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Abstract. Activation detection in functional Magnetic Resonance Imaging (fMRI)
datasets is usually performed by thresholding activation maps in the brain volume
or, better, on the cortical surface. However, basing the analysis on a site-by-site
statistical decision may be detrimental both to the interpretation of the results and
to the sensitivity of the analysis, because a perfect point-to-point correspondence
of brain surfaces from multiple subjects cannot be guaranteed in practice. In this
paper, we propose a new approach that first defines anatomical regions such as
cortical gyri outlined on the cortical surface, and then segments these regions into
functionally homogeneous structures using a parcellation procedure that includes
an explicit between-subject variability model, i.e. random effects. We show that
random effects inference can be performed in this framework. Our procedure allows
an exact control of the specificity using permutation techniques, and we show that
the sensitivity of this approach is higher than the sensitivity of voxel- or cluster-level
random effects tests performed on the cortical surface.
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1 Introduction

In neuroimaging, brain activation detection is traditionally performed through
the thresholding of statistical maps. In contrast with standard volume-based
analyses, cortical surface mapping (CSM) consists in detecting brain activa-
tions on the cortical surface, after projection of the fMRI volume-based data
onto the surface (Fischl et al. (1999), Andrade et al. (2001)). This offers the
advantage of positioning functional activations in the two-dimensional space
where they are indeed generated, as well as a better sensitivity/specificity
compromise due to the limitation of the statistical tests to grey matter only.
Although it has been suggested that CSM could be more sensitive in group
studies than traditional volume-based studies (see e.g. Fischl et al. (1999)),
inter-subject analyses have been limited by the problem of defining properly
brain location on the surface in the absence of a standard coordinate system.
A meaningful solution to this problem consists in defining intermediate rep-
resentations, such as gyri, that represent a delineation of the main regions on
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the cortical surface, as obtained from an atlas, see Fischl et al. 2004. Then,
one still has to decide how to take into account such gyral parcellations when
making statistical tests, or how to test region-specific hypotheses based on the
available data. Because gyri represent the cortex at a very coarse resolution,
functional information should be used to test more precise regions.

A second aspect of the problem is that it is not possible to require a per-
fect match between brain meshes since they have different shapes, as seen
with various sulci or gyrification indexes. But, even assuming that a perfect
anatomical match can be obtained between the brains of several individuals,
it is not clear that functional regions would be matched perfectly. A promis-
ing solution consists in introducing an intermediate representation between
mesh vertices and gyri, for instance through the concept of brain parcellation
(Tucholka et al. (2008)). Conceptually, such parcellations are defined through
the use of both anatomical and functional information. Although this may
provide meaningful entities, it is not clear how these structures can be used
to infer active regions across subjects, i.e. how to make random effects anal-
yses. In this work, we address this particular question by introducing a new
probabilistic parcellation framework that includes random effects, and finally
allows the test of some contrasts of interest. An unbiased assessment of these
tests using permutations is possible thanks to the relatively mild computation
cost of the proposed method.

In Section 2, we develop the random-effects anatomo-functional permuta-
tion model, then we described the validation procedure and give some results
on a real dataset in Section 3.

2 Model

2.1 Inputs and notations

Let Xs = {xs
i}i=1..Is be a set of pre-defined coordinates that represent the

position of cortical sites in a subject s ∈ {1, .., S} in a certain gyrus g ∈
{1, .., G} (in Sections 2.1-2.4, we omit the dependence on the gyrus to keep
notations simple). These coordinates are assumed to yield an approximate
correspondence across individuals. Let Y s = {ys

i }i=1..Is be nf -dimensional
vectors that represent the functional activity related to these sites in subjects
s ∈ {1, .., S}. In this work, we use nf = 1. Let K > 0 be the number of
components of the probabilistic parcellation.

Let (ws
ik)i=1..Is,k=1..K denote the probability that the site i belongs to

component k ∈ {1, ..,K},i.e. p(zs
i = k), given its position. ws

ik are function
of the positions xs

i and a set of two-dimensional coordinates T = (τk)k=1..K

that describe the position of the clusters on the cortex, and a spatial variance
parameter γ:

ws
ik(T ) =

exp(−‖xs

i
−τk‖

2

2γ2 )
∑K

l=1 exp(−‖xs

i
−τl‖2

2γ2 )
(1)
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Note that the position variables T are shared across subjects.

2.2 Hierarchical parcellations

The parameters Θ = (θk)k=1..K used to model the functional information
(Y s)s=1..S are part of a hierarchical model that includes group-level and
subject-specific activation maps in the chosen gyrus. The activation is as-
sumed to be normally distributed in the population, and then normally dis-
tributed in each subject given the parameters of this subject: ∀k ∈ {1..K}, let
(µk, Σk) be the population parameters, and ((µs

k, Σs
k)s=1..S) be the individual

parameters.

p(µs
k|µk, Σk) = N (µs

k;µk, Σk) (2)

p(ys
i |zs

i = k, µs
k, Σs

k) = N (ys
i ;µ

s
k, Σs

k) (3)

The parameters of the model are thus Θ = (µk, Σk, (Σs
k)s=1..S)k=1..K ,

and the log-likelihood of the data can be written:

L(Y |Θ, T ) =
S
∑

s=1

Is
∑

i=1

log

(

K
∑

k=1

ws
ik(T )N (ys

i ;µk, Σk + Σs
k)

)

(4)

This assumes conditional independence of the functional information given
the parcel parameters, as is classically done for mixture models. The model is
summarized in Fig. 1. The important aspect with the random effects model is
that it allows second level inference: let c be a certain contrast of experimental
conditions; if we define second level statistics as

tRFX(k) =
cT µk

√

cT Σkc

√
S − 1 (5)

This statistic is readily computed for each parcel in each gyrus. Note the
distribution of this quantity cannot be assumed as known under the null
hypothesis, but a corrected threshold can be derived through statistical re-
sampling procedures (see Sec. 2.5).

Fig. 1. Generative model of the data used in this work: in each subject s ∈ 1..S, the
observed data Ys, results from a spatial model, shared across subjects, that provides
the probability w that each surface point belongs to a parcel, and a hierarchical
model of the functional parameters, with both subject-specific (µs

k, Σs

k) and group-
level (µk, Σk) mean and covariance parameters. The observed variables are shaded.
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2.3 Estimation of the model

We use an alternate optimization scheme, in which Θ and T are optimized in
turn in order to maximize the log-likelihood of the data in Eq. (4). maxΘ p(Y |Θ, T )
is obtained through the standard EM algorithm while maxT p(Y |Θ, T ) is ob-
tained through gradient descent performed simultaneously.

• E-step: let Zs = (zs
i )i=1..I be the allocation variables of the mixture

model.

p(zs
i = k) =

ws
ikN (ys

i ; θk)
∑K

l=1 ws
ilN (ys

i ; θl)
(6)

• M-step: (µk, Σk, Σs
k) = argmaxΘEz log p(Y, Z|θ, T ), which yields an in-

ternal EM algorithm, where µs
k are the hidden variables, while the max-

imization is carried out over the other variables (µk, Σk, Σs
k):

p(µs
k|µk, Σk, Σs

k, Y s, Zs) = N (µs
k;Λs

k

[

(Σk)−1µk + ms
k(Σs

k)−1ns
k

]

, Λs
k)
(7)

where ms
k =

P

Is

i=1
p(zs

i
=k)yi

P

Is

i=1
p(zs

i
=k)

, ns
k =

∑Is

i=1 p(zs
i = k) and Λs

k =
[

(Σk)−1 + ns
k(Σs

k)−1
]−1

.

Then the internal M-step is performed:

µk =
1

S

S
∑

s=1

µs
k, (8)

Σk =
1

S

S
∑

s=1

(µs
k − µk)T (µs

k − µk), (9)

Σs
k =

∑Is

i=1 p(zs
i = k)(ys

i − µs
k)T (ys

i − µs
k)

∑Is

i=1 p(zs
i = k)

(10)

Eqs. (7) and (8-10) are iterated until convergence. Furthermore, we use
in this algorithm a regularization procedure (Fraley and Raftery (2007))
in order to ensure that the different terms do not converge toward a
degenerated solution (e.g. null variance).

• C-step:

∇L
∇τk

=
1

γ2

S
∑

s=1

Is
∑

i=1

(xs
i − τk)ws

ik

(

N (ys
i ; θk)

∑K
l=1 ws

ilN (ys
i ; θl)

− 1

)

(11)

We perform parameters updates that are reminiscent of the mean-shift
procedure (Comaniciu and Meer, 2002): τk → τk + δτk, where

δτk =

S
∑

s=1

1

Is

Is
∑

i=1

(xs
i − τk)ωs

i , and ωs
i = ws

ik

(

N (ys
i ; θk)

∑K
l=1 ws

ilN (ys
i ; θl)

− 1

)

(12)

Alternating these three steps (6,7-10,12) is very effective in practice: the log
likelihood often converges in 5 to 10 iterations.
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2.4 Optimizing the parameters of the model

The two free parameters of the model are the number of parcels K and the
spatial shrinkage parameter γ in each gyrus g. We optimize conjointly these
parameters during a first analysis session using the cross-validated likelihood
as criterion and a grid search approach. To compute the log-likelihood on
a new dataset (Xσ, Y σ), we need to estimate the covariance matrices Σσ

k

within the new subject; we take the maximum likelihood estimator:

L(Y σ|Xσ, Θ, T ) = max
(Σσ

k
)k∈{1..K}

Iσ
∑

i=1

log

(

K
∑

k=1

ws
ik(xσ

i , T )N (yσ
i ;µk, Σk + Σσ

k )

)

(13)
The optimal values (K⋆(g), γ⋆(g)) are then retained for the RFX procedure.

2.5 Random-effects (RFX) inference procedure

In order to control the specificity of the parcel-based statistical procedure, we
need to know the distribution of the statistic (5) under the null hypothesis,
i.e. when no activation is present. This cannot be done analytically, because
the value of the statistic depends on the whole parcellation procedure. We
tabulate the distribution of the null hypothesis by randomly swapping the
sign of the data related to the tested contrast across subjects, and then
recomputing the parcels and the associated statistic t̃. Next, this procedure
has to be carried out on the whole volume. After R = 103 randomizations,
the maximal parcel-level statistic across gyri is tabulated:

t̄r = max
g∈1..G

max
k∈{1,..,K⋆(g)}

t̃k,∀r ∈ {1, .., R} (14)

and the threshold tα for a specificity α (α = 0.05 typically), corrected for
multiple comparisons across parcels and gyri, is chosen as the (1−α) quantile
of the distribution of (t̄r). The probability of a parcel-based t-value being
greater than tα in any parcel of any gyrus by chance is thus lower than α.

3 Results on a real dataset

Dataset. A localizer protocol was acquired on a 1.5T GE MRI scanner. The
Freesurfer package was used to segment different anatomical compartments
from the anatomical image of the brain of each subject, providing white and
grey matter mesh, and segmenting the sulci (Fischl et al. 1999). This sequence
of processing was applied systematically to all available brains and the quality
of resulting segmentation was visually checked. A surface-based coordinate
system that represents sulco-gyral anatomy is finally obtained, and the cor-
tical surface is subdivided into gyri. All cortical meshes are then resampled
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so that the nodes of the mesh are in one-to-one correspondence across sub-
jects. For all subjects a standard preprocessing of fMRI data was performed
using the SPM5 software. Functional images were then projected onto the
grey/white interface using the method described in (Operto et al. (2008)).
Subsequently, on each functional dataset a Linear Model-based analysis was
carried out to obtain task-related activity maps Y for different contrasts of
experimental conditions. We have tested 4 different contrasts related to mo-
tor, auditory, computation and reading functions respectively, but in separate
analyses, so that we always have nf = 1: taking nf > 1 is possible, but would
complicate the permutation framework described in Section 2.5.

Assessment of the PRFX statistic. Average left and right brain hemisphere
meshes have been derived and are used for display. These average meshes are
then parcelled using the maximum a posteriori label of each node given its po-
sition and the T parameters learnt by the algorithm. Our parcel-based infer-
ence (PRFX) is compared to more classical statistical procedures (Hayasaka
etal. 2003, Rocheet al. 2007) used on the cortical surface: i) a vertex- or
node-level control procedure yields the threshold tα so that the probability
of the random effects statistic at a single node being greater than tα is less
than α (0.05 typically); it is obtained by tabulating the maximal t-value of
any node under the null hypothesis by a permutation procedure (VRFX); ii)
a cluster-level procedure(CRFX) that considers all the clusters (connected
components) of nodes with a t values higher than a certain threshold (we
take the threshold corresponding to p < 0.01, uncorrected) and tabulates the
distribution of the largest cluster size under the null hypothesis using the
same permutation approach, so that the risk of detecting one cluster larger
than the size threshold is less than α.

Outcome of the procedure. We concentrate on the contrast sentence reading
minus checkerboard viewing that yields regions specifically involved in the
reading task. Altogether, the parcellation outlines about 500 regions in each
hemisphere. Activation detection images are given in Fig. 2. In the left hemi-
sphere, activation specific to the reading task is found along the Superior
Temporal Sulcus (superior and middle temporal gyrus), in Broca’s area, in
the middle part of the pre-central gyrus, and in the Superior Frontal Gyrus
(Supplementary Motor Areas, SMA) by both PRFX and CRFX. Moreover,
PRFX also detects significant activity in the temporal pole and the inferior
temporal gyrus. VRFX detects tiny spots, barely visible in Fig. 2 in all these
regions, except the superior Frontal region. In the right hemisphere, all three
methods detect some activity in the Superior Temporal Sulcus (middle tem-
poral gyrus), but only PRFX detects activity in the right SMA. Overall, the
PRFX procedure is more sensitive than the other techniques. We also tested
other contrasts and found that the PRFX procedure is at least as sensitive
as the others. The VRFX procedure detects very few active nodes, but with
a stronger control, in the sense that the null hypothesis is indeed rejected in



Surface-based Brain Parcellations 7

Fig. 2. Outcome of the parcel-based (left), cluster-based (middle) and node-based
(right) random effects analyses in the left(top) and right (bottom) hemisphere. All
the maps are corrected at the p < 0.05 parcel-, cluster- and voxel-level, respectively.

each detected node. Nevertheless, it detects at least one active node in almost
all the regions found with the other approaches.

The CRFX procedure detects more extended regions than VRFX, but
rejects only the global null hypothesis in these clusters, i.e. it does not reject
the null hypothesis in any particular node. The same applies for the Parcel-
based random effect procedure: it allows the rejection of the null hypothesis
in a certain portion of a pre-defined gyrus, not on all the nodes of the finally
outlined region.

4 Discussion

This work presents a new procedure to segment brain regions at a spatial
scale that is intermediate between the mesh vertices and the anatomical gyri,
which are too coarse (34 in each hemisphere with Freesurfer in (Fischl et
al. (2004)) for an accurate functional description of the cortical surface. The
main novelty of the presented work is to introduce a probabilistic model with
random effects, which introduces the distinction between two sources of vari-
ance: i) the variance related to the spatial spread of the parcels, and thus
simply represents the resolution which is chosen to analyse the data and ii)
the between-subject variance, that represents the intrinsic functional vari-
ability between individuals, as well as potential spatial misfits. Besides, the
introduction of the different variance components allows group-level infer-
ence, i.e. the computation of statistics that represent the magnitude of the
average effect in the population, when compared to between-subjects fMRI
signal variability.
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As can clearly be seen in the results section, the method compares very
favorably in terms of sensitivity with random effects analyses performed on
the coregistered and resampled meshes, both at the cluster- and vertex- level.
Our interpretation of this gain is that the proposed approach better adapts
to the individual configurations.features. Importantly, the method outlines
extended regions or parcels, which potentially provides a less biased repre-
sentation than a few mesh vertices: indeed, parcels represent the position of a
region in the standard space. Finally, the results are easily interpreted, given
that each region belongs to a pre-defined anatomical gyrus.

The proposed model still requires the calibration of two parameters γ and
K, which can be made automatically using standard model selection proce-
dures (BIC, cross-validation). When these parameters are fixed, the proposed
model is not expensive computationally, so that permutation-based tests re-
main affordable. Moreover, the computation can be performed in parallel for
the different gyri. Using a python implementation, we could run the whole
framework in less than 24 hours.

A relatively straightforward extension of the present framework includes
the adaptation to more complex populations, where behavioural or clinical
score are available to characterize the between subject variability of subgroup
structure in the observed population. This might be particularly useful to de-
rive interpretable, i.e. few discriminative features to separate the populations.
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