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Abstract:

Intelligent workload consolidation and dynamic cluster adaptation offer a
great opportunity for energy savings in current large-scale clusters. Because
of the heterogeneous nature of these environments, scalable, fault-tolerant and
distributed consolidation managers are necessary in order to efficiently man-
age their workload and thus conserve energy and reduce the operating costs.
However, most of the consolidation managers available nowadays do not fulfill
these requirements. Hence, they are mostly centralized and solely designed to
be operated in virtualized environments.

In this work, we present the architecture of a novel scalable, fault-tolerant
and distributed consolidation manager called Snooze that is able to dynamically
consolidate the workload of a software and hardware heterogeneous large-scale
cluster composed out of resources using the virtualization and Single System
Image (SSI) technologies. Therefore, a common cluster monitoring and man-
agement API is introduced, which provides a uniform and transparent access to
the features of the underlying platforms. Our architecture is open to support
any future technologies and can be easily extended with monitoring metrics and
algorithms. Finally, a comprehensive use case study demonstrates the feasibility
of our approach to manage the energy consumption of a large-scale cluster.

Key-words: Energy Management, Cluster, Virtualization, SSI, Consolida-
tion, Heterogeneity, Scalability, Dynamic Adaptation
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Snooze : un gestionnaire de consolidation passant
a I’échelle, tolérant aux fautes, et distribué pour
grappes de grande taille

Résumé : Une consolidation intelligente des charges applicatives et une adap-
tation dynamique des grappes de calculateurs offrent des opportunités impor-
tantes d’économiser I’énergie dans les grappes de calculateurs actuelles. Etant
donnée la nature hétérogéne de ces environnements, il est nécessaire de fournir
des gestionnaires de consolidation passant & 1’échelle, tolérants aux fautes, et
distribués, afin de gérer efficacement les charges applicatives de ces grappes
et ainsi économiser I’énergie et réduire les cotits opérationnels. Cependant, la
plupart des gestionnaires de consolidation disponibles de nos jours ne satisfont
pas ces critéres. Ainsi, ces gestionnaires de consolidation sont pour la plupart
centralisés et ne sont concus que pour des environnements virtualisés.

Dans ce travail, nous présentons 'architecture d’un nouveau gestionnaire de
consolidation passant & 1’échelle, tolérant aux fautes, et distribué, appelé Snooze,
qui est capable de consolider dynamiquement la charge applicative d’une grappe
hétérogéne du point de vue logiciel comme du point de vue matériel, de grande
taille, et composée de ressources utilisant les technologies de virtualisation et de
systéme a image unique (SSI). Pour cela une API commune pour la supervision
et la gestion d’une grappe est présentée. Cette API permet d’accéder de fagon
uniforme et transparente aux fonctionnalités des plates-formes sous-jacentes.
Notre architecture est ouverte afin d’étre adaptable aux technologies futures,
et peut étre étendue aisément avec d’autres métriques et algorithmes de super-
vision. Enfin, une étude compléte de cas d’utilisation montre la faisabilité de
notre approche pour gérer la consommation d’énergie d’une grappe de grande
taille.

Mots-clés : gestion d’énergie, grappe de calculateurs, virtualisation, systéme
a image unique, consolidation, hétérogénéité, passage & 1’échelle, adaptation
dynamique



Snooze 3

1 Introduction

Energy management for mobile devices has been traditionally a well studied
topic during the last two decades, as these devices usually do not have a per-
manent connection to the power grid and thus solely rely on the limited battery
charge. However, this trend has been mostly disregarded in the context of HPC
systems as the main focus mainly relied on improving the performance at any
cost. Therefore, energy costs for operating and cooling the equipment of current
data centers have increased significantly up to a point where they are able to
surpass the hardware acquisition costs. Studies have shown that data centers
alone have consumed 61 billion kWh of U.S. energy in 2006. This is enough en-
ergy to power 5,8 million average U.S households and results in approximately
$4.5 billion/year of energy costs [4]. These numbers are most likely to increase
up to 120 billion kWh by 2011 in case no further energy conservation steps are
taken [4]. Not least, the way energy is generated influences our environment
either directly by the carbon footprint or indirectly by the nuclear waste. Ac-
cording to the Environment Protection Agency (EPA) decreasing the energy
consumption could reduce these wastes by 15 to 47 million metric tons in 2011
[4].

Reducing the energy consumption requires to understand where most of
the energy is spent. Server hardware is typically over-provisioned in order to
sustain the service availability during periods of peak demand. However, re-
source demand in current data centers is usually of a bursty nature and thus
results in a low average utilization of approximately 15-20% [22]. Therefore, a
big fraction of the resources can be used to take energy conservation decisions
such as suspending or turning off unnecessary servers, while still preserving the
performance requirements. Given that ubiquitous virtualization and SSI solu-
tions are able to migrate the workload and servers can be turned on and off
at any time, clusters can be dynamically adapted depending on the resource
demands. Consolidation of virtual machines on a subset of physical nodes is a
well known technique to reduce the number of active physical resources and has
been studied in several works. In [12], a consolidation manager called Entropy
is introduced, which dynamically maps the virtual machines to the available
resources. Thereby, in order to achieve task isolation each task is usually as-
signed to a VM, which is then taken under control of a Virtual Machine Monitor
(VMM) such as Xen [6] or KVM [11]. Similar examples for consolidation man-
agers can be found in [21], [19] and [15]. However, all these solutions are highly
centralized and do not take into account the software heterogeneous nature of
a cluster, where nodes can be either virtualized or part of a cluster running
an SSI operating system such as Kerrighed [18]. Kerrighed provides the user
with the illusion that a cluster is a big SMP machine. Similarly to the virtual-
ization approach, workload can be migrated among the cluster. However, it is
fine-grained and thus represents a single task.

In this paper, we present Snooze, a scalable, fault-tolerant and distributed
energy-performance aware consolidation manager for software and hardware het-
erogeneous large-scale clusters. Therefore, in order to bridge the gap between
the different calling semantics of the underlying techniques (i.e. virtualization
and SSI) we introduce a so called Common Cluster Monitoring and Manage-
ment API as a uniform interface to transparently monitor and manage these
systems. Thereby, our solution is not bound to any specific technique and can
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be used to manage any existing heterogeneous cluster setup. Furthermore, its
hierarchical architecture, fault-tolerance with replication and a dedicated overlay
network for the framework components make Snooze decentralized, scalable and
fault-tolerant.

The remainder of this paper is organized as follows. Section 2 presents
the theoretical foundations of our work. Section 3 details the architecture, its
components and their interactions. Section 4 provides a use case study. Section
5 discusses the related work. Finally, Section 6 closes the paper with conclusions
and future work.

2 Theoretical Foundations

The main objective of our work is to minimize the number of machines hosting
the workload. Therefore, we divide this paragraph into two parts: consolidation
management and idle-time management. In the first part, we first provide
a formal definition of the workload placement problem and then present an
algorithm to approximate a solution. In the second part, we focus on idle-time
management and detail how we intend to determine the idle-time threshold
which needs to be reached in order to achieve energy savings and finally predict
the idle periods to suspend or turn off idle machines.

2.1 Consolidation Management
2.1.1 Formal Problem Definition

We define the problem of mapping the workload to physical machines as an
instance of a one-dimensional bin-packing problem, in which the physical ma-
chines represent the bins and workload the items to be packed. Each bin has
predefined resource capacity and all items are assigned with a resource demand
(i.e. CPU), the so called dimension. In the following we introduce the notations
and provide a formal definition of this problem.

Let B denote the set of bins and I the set of items, with n = |B| and m = |I|
representing the amounts of bins and items. Furthermore, each bin and item is
assigned with a predefined resource capacity C; and demand c; respectively. In
addition, we define the following two binary decision variables:

1. Bin allocation variable y;, equals 1 if the bin j € B is chosen, and 0
otherwise.

2. Item allocation variable x; ;, equals 1 if the item ¢ € I is assigned to the
bin j € B, and 0 otherwise.

The ultimate goal of the consolidation algorithm is then to place all items
such that, the number of bins used is minimized. This is reflected in our objec-
tive function (1).

Minimize Z Yj (1)
j=1

Subject to the following constraints:
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Zcixid < ijj,v.]' eB (2)
=1
domij=1Viel (3)
j=1

The constraint (2) ensures that the capacity of each bin is not exceeded and
constraint (3) guarantees that each item is assigned to exactly one bin.

2.1.2 Solution Methodology

The problem defined in the previous paragraph has been widely studied in the
literature and shown to be NP-hard [17]. Therefore, approximation solutions are
necessary in order to find reasonable results in acceptable run-time. We use a
heuristic approach to solve this problem. However, one of the major drawbacks
of current heuristic algorithms (e.g. FFD) for bin-packing problems is that they
are static. Hence, the objects are packed once and are not allowed to be taken
out of the bins. Thereby, bin capacity is often wasted. Nevertheless, the migra-
tion functionality provided through virtualization and SSI technology allows us
to move the workload. Thus, heuristic algorithms with relaxed constraints (i.e.
migration) are needed to increase the bin capacity usage.

In the following, we present an on-line heuristic called better-fit, initially
introduced in [8] and used in our work to approximate a solution. Better-fit
makes use of the migration functionality to optimize the bin capacity usage and
thus is well suited for our work. It assumes that the arrival of the workload is
sequential and works as follows. Each time a new workload arrives the nodes
and the corresponding workloads are inspected, starting from the first node.
Thereby, the existing workload sizes are compared with the arriving workload
size. In case the arriving workload is able to fill the node better than some
existing one, it is inserted and the replaced workload is assigned again into
another bin using the best-fit heuristic [8]. This heuristic then inserts the old
workload into a node which has the smallest room to accept it.

A similar procedure happens when some workload finishes. In that case, it
might be possible to consolidate the left over workload among the cluster, in
order to suspend or turn off a machine. Therefore, workload removal operation
evicts the current workload running on a node and uses the insert operation to
search for a new allocation.

We use the following two figures to describe the addition and removal oper-
ations of this algorithm. In Figure 1 the insert operation is illustrated based on
two nodes.

The first node runs a workload which amounts to 90% of the total node
capacity. When new workload WL§ arrives it needs to be placed on a machine.
The algorithms starts from the first node and evicts WL 1 as this node can be
better utilized by replacing WL 1 with WL 8. Finally, WL 1 is migrated to the
second machine, as it has 10% of free capacity. On the other hand, if it did not
have enough free capacity left a new machine would be turned on.

Figure 2 shows the removal operation. Similarly to the previous example
we use two nodes. The former node has 10% of spare capacity, while the latter
one is fully loaded. When WL 6 terminates, all the current workload (i.e.
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: |

[10% Left 1 |00 rere || i |[WE8-20%| |WEL1-10%

WAL o S0 [WL4-30%]| |[WL7-50%]

[WL3-30%]| ||[WL7-50%]| :

WL2-20%)| | |[WL6-30%)| : |WL3-30%] |WL6-30%]
WL 1- 10%}{] [WL5-10%]| i |WL2-20%] |WL5-10%]
PM | PM2 PM 1 PM 2
Before insert After insert

Figure 1: Workload addition operation

WL 5) is evicted and placed on the first machine using the insert operation.
Therefore, idle period is created, giving the opportunity to suspend or turn off
the machine. However, transitioning the idle machine into a lower power-state
does not necessarily yield to energy savings. We will detail how to determine
idle periods with energy gains in paragraph 2.2.

10% Left { | WDs-10%
WL 4 - 30%) 0% Left
WL 3-30% Idle
WL 2-20% 56| | |[WL2-209%]
WLT1-10%]| |[WL5-10%}: |[WL1-10%|
PM 1 PM2 PM 1 PM2
Before removal After removal

Figure 2: Workload removal operation

Finally, workload resource requirements are of dynamic nature. Therefore,
underutilization is most likely to happen on any node after the initial allocation.
Furthermore, existing workload is able to change its current resource require-
ments and thus overload a machine, leading to performance degradations of
co-existing workload. This can either happen as a result of a VM resize event
within a virtualized server or increased resource (e.g. CPU) usage on a non-
virtualized time-shared SSI machine. Both cases need to be avoided as they
can result in energy wasting and lead to performance degradations of existing
workload. Thus, reconfiguration actions need to be taken upon resource usage
decrease and increase. In the former case underutilization is detected and all
the workload currently running on a machine is remapped using the insert op-
eration. In the later case the hot workload is similarly remapped by invoking
the insert operation. Figure 3 shows the process of workload consolidation upon
underutilization detection. When the resource utilization of a machine is low
(e.g. 20% at PM2) all its workload (i.e. WL 3 and 4) is remapped using the
insert operation.

2.2 Idle-time Management

After the consolidation, idle periods are created and servers should be transi-
tioned into a lower power-state (e.g. suspend), in order to maximize the energy
savings [14]. However, suspending the system does not necessarily yield into
any energy saving if the idle periods are not long enough, as every state tran-
sition consumes additional energy and introduces computation delays. Thus, if
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30% Left

50% Left 80% Left WL 4 - 10%)

| [WL3-10% Idle
WL2-20%]| |N0g| |} |WL2-20%
WL1-30%|| W=l : |[WL1-30%

PM 1 PM 2 : PM 1 PM 2
Low utilization Remapped load

Figure 3: Resource underutilization

done too frequently any potential energy savings can be destroyed. Therefore,
it is necessary to determine the idle-time threshold which needs to be reached
to achieve some energy gains. Consequently, if the idle period is below this
threshold, it is advantageous to keep the system running. Therefore, knowing
the idle periods in advance is necessary in order to take energy conservations
decisions. Unfortunately, this information is usually not available and needs to
be estimated.

In the following paragraph we detail a simple, yet efficient approach on how
to determine the idle-time threshold which yields to energy saving and estimate
the idle periods.

2.2.1 Calculating the idle-time threshold

We first define T; as the idle period. Moreover, we define Ty as the delay
overhead to enter the suspend state, T as the time in the suspend state and T,
as the delay overhead to resume from the suspend state (see Figure 4). Note,
that T can be easily computed as the difference between T; and Ty.

\ Ti \ \
| T Ts Tw |

Figure 4: Idle-period definition

In addition, we define P; as the idle power consumption and P; as the power
consumption in the suspend mode. Last but not least, we define P, as the
average-power consumption for entering and resuming the suspend state. As-
sumed that the idle period is longer than the delay overhead to enter the suspend
state, the system will always enter the suspend state. In order to calculate the
potential energy conserved we define the energy profit EP by entering the sus-
pend state as follows:

EP=P, xT; — (Tg+Ty) X Psyy —Ps xTs >0 (4)
:PixTi—(Td—f—Tw)xPsw—PSx(Ti—Td)>0 (5)
=T, X (P;— Ps) — Ty X (Psyy — Ps) — Psyy x Tyy > 0 (6)

The threshold which yields to energy savings is then given by:
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- Ty X (Psyw — Ps) + Py x Ty

. (Pi — P.) "

Ty X (Psw — Ps) + Psy X Ty
= Tthreshold = d ( (P —)P ) (8)

2.2.2 Idle-period prediction

As observed in the previous paragraph, T; parameter remains to be the unknown
and needs to be estimated in order to be able to suspend the system in advance.
We use the well known exponential moving average equation to predict the
idle periods. Therefore, we monitor and keep track of the previous idle times.
Afterwards, we accumulate these values to predict the upcoming idle period
using the following recursive equation:

Ti+1:CXti+(1fc)Xn (9)

where T;1; is the newly predicted idle period, ¢; is the most recent idle
period, T; is the last predicted value and c a constant in the range between 0
and 1. With this constant we can define either more weight should be given to
the most recent idle period or to the previously predicted idle periods. Therefore,
a value of 0.5 can be chosen to assign equal weight to all idle periods. In fact,
it can be tuned according to the type of workload.

Finally, we transition the nodes into a lower power-state when 7341 >
Tihreshold holds.

3 System Architecture

This section details the architecture of Snooze, a scalable and fault-tolerant
energy-aware consolidation manager for software and hardware heterogeneous
large-scale clusters. Thereby, several properties have to be fulfilled by Snooze in
order to adapt such an environment. First, it has to scale across many thousands
of nodes. Second, nodes and thus framework management components can fail
at any time. Therefore, the system needs to self-heal and continue its operation
despite of component failures. Third, it needs to be able to adapt to a software
and hardware heterogeneous cluster environment composed out of virtualized
and non-virtualized SST machines.

In order to obtain the first property, Snooze uses a hierarchical and decen-
tralized architecture, which allows it to scale with the number of nodes. The
second property (i.e. fault-tolerance) is achieved with replication and a ded-
icated overlay network for the framework components. Finally, software and
hardware heterogeneity is assured by introducing a Common Cluster Monitor-
ing and Management API, which provides a uniform and transparent access to
the features (e.g. monitoring and workload control) of the underlying techniques
(i.e. virtualization and SSI).

In the following paragraphs, we first introduce our system model and describe
its assumptions. Afterwards, we give a global overview of the framework, detail
its components and their interactions.

INRIA
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3.1 System Model and Assumptions

Our work targets heterogeneous large-scale clusters whose nodes are intercon-
nected with a high-speed LAN connection such as Gigabit Ethernet or Infini-
band. Furthermore, each node can be managed by any virtualization solution
(e.g. Xen [6], KVM [11], OpenVZ [3], etc.) or an SSI operating system [18].
Therefore, in order to define workload in these two cases we introduce the notion
of an Application and Application Component. Each application aggregates one
or multiple application components, with each component representing a process
tree, running either inside a VM or on top of an SSI node. Thereby, multiple
components could co-exist on the same VM and SSI node as long as enough
resource capacity (e.g. CPU, RAM, etc) is available. However, the platform
boundaries need to be respected. Thus, it is not possible to migrate a process
running on the SSI cluster to a virtualized environment. Finally, we do not
impose any restrictions on the type of the components. Hence, both service and
computing applications are supported.

Figure 5 illustrates the mapping of the workload (i.e. VMs and application
components) to physical machines. Here, we distinguish between two cases:
virtualized and non-virtualized. In the former case, Snooze assumes that the
application components are already mapped to VMs, and assigns the VMs to
physical machines. In the latter case the application components are executed
directly on top of the SSI nodes. Thereby, Snooze is in charge of mapping the
application components to physical machines.

Appllcauon

VM 1 VM 2 VM 3 VM 4
®o|lo o |[@ee
o) o) )

£7£7

Virtualized machines Non-virtualized machines

Figure 5: Workload mapping

Thereby, we assume that the workload and its description (i.e. resource
requirements, SLAs, etc.) are hosted on a distributed file system (e.g. XtreemFS
[13]) and available to all machines in the cluster.

3.2 Global Overview

The layered architecture overview of Snooze is shown in Figure 6. It is composed
out of three layers: physical, overlay and client. At physical layer, machines are
organized within a software and hardware heterogeneous cluster, in which each
node is controlled by the use of a so called Local Controller. In addition, an
hierarchical overlay layer exists in order to efficiently manage the cluster. The
overlay layer is composed out of fault-tolerant components: Group Managers
and a Group Leader, which are organized within an overlay network. Thereby,
each group manager manages only a subset of nodes of the physical layer. Fur-
ther, a group leader exists and keeps a summary of the group managers. Finally,
a client layer is used to provide an interface to the outside world. It is imple-
mented by a predefined number of replicated Entry Points, and provides the
functionalities for new nodes and group managers to join the overlay network.
Thereby, a client can be any entity (e.g. cloud infrastructure, application man-
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ager, web portal, console, etc) which uses the provided bindings to manage
its workload. A binding is used to access the features of the client interface
implemented by the entry points, such as:

e Resource monitoring: CPU, RAM, power, temperature, network latency
and throughput

e Workload control: submission, removal, resizing

In the rest of this paragraph we describe the details of each layer.

[ Client | [ Client | [ Client ]
% 5| [_Binding | [ Binding | [ Binding |
o= Client Interface
[ Entry Point | [ Entry Point | [ Entry Point |
§ 5 ’ Group Leader ‘
o
6 = [Group Manager‘ [Gl‘oup Manager‘ [Group lenager‘
Local Controller Local Controller
"""""""
Common Cluster Monitoring and Management API
£ Adapior
iz
~ Platform Manager| Platform Manager
Virtualized Node SSI Node
[ Cluster

Figure 6: Layered architecture overview

At the physical layer, there exists one Platform Manager (PM) per node,
which is in charge of managing the resource. Therefore, it implements all the
necessary functionality to monitor and control the physical machine. In case of
a virtualized server, existing PM such as libvirt [2] is available and provides a
uniform interface to most of the currently available virtualization solutions. On
the other hand, non-virtualized servers, which can be part of an SSI cluster (e.g.
Kerrighed [18]) have different calling semantics and thus are typically managed
by a distinct PM (e.g. libkerrighed [1]).

In order to bridge the gap between the different calling semantics of the
PMs we introduce the so-called Common Cluster Monitoring and Management
API This API provides a uniform interface to access the functionalities of the
underlying PMs. It is implemented by a dedicated Adapter and used by the
local controller to interact with the machine. The following functionalities are
currently defined by this API:

e Monitoring: CPU, RAM, power, temperature, network latency and through-
put

e Workload control: start, stop, migrate, resize

e Resource control: suspend, hibernate, node on/off, dynamic voltage and
frequency scaling (DVFS)

INRIA
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Each node runs a Local Controller, which transparently loads the corre-
sponding PM, implements the functionality to join the overlay, monitors the
node resource usage and sends keep-alive messages to the assigned group man-
ager. Furthermore, it is in charge of executing the management commands (e.g.
start, stop, migrate, node on/off, etc) coming from the group manager. Hence,
it is composed out of two components: Monitor and Actuator. The former com-
ponent implements Probes and thus monitors various resource usage metrics
(e.g. CPU, RAM, power, temperature, network latency and throughput, etc.)
of the system. We distinguish between two types of probes: active and passive.
Active probes are periodically woken up by a timer and send their information
to the assigned group manager within the overlay, while passive ones are invoked
by the group manager directly via polling. Finally, the Actuator component is
used to execute the workload and resource control requests (i.e. start, stop,
migrate, resize, suspend, hibernate, node on/off, DVFS, etc.) coming from the
group manager.

The overlay layer is depicted in Figure 7. It has a hierarchical structure and
is composed out of two main components: Group Managers and Group Leader.

Overlay layer
— >

Join

ﬂ /7
27777

Cluster

Physical layer

Group manager

A nryvoints M Growp manager o

Group leader - manager

JGTUUP leader 5Node Managed node interaction
B T

Figure 7: Hierarchical architecture overview

Each node of the physical layer is assigned to one group manager within the
overlay. Furthermore, there exists a set of group managers, where each group
manager is responsible for a subset of nodes. Thereby, node management is
achieved within a closed-loop by monitoring the resources, estimating the work-
load resource demands based on history data and applying an instance of a
workload consolidation algorithm such as introduced in Section 2. However, ap-
plying the consolidation algorithm on a subset of nodes does not lead to a global
optimal solution. Hence, a group leader exists in order to facilitate global deci-
sions. Therefore, it maintains a summarized global view of the group managers
and implements a global policy which is able to detect hot group managers and
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trigger reconfiguration actions. The summary only includes the current status
(e.g. online, offline, etc.) of the group managers and the sum of the resource
utilizations of the managed nodes. Therefore, network communication overhead
is reduced, while still having enough information to facilitate global decisions
(see Section 4).

The overlay join process of a group manager works as follows. Each time a
new group manager attempts to join the overlay it sends a message to one of the
entry points. The entry point then does a group leader lookup in its local cache.
In case a valid group leader was found the joining group manager is taken under
control and starts sending keep-alive messages to the group leader. Otherwise, a
multicast message is sent into the overlay in order to discover the current group
leader. Thereby, only the overlay participants (i.e. group managers and group
leader) are affected. Finally, if no group leader exists the new group manager
becomes the current group leader.

Given that the group leader can fail at any time, failure detection is per-
formed by each group manager. This is achieved using the keep-alive messages.
If one group leader fails, the keep-alive messages are lost and the process of
new group leader election is started among the group managers. Therefore,
each group manager sends a multicast message with the current resource uti-
lization into the overlay. In doing so, the group member with the less utilized
resources (e.g. CPU, RAM, network bandwidth, etc.) becomes the new group
leader. Thereby, consensus among the group managers is achieved by imple-
menting one of the existing leader election algorithms (e.g. [5]). Finally, the
elected group leader redistributes its currently controlled resources (i.e. nodes)
among other group managers, and requests the other group managers to join
again. Consequently, the group managers start sending their resource monitor-
ing summaries and keep alive messages to the new group leader and thus the
summarized global view is rebuilt.

The overlay join process of a node is similar to the one of the group manager.
First, a request is sent to one of the entry points by the local controller, which is
then forwarded to the group leader. The group leader then assigns the new node
to one of the managers according to the summarized utilization view and the
deployed global policy (e.g. assign a node to the group manager whose nodes
are undergoing excessive resource demands). Afterwards, keep-alive messages
and monitoring information is sent to the group manager periodically and kept
within a local database for each node managed by a group manager. In case
of a group manager failure, keep-alive messages are lost and the process of a
rejoin is started by the managed nodes in the same manner as the traditional
join. Finally, if a managed node fails the node status information within the
corresponding group manager is updated.

4 Use Cases

We distinguish between two use cases. The first one details the process of work-
load submission, removal and resizing. The second one demonstrates the ability
of Snooze to detect and react to local anomalies such as: thermal emergencies
(i.e. overheating), underutilization and overload situations.
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4.1 Case 1: Submission, removal and resizing of the work-
load

When a user submits a request to start new workload to one of the entry points,
a group leader lookup is done in the entry point cache. In case a valid group
leader was found the request is forwarded to it directly. Otherwise, a multicast
message is sent into the overlay in order to discover the current group leader.
The group leader then uses the summarized resource utilization of the group
managers to redirect the request to a group manager which has spare capacity
left. The workload is then mapped to one of the physical machines managed
by the group manager using the integrated consolidation algorithm. Similarly,
when a message to terminate or resize a workload is received by the entry point,
it is forwarded to the current group leader. The group leader then forwards the
message to the corresponding group manager within the overlay. Finally, the
group manager executes the operation and sends a reply message back to the
group leader.

4.2 Case 2: Ability to detect and react to local anomalies

In order to detect local underutilization, overheating, and other events, moni-
toring information of the managed nodes is stored by the corresponding group
manager and analyzed within a Monitor-Estimate-Plan-Execute (MEPE) loop.
In case of resource underutilization a predefined threshold exists. When the
system load on one of the managed nodes falls below this threshold, reconfig-
uration actions are triggered by the corresponding group manager. Therefore,
the utilization of the workload is estimated using the recorded history values,
consolidation algorithm is executed and the workload is migrated to nodes hav-
ing enough capacity to host it. Thereby, as each group manager only manages
a subset of nodes, the algorithm is not aware of possible resources available on
other group managers. In fact, this is not necessary as it introduces additional
communication overhead to obtain this information. Hence, the algorithm first
tries to place the workload on the managed nodes. If there is no spare capacity
left a message is sent to the group leader, in order to find a group manager which
is able to host the workload. The group leader uses the summary information
to find a proper target group manager and returns its location to the initiat-
ing group manager. The initiating group manager then issues a reconfiguration
request to the target group manager in order to find a proper mapping of the
workload among his managed resources. Afterwards, the workload is migrated
to the allocated resources by the target group manager.

A similar procedure is executed when some resource becomes hot (i.e. high
temperature). Depending on the policy enabled on the group manager, workload
is evicted and placed on another resource by first trying to reallocate it within
the local set of managed nodes, and finally by contacting the group leader.
Alternatively, a policy could also reduce the temperature by scaling down the
processor frequency (i.e. DVFS).
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5 Related Work

With the recent advances in virtualization technology, efficient workload con-
solidation has recently gained a lot of research interest. As a result several
consolidation algorithms (e.g. [9], [20], [16], etc.) and energy-aware resource
management frameworks (e.g. [21], [15], [12], [19], [7], etc.) have been pro-
posed.

In [21] a framework called pMapper is introduced. Therefore, the authors
present an architecture and several model-based workload consolidation algo-
rithms which are validated by using server utilization traces. However, their
model-based workload consolidation algorithms rely on a number of assump-
tions which can not be fulfilled in real environments (e.g. migration costs are
independent of the load within the VM). In addition, their architecture is highly
centralized, limited to virtualized environments and does not tolerate compo-
nent failures.

In [15] the EnaCloud framework is presented. Similarly to our work the
authors use a heuristic algorithm to determine an energy-saving application
placement. Nevertheless, the authors do not detail how they intend to manage
the resulting idle periods. Moreover, their architecture relies on a centralized
global controller, and thus can not scale to be used within a large-scale data
center.

In [12] a consolidation manager called Entropy is introduced. Thereby, a
constraint programming approach is used to find a mapping of VMs to physical
machines. However, a centralized global decision module is used to adapt a
virtualized environment according to the current resource usage.

In [19] a centralized energy-aware framework called VirtualPower is pre-
sented. Thereby, the notion of local and global polices is introduced in order
to optimize the energy-consumption at node and cluster level. Our work also
defines the notion of local and global policies. However, our local policies are
used to manage a subset of nodes, while the global ones are used to facilitate a
global solution.

The most related work in terms of architecture can be found in [7]. The
authors introduce several heuristics for workload consolidation and validate
them within a simulator. Moreover, a brief overview of a decentralized sys-
tem architecture is given. However, the architecture still relies on a centralized
non-fault-tolerant dispatcher, expensive exchange of resource and workload uti-
lization among the global managers, virtualized environment and a no further
defined distributed heuristic algorithm. Finally, as the main focus of this work
was rather on simulations than on the framework, no further details about the
architecture were specified.

In contrast to all these works, Snooze does not rely on a single instance
which executes the consolidation algorithm. The group managers in Snooze are
fully decentralized with each of them managing a subset of nodes and applying
an instance of a centralized workload consolidation algorithm. Therefore, no
distributed algorithms are needed and no monitoring information needs to be
exchanged among them. Furthermore, our group leader is fault-tolerant and
does not need to maintain a detailed global view of the cluster. In fact, it
only keeps a summary to facilitate global decisions. Finally, by utilizing the
generic cluster monitoring and management API, Snooze is able to manage any
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software and hardware heterogeneous cluster composed out of virtualized and
non-virtualized machines.

6 Conclusions and Future Work

In this paper, we have presented Snooze, an architecture of a novel scalable,
fault-tolerant and distributed consolidation manager for heterogeneous clusters.
To the best of our knowledge, this is the first work towards providing a decen-
tralized framework for energy-management of heterogeneous large-scale clusters.
By utilizing the common cluster management and monitoring API, Snooze is
able to integrate and adapt any underlying software and hardware heterogeneous
cluster setup, composed out of virtualized and non-virtualized machines running
an SSI operating system in a uniform and transparent way. Furthermore, its
hierarchical architecture with replication and a dedicated overlay network for
group managers make it scalable, decentralized, fault-tolerant and thus suitable
for managing the energy consumption of large-scale clusters, such as found in
data centers of current Cloud providers. In fact, using the client bindings it is
able to manage any cluster environment.

Moreover, we have formulated the problem of energy-efficient workload place-
ment and used a heuristic algorithm to demonstrate one application of the frame-
work. In addition, we have detailed our approach of idle-time management and
used it to determine when it is worthwhile to automatically suspend or turn-off
idle servers. However, our framework is not limited to any particular algorithm
and can be easily extended with others (e.g. genetic algorithms). Finally, the
versatility of Snooze can be used to implement any other cluster management
policy such as: power capping using DVFS, migration according to workload
QoS requirements such as network latency and throughput, etc.

Currently, we are implementing a first prototype of the framework, which
will be validated within a heterogeneous cluster environment in the context of
Grid5000 [10]. In addition, we are investigating the impact of consolidation
on energy and performance for different types of workloads (i.e. service and
computing). In fact, for now only one resource component (i.e. CPU) is taken
into account while performing the consolidation. Thus, workload characteris-
tics such as memory usage and I/O patterns are ignored. We are aware that
ignoring workload patterns could lead to performance degradations and result
in increased energy consumption. Therefore, we plan to work on designing
energy-aware workload consolidation algorithms taking into account workload
patterns (e.g. consolidate workload with distinct resource usage characteristics)
and QoS requirements. Moreover, migration is typically a costly operation in
terms of time and energy and needs to be avoided as much as possible. Thus,
we are currently investigating in designing algorithms which will minimize the
number of migrations. In addition, even if exponential moving average is able
to estimate the idle periods very efficiently, it still has drawbacks and tends
to fail predicting sudden long idle periods. Therefore, we plan to investigate in
more advanced prediction techniques. Last but not least, data centers of current
Cloud providers typically aggregate multiple clusters. The hierarchical architec-
ture of Snooze could be easily extended to manage these federations of clusters,
if the related problems (e.g. VM migration between different communication
networks) can be solved.
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