). We end up with the following
algorithm. Repeat, for k ∈ 1, ..., T :

1. For the state xk, compute uk according to q(xk,uk,W k);

2. Read reward rk (possibly null) and new state xk+1;

3. Update the traces and the weights:

(a) zk = βzk + (1− β)Σ−1(uk −W .xk)xk
⊤

(b) W k+1 = W k + αrkzk

4



with β ∈ [0, 1[ where 1
1−β defines the “width” of the trace.

In the “open-loop” setting, no sequence of actions is considered. Instead,
many independent inputs are presented to the system and the weights update
is based on immediate reward only. The objective function is then limited to
an horizon of 1 (i.e., T = 1) and there is no trace (β = 0). As a result, step (3)
of the algorithm is then:

3. Update the weights with: W k+1 = W k + αΣ−1(uk −W .xk)xk
⊤.

3.3 Topographic recoding of the input

For its implementation, a policy gradient-based neuro-controller needs only two
layers, i.e. one layer for the input features and one layer for the output. The
setup thus resembles strongly to the classical linear perceptron regressor and
the learning rule itself shares similarity with the widrow-hoff learning rule at
the difference that the “real” error is unknown and replaced by the product of
the reward and the noise.

Of course, a genuine linear function approximator is bound to a very limited
class of problems. Efficient single layer regressors can however be obtained if
the input is recoded in a higher dimension space composed of a set of features
extracted from the input. Indeed, the dimension of our input space is not
very high (limited to the coordinates of targets and points of interest in the
surroundings of the controller) and, in order to generalize correctly, the feature
space is expected to be very redundant (very “smooth”). This property is
respected in the following “topographic coding” for it is expected to reproduce
on a map the coordinates of the input. If N is the initial dimension of the input
space, consider a projection g : IRN → IRP doing the topographic coding on a
map of dimension P . The stochastic neurocontroller we use in the following uses
this recombination with an added noise ~η. As such, we have ~u = W .g(~x) + ~η.

Figure 1: Kernel-based topographic coding.

In our implementation, we use a finite grid of neurons that recombine the
input in the form of a radial bump of activity (see figure 1). The sensory

5



system we implement is composed of several 1D or 2D grids of regularly spaced
radial basis functions. The real values of ~x = (x1, x2, ...) observed from the
environment are bounded (angular position of a joint, coordinates of a point in a
visual scene, etc...). This allows to recode every value on one axis of the the RBF
grid. Typically, when a visual target appears at subjective coordinates (x1, x2),
the neurons of the visual layer are set to : gi(x1, x2) = Gσ(x1−s

i
1, x2−s

i
2) where

Gσ is a bidimensional Gaussian kernel of radius σ and (si1, s
i
2) is the center of

the ith neuron of the grid.
The feature functions of the input we chose lead to a formulation of the

controller that is very similar to the kernelized perceptron [8, 9]. If the ~si are
the centröıds of the RBF grid used in the input layer, then the activation f(~x)
of the output layer (without the exploration noise) can be written 〈W , g(~x)〉IRN ,
where W = (f(~s1), ..., f(~si), ..., f(~sp)) and g(~x) = (K(~s1, ~x), ...,K(~sp, ~x)) where
K is a gaussian Kernel. It looks as if a kernelized perceptron had been first fed
with the p different centröıds so as to use them as some “support”-like vectors
for the controller. As such, this could be seen as another online approximation
scheme of kernel learning, in the spirit of Kivinen et al. [10]. In fact, our weights
update fit into the general update rule of Kivinen et al. that is

f ← f + α∇fE(J)|~xt,~ut
K(~xt, .)

Our objectives ar clearly different from those of classical kernel-based learn-
ing, but having this in mind could maybe bring new insights or improvements
to our model.

4 Applications

4.1 Simple example: open-loop “saccadic” command

In order to validate our approach, let us consider first a simple open-loop non-
linear control problem: orienting the eye toward a visual target with a non-
isotropic retina. The visual field is the mapping of an external cartesian target
position to the subjective retinocentric position (eccentricity of the target rel-
ative to the center of the retina). Consider a log-polar representation of the
visual input: a target appearing at (ρ, θ) is ’internally’ perceived at coordi-

nates x = ( log(1+Bρ)
log(1+B) , θ) where B gives the “distortion” (B = 4 in simulation).

Suppose the velocity of the target is similarly encoded in log-polar coordinates

y = ( log(1+Bρ̇)
log(1+B) , θ̇)). Then, the motor command that orientates the eye to the

visual target can be learned on the basis of visual error.
The aim of visual ’saccadic’ movement being to put the target at the center

of the retina, we define reward r =
(

b− log(1+Bρ′)
1+B

)

with b > 0 where ρ′ is the

visual error (final distance from the retina at the end of the movement). For
the kernel encoding, we use a 16× 16 grid for the encoding of x and a 16× 16
grid for the encoding of y. The motor command is composed of 4 elementary
directions (up, down, left, right). In total, the number of input units is 512 and

6



Figure 2: Mean visal error during learning in a saccadic control task. Left :
linear retina. Right : Log-Polar retina. Red : scalar input. Blue : topographic
input.

the number of output units is 4. The targets appear at random positions and
speed (centered random draw, standard deviation 0.3).

The weights vector W is initially zero (the output is thus initially purely
noisy). The noise used for learning is rather small (σ = 0.03) in order to allow
for a precise control in the end, at the expense of duration (the smaller the noise,
the longer the learning session). We apply then the off-line algorithm on 3×106

examples taken at random. We compare in figure 2 the learning curves for the
genuine and topographic controllers, in the case of linear and log-polar retina.
As expected, the genuine controller can not achieve exponential transformation
of the input while the topographic controller does, so that its residual error is
comparable to the one obtained in the linear retina case.

4.2 On-line adaptivity in a closed-loop setup : visually

guided adaptive multi-joint arm control

Consider the task of reaching a target appearing in your visual field by appro-
priately sending a contraction command to every muscle controlling your arm.
A visual check allows you to verify whether you reached or missed the target.
Finding and continuously improving the combination of commands leading the
arm to the target (whatever the initial target and arm position) belongs to the
class of inverse kinematics problem. This control problem must be considered
in general as non-linear, non-invertible and noisy. In the non-adaptive case, the
solution is computed on the basis of the known characteristics of the captors
and the effectors, possibly with a direct and inverse models of the controlled
environment. The classical implementation of such a controller implies the use
of dynamic programming approach to obtain recursively an estimate of the con-

7



troller minimizing a certain cost function [11]. In the adaptive setting, one
need to improve the control trial by trial on the basis of sensory feedback only.
Unexpected changes in the control system must then be compensated on-line.

The task is to control an arm composed of D segments on the basis of visual
and proprioceptive signals in a bi-dimensional space. For d ∈ {1, ..., D}, each
segment is of length ℓd. Consider (x0, y0) the coordinates of the first joint,
then for d in 1, ..., D : (xd, yd) = (xd−1 + ℓd cos(θd), yd−1 + ℓd sin(θd)) where
θd ∈ [−π, π] is the angular direction of the dth joint. The end-position of the arm
(xD, yD) is thus given by the combination of joint angles (θ1, ..., θD). Note that
for D ≥ 2, several combinations of angles give the same end-point. The coding
of a coordinate in term of segments and joint angles is strongly redundant.

Figure 3: Multi-joint arm control setup

The task of reaching a target appearing at (x, y) with a command on joint
angles (θ1, ..., θD) is a prototypic example of inverse kinematics problem. By
many ways a given target can be reached by the arm, but other constraints
must be taken into account in order to have an efficient controller. First of all,
a certain “smoothness” is needed in the control : if two targets appear at close-
by location, the response of the controller is expected to be quite similar (i.e. the
command signal must be continuous if a target moves continuously from position
A to position B). Other principles like minimizing the total displacement, second
and third order derivatives of the command, taking into account limited joint
course, etc... must also be considered in order to obtain ’optimal’ control.

In our setting, no direct or indirect model of the system is needed as the
reward signal is directly used to evaluate a command and thus guide the learning.
As a consequence, this reward signal can be expressed in the sensory space,
e.g. the current distance of the arm to the current target, and still allow the
controller to be updated in motor space. A classical implementation consists in
using the square of the current error r(t) = −||xD(t)− x̂(t)||2

2
(“mean-square”

error). In a closed-loop setup, the distance criterion is not necessarily the only
one to consider. For instance, Todorov and Jordan [11] propose to consider also
the current angle velocity θ̇(t) as a criterion to be minimized for optimizing the

displacement, i.e. r(t) = −||xD(t)− x̂(t)||2
2 − a||θ̇(t)||2

2
where a defines the

“weight” affected to the second criterion.

8



Open-loop setup In the open-loop setup, the association between a visual
input and a joint angle command can be learned in a very similar way as previ-
ously shown, with a reward based on the square of the visual error only. In this
simple setup, with 3 or 4 segments, every run leads to a different controller as
the space of solutions is very large. Those results are not shown here in reason
of limited space.

Closed-loop setup The closed-loop setup offers a more interesting challenge.
Consider first the task : the controller owns a camera which allows him to
visulize the coordinates x and y of the target in an arena of 2× 2 meters (with
coordinates in interval [−1, 1]). The effector is an arm composed of 4 segments
of length 0.5 attached at position (x0, y0) = (0,−1) so that a 2 meter radius
circle can be reached from that point (see figure 3).

One target is present in the arena at coordinates (x̂, ŷ). Every 4 seconds, the
target jumps to a new position taken at random uniformly in the portion of the
square that can be reached by the arm. The objective is to learn a command for
the arm to move from target to target, i.e reach new targets when they appear
and then stabilize around them. The command is now the angular velocity (i.e.
θ̇) and not the absolute angular position, so that the controller is expected to
learn a displacement and not a position.

We consider that the end-point is not directly visible (the agent is not ex-
pected to “see” its own body) like in many robotic or real-life situations. Instead,
the controller perceives a “proprioceptive” information, i.e. the current values
of the joint angles. The controller must thus deduce end-position on the basis of
joint angles (direct model), compute the difference with current target position,
and send a motor command (inverse model) that orientates the arm toward the
target. This combination of direct and inverse computation in a single operation
is specific, we think, to our approach.

The visual input is encoded as previously on a 16×16 grid with a 2D gaussian
kernel of radius 0.5. Every joint angle (∈ [−π, π]) is encoded in a separate vector
of 16 units uniformly spaced in [−π, π] with a 1D Gaussian encoding of radius
0.5 also. With a 4 joint proprioceptive input, the total size of the first layer is
320 units. The output is composed of 4 units, which as usual receive the linear
combination of the input with weights matrix W, plus a Gaussian noise whose
standard deviation is small (σ = 0.003). If u is the output, the final motor
command is θ̇ = 200 × π × u rad/s. In simulation we consider discrete time
steps of 50 ms so that ∆θ = 10× π × u rad.

The reward is based on multiple criteria : visual error minimization, angu-
lar velocity minimization and also angular minimization (trying to avoid large
values for θ). This gives concretely

r(t) = −0.1
(

||xD − x̂||2
2
+ 0.025× ||θ̇||2

2
+ 0.01× ||θ||2

2
)

The reward is sent every time step, and the trace is updated with β = 0.9
(time constant of 500 ms for the trace). The learning parameter α is taken such

9



that α
σ2 = 0.01 where σ is the standard deviation of the noise injected into the

system. The weights are initially 0.
Figure 4 (left) gives the cumulative loss (the opposite of the reward) during

a session lasting 12 × 106 time steps. The level of noise remains constant as
well as the learning rate (the system is continuously learning). The slope of
the cumulative loss decreases and stabilizes at a value corresponding to a good
achievement of the task (the arm smoothly moves from one target to the other
and stabilizes on it). Note that with our setting, the loss can not be zero. At
t = 9.3×106 time steps, we ’block’ the third joint angle at θ3 = 0. This prevents
the controller from reaching the targets, and an increase in penalty (decrease
in mean reward) is observed, which is progressively compensated so that the
controller can reach the target anew with new combinations of commands on
the remaining joint angles (fig. 4 (d)). It must be noticed that the achievement
of the task is quite good despite the fact that the loss never reaches zero. In
particular, the arm starts its goal-oriented movement immediately after the
target has jumped at a new position, with speed decreasing with the distance
to target.

Figure 4: Left : cumulative loss during learning. A damage is caused on the
device at t = 9.3 × 106. Right : typical motor responses during target switch
(targets reprsented by red crosses), arm position represented on 30 time steps
(a) initially (b) after learning (c) after damage (third joint is blocked at 0) (d)
after recovery.

5 Discussion

First, despite the difficulty of the task and setup, our on-line gradient algorithm
is able to derive a valid and pertinent controller. As pointed out by Baxter
and Bartlett, this is not something easy to obtain [7]. With our settings, im-
provement of the politics is ensured at the condition of small changes (the noise
level and learning coefficients are small so that the learning sessions are quite
long). Faster and still reliable convergence is an objective that can be attained

10



in episodic learning, so as to get better estimate of the gradient. In a perpective
of autonomy however, on-line adaptation to new constraints is an important
property that could not be attained in an episodic setup without explicit failure
detection (as learning is separated from exploitation in an episodic approach).

The arm system we consider, although non-linear and redundant is still a
bit too simple when considering realistic mechanical constraints. Joints have
unlimited course and two segments can cross each other without collision. This
obviously facilitates the task. In principle, proprioceptive signal should allow to
overcome such constraints, but this needs to be tested and verified.

The reward used in the closed-loop setting can have many different formu-
lations. The one we used is quite informative and gives good results, but it
should be theoretically possible to learn a good controller with a more basic
formulation, e.g. giving only a non-nul reward in the vicinity of the target. An-
other interesting point could be to explore how the formulation of the reward
influence the shape, the speed or the timing of the movement. Some general
properties of human gestures, like isochrony or bell-shaped speed curve [12, 13],
might be measured.

Using a gaussian noise as the underlying probability of the outputs neurons
can be interpreted as looking for a good controller in L2-norm. As shown by
[14], using the L1-norm is more adapted when the objective is to discriminate
features in the input signal. Selecting relevant commands in the case of stongly
redundant command space is an interesting perspective that could be tested
using an exponential distribution in the stochastic nodes of the controller.

6 Conclusion

In this paper, we tried to shift the perspective of the reinforcement learning
applications, traditionally devoted to difficult but discrete control achievement
(like bang-bang polecart control for instance). Here we rather emphasize the
ability of RL methods to face and compensate unpredictable changes taking
place in the environment. The method we propose relies on a simple (noisy and
linear) regressor to which on-line policy gradient is applied in order to learn a
continuous command, on the basis of visual error mainly. The encoding method
we use in the sensory layer, inspired by the kernel approach, allows to pass-by
the limitations of linear regressors. Well adapted to the control problems we
tackle here, it is however not scalable to high dimensional input spaces. The
good achievement of the method in a complex learning setup offers, we hope,
good perspectives for applications in real-world robotic tasks, as well as for
modelling natural learning processes.

References

[1] K. Doya. Reinforcement learning in continuous time and space. Neural Compu-
tation, 12(1):219–245, 2000.

11



[2] Ronald Williams. Simple statistical gradient-following algorithms for connection-
ist reinforcement learning. Machine Learning, 8:229–256, 1992.

[3] J. Baxter and P. Bartlett. Infinite-horizon policy-gradient estimation. Journal of
Artificial Intelligence Research, 15:319–350, 2001.

[4] E. Oyama, Nak Y. Chong, A. Agah, T. Maeda, S. Tachi, and K. F. MacDor-
man. Learning a coordinate transformation for a human visual feedback con-
troller based on disturbance noise and the feedback error signal. In Proceedings
2001 ICRA. IEEE International Conference on Robotics and Automation (Cat.
No.01CH37164), pages 4186–4193. IEEE, 2001.

[5] J. Peters and S. Schaal. Natural actor-critic. Neurocomputing, 71(7-9):1180–1190,
March 2008.

[6] Shakabh Bhatnagar, Richard Sutton, Mohammad Ghavamzadeh, and Mark Lee.
Natural actor-critic algorithms. Technical Report TR09-10, Univ. of Alberta,
Dept. of Computing Sciences, June 2009.

[7] J. Baxter, P. Bartlett, and L. Weaver. Experiments with infinite-horizon, policy-
gradient estimation. Journal of Artificial Intelligence Research, 15:351–381, 2001.

[8] B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, Cambridge, MA.,
2001.

[9] Ranjeeth Dasineni. Kernel methods and factorization for image and video anal-
ysis. Master’s thesis, International Institute of Information Technology, Hyder-
abad, India, 2007.

[10] J. Kivinen, A.J. Smola, and R.C. Williamson. Online learning with kernels. IEEE
transactions on signal processing, 52(8):2165–2176, 2004.

[11] E. Todorov and M. I. Jordan. Optimal feedback control as a theory of motor
coordination. Nature neuroscience, 5(11):1226–1235, 2002.

[12] P. Viviani and R. Schneider. A developmental study of the relationship between
geometry and kinematics in drawing movements. Journal of Experimental Psy-
chology, 17(1):198–218, 1991.

[13] T. Flash and N. Hogan. The coordination of arm movements : An experimentally
confirmed mathematical model. The Journal of Neuroscience, 5(7):1688–1703,
1985.

[14] J. A. Tropp. Greed is good: algorithmic results for sparse approximation. Infor-
mation Theory, IEEE Transactions on, 50(10):2231–2242, 2004.

12


