
HAL Id: inria-00522175
https://hal.inria.fr/inria-00522175

Submitted on 30 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From templates to schemas: bridging the gap between
free editing and safe data processing

Vincent Quint, Cécile Roisin, Stéphane Sire, Christine Vanoirbeek

To cite this version:
Vincent Quint, Cécile Roisin, Stéphane Sire, Christine Vanoirbeek. From templates to schemas:
bridging the gap between free editing and safe data processing. 10th ACM symposium on Document
engineering, ACM, Sep 2010, Manchester, United Kingdom. pp.61-64, �10.1145/1860559.1860572�.
�inria-00522175�

https://hal.inria.fr/inria-00522175
https://hal.archives-ouvertes.fr

From Templates to Schemas: Bridging the Gap Between
Free Editing and Safe Data Processing

Vincent Quint
Cécile Roisin

INRIA, Grenoble, France
{vincent.quint, cecile.roisin}@inria.fr

Stéphane Sire
Christine Vanoirbeek

EPFL, Lausanne, Switzerland
{firstname.lastname}@epfl.ch

ABSTRACT
In this paper we present tools that provide an easy way
to edit XML content directly on the web, with the usual
benefit of valid XML content. These tools make it possible
to create content targeted for lightweight web applications.
Our approach uses (1) the XTiger template language, (2)
the AXEL Javascript library for authoring structured XML
content and (3) XSLT transformations for generating XML
schemas against which the XML content can be validated.
Template-driven editing allows any web user to easily en-
ter content while schemas make sure applications can safely
process this content.

Categories and Subject Descriptors
I.7 [Document and Text Processing]: Document Prepa-
ration—Languages and systems, Markup languages

General Terms
Design, Experimentation, Languages

Keywords
Document authoring, web editing, document language, XML

1. INTRODUCTION
Several intermediate levels of document structure have

been proposed to bridge the gap between HTML tag soup
and highly structured XML: microformats, semantic HTML,
document templates, RDFa, to name only the most popu-
lar technologies. They pursue different goals and provide
different benefits regarding structure improvement, but all
of them aim at rigorously structuring some information in
HTML documents. This structured information can then be
extracted safely from its host document, and it can be fur-
ther processed to use and re-use in many different ways the
content of HTML documents, which otherwise could only
be displayed by web browsers. However, most of these tech-
nologies apply only to some specific parts of a document

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng2010, September 21–24, 2010, Manchester, United Kingdom.
Copyright 2010 ACM 978-1-4503-0231-9/10/09 ...$10.00.

and they still lack tools that could allow average web users
to easily create structured information.

In this paper, we explore another approach which aims at
producing full XML documents and data on the web while
allowing authors to work in a familiar HTML environment,
their favorite web browser. The goal is to bring the power of
the usual XML processing chain to new application domains
such as Web 2.0 applications, but based on valid XML con-
tent. Such web sites cannot afford complex authoring pro-
cesses involving multiple languages and skilled specialists.
Usually these sites rely heavily on Rich Text Editors or on
Wiki-based input that restrict information reuse and com-
putability. Instead, we are proposing a lightweight approach
based on document templates for XML document author-
ing. However, to fully take advantage of XML structures,
this simplification must not compromise the quality of the
created documents and data. This has lead us to engineer a
method to generate schemas from the document templates.

The next section briefly introduces the XTiger template
language from which this work has begun. Section 3 presents
the browser-based editor that was built to exploit this tem-
plate language, originally designed to create XHTML doc-
uments. Section 4 explains how the language was extended
to allow the editor to generate XML documents. The issue
of the automatic generation of XML Schemas is discussed in
section 5. Section 6 summarizes the advantages brought by
these tools and compares them to related work.

2. TEMPLATES FOR XHTML
The starting point is a template language called XTiger

[2] that was created for authoring different kinds of XHTML
documents that are supposed to follow a given model. With
XTiger, a template is a skeleton XHTML document that
contains elements in the XTiger language (as both XHTML
and XTiger are XML languages, they can easily be mixed).
Each XTiger element expresses constraints about the local
XHTML structure and its possible evolutions during editing.

Typical XTiger elements are:

• xt:component which defines a component, i.e. a piece
of XHTML structure (possibly with XTiger elements)
that can be inserted in some places in the document.

• xt:use which indicates, with its types attribute, what
component(s) or basic content (text for instance), may
be inserted at its location.

• xt:repeat which indicates that the structure it in-
cludes (XHTML with XTiger elements) may be re-
peated several times at its location.

Figure 1 shows the XTiger definition of component au-

thorComp, which is used in the Article template (the tem-
plate used for producing this paper, see Figure 2).

<xt:component name="authorComp">

<p class="vcard">

<xt:repeat minOccurs="1">

<xt:use types="text" label="name">

Author name</xt:use>

</xt:repeat>

<xt:repeat minOccurs="1" label="address">

<xt:use types="text" label="line">

Address line</xt:use>

</xt:repeat>

<xt:use types="text" label="email">

email</xt:use>

</p>

</xt:component>

Figure 1: The author component template

This very simple language was first implemented in the
Amaya [9] web editor. The XHTML editor in Amaya was
extended to be driven by XTiger templates, i.e. to interpret
and follow the hints given by the XTiger elements about
the XHTML structure. It allowed authors to produce more
easily better structured documents, but it was available only
in Amaya and it could only create XHTML documents.

3. TEMPLATE-DRIVEN EDITING IN THE
BROWSER

The next step was to make XTiger template-driven editing
also usable on the widely available platform offered by web
browsers. The goal was to make it easier for any web user to
create content on line, by relieving the burden of installing
new software and learning how to use a new editor. This was
achieved by developing a Javascript library that runs in the
browser (in any Javascript-enabled browser) and implements
editing functions that follow XTiger templates.

The Adaptable XML Editing Library (AXEL) that re-
sulted from this work dynamically generates an interactive
editing application from a source template inside any web
page [8]. The source template can be the web page itself,
the content of an internal frame, or a file loaded with an
Ajax call. The library also provides some functions to lin-
earize the edited document into a string representation at
any time. Thus it is easy to send it back to a server.

The design of the editing user interface aims at minimizing
user’s mouse movements. Hence, there is no menu bar at the
top of the document, but only contextual menus that follow
the document structure to give access to the editing func-
tions (Figure 2). The system displays ’+’ and ’-’ icons next
to the document parts that can be repeated as defined by
the template. Similarly, the system displays a pop-up menu
next to the document parts that can be selected among a
choice of different component types. Finally, the system dy-

Figure 2: Editing an Article with AXEL

namically turns the text fragments corresponding to primi-
tive editing components into text entry fields when the user
clicks them.

The user interface is highly customizable as a consequence
of running inside a web browser. It is possible for instance
to create variations of the editing style with CSS rules and
Javascript functions. It is even possible to extend the prim-
itive editing components for entering text with new edit-
ing components written in Javascript, or to create highly
specialized editing component types to enter complex data
types, such as a photo uploader. In this way AXEL differs
from Amaya, as it allows to create domain specific document
templates with document specific user interaction models.

The idea of implementing an editor in the web browser
is not new, but AXEL has a few original features. Google
Docs, for instance, offers an editor that runs in the browser.
It also proposes a large library of templates, like most word
processors do, but these templates are just ordinary doc-
uments that authors can use as a starting point and as
a source of inspiration. They do not provide any guaran-
tee about the structure and the content of the final result.
With XTiger, the final document always conforms to the
structural constraints expressed in the template. When the
information contained in the document has to be further
processed, this makes a difference.

4. GENERATING XML DOCUMENTS
An extension to the XTiger language was necessary to get

one step further. This is a syntactically minor extension,
but it brings a significant advantage by allowing the editor
to map the XHTML document being edited to a target XML
document. The label attribute was added for that purpose
to most XTiger elements to indicate the name of a corre-
sponding XML element to be created when the DOM tree
built by AXEL is linearized in XML. This process is similar
in intention with XForms for HTML [1].

The label attribute can be set on xt:use and xt:repeat

elements to map their content model to a target XML ele-
ment whose name is defined by the label. For instance, as the
template used in Figure 2 declares the component inclusion
<xt:use label="author" types="authorComp"/>, then the
linearized content of this component will be placed in an
XML sub-tree tagged author. The right hand part of Fig-
ure 2 shows the XML code generated for this article. The
mapping algorithm is recursive. It stops at the inclusion of a
few primitive component types, such as text, that produce
only unparsed content which is entered with browser text
entry fields as explained in the previous section.

We have also written an XML loading algorithm together
with the linearization algorithm. It uses the same label

information to load XML content into a compatible template
and generates the corresponding XHTML document.

To some extent the use of a document template to produce
a target XML content model is close to more data-centric
form-based applications. For instance, this could be com-
pared to Google Forms where the document template is a
form document, and where the responses are collected in-
side a spreadsheet. However the range of XML documents
reachable with AXEL goes beyond tables and columns and
allows also document-centric data to be edited.

There are other browser-based editors for XML documents
such as XOpus. In some respects, these tools are like many
other XML editors: to edit a document authors must pro-
vide an XML Schema, a style sheet, and an XSLT trans-
formation. With AXEL, as soon as an XTiger template is
available, well structured XML documents can be edited.
Although XML Schemas are available for some common ap-
plications, users with specific needs have to create their own
schemas, style sheets and transformations for most XML
editors. This is a different task than developing an XTiger
template, for which users have just to create the XHTML
skeleton of a typical document and to include a few XTiger
elements that indicate how this skeleton may be changed. In
addition, a CSS style sheet can be defined to set the graph-
ical aspect of documents, but this is not mandatory.

5. GENERATING XML SCHEMAS
The editor outputs XML files, but the only claim we

can make is that these files are well-formed and follow the
constraints expressed by an XTiger template. That is not
enough to fully exploit the XML structure. We need a
schema against which the XML document could be validated
and that can be used by XML applications that require a
schema to process XML data.

The semantics of XTiger may be defined as an extension
of XML Document Type Definitions (DTD), the extension
consisting in more precise occurrence indicators (for this
purpose, XTiger borrows the minOccurs and maxOccurs at-
tributes from XML Schema). The semantics of XTiger is
then a subset of the semantics of XML Schema. As a conse-
quence, the constraints defined by an XTiger template can
be expressed in the XML Schema language, and the trans-
lation of an XTiger template into an XML Schema can be
done automatically.

We have developed an XSLT transformation to perform
this translation. It works in two steps:

• First, the template is stripped from all XHTML code.
The result is a pure XTiger file that contains only

structure constraints and the names (label attribute)
of the XML elements to be generated (Figure 3).

• The second step transforms this structure definition
into an equivalent XML Schema (Figure 4).

<xt:component name="authorComp">

<xt:repeat minOccurs="1">

<xt:use types="text" label="name"/>

</xt:repeat>

<xt:repeat minOccurs="1" label="address">

<xt:use types="text" label="line"/>

</xt:repeat>

<xt:use types="string" label="email"/>

</xt:component>

Figure 3: Stripped template

<xsd:complexType name="authorComp">

<xsd:sequence>

<xsd:element name="name" type="xsd:string"

maxOccurs="unbounded"/>

<xsd:element name="address">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="line" type="xsd:string"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="email" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

Figure 4: Schema for the author component

The resulting XML Schema defines the structure of the
XML documents generated by AXEL when using a given
XTiger template. Document templates designed for AXEL
can now be used in any XML process that benefits from a
schema, such as writing transformations or queries. Simi-
larly, the documents edited with AXEL can now be used in
any XML application that requires a schema, such as storing
data in an XML database that enforces validation.

The transformation was validated on very different XTiger
templates, including those available in [7]: they range from
form-based documents, such as a restaurant menu or a re-
sume, to more complex documents, such as scientific and
technical documentation with hundreds of elements and a
significant tree depth. For each template, several XML doc-
ument instances were validated against the XML Schema
produced by the transformation.

6. APPLICABILITY AND FUTURE WORK
Existing XML document production systems are usually

employed in areas where well-established XML schemas have
been defined. In this typical setting, several users play dif-
ferent roles: computer-skilled persons create schemas, style
sheets, and transformations, whereas content producers use

the authoring tool. This process is basically the same what-
ever the kind of the editing system: stand-alone or browser-
embedded. Adapting this process to a new document type is
both heavy and time consuming. With the XTiger template
language and the AXEL library, the process becomes sim-
pler and faster. Moreover the transformation tool presented
in the previous section provides a schema for every XTiger
template. It has been developed once and it is now available
for all XTiger templates, so that no more XSLT transforma-
tions are necessary. As a consequence, XML documents can
be involved in new classes of applications where simpler ap-
proaches such as rich text editors or wiki text entry were
privileged before. In particular, the schema has not to be
completely defined before starting to create XML content,
and a more flexible and incremental process is possible as it
is the case with wikis [4].

This raises two classes of problems that we have encoun-
tered in real applications.

The first class of problems is to easily check whether a
document template is compatible with an XML schema. We
have encountered this issue when using document templates
to create an editing application based on AXEL for com-
plex specification documents that were initially defined by a
XML schema and that were converted manually from Word
to XML. Word was imposed by the specification authors
as they were non XML savvy. In that case it was crucial
that the XML documents edited with the XTiger template
be valid, as they were further processed after editing. The
ability to convert the XTiger template into an XML schema
greatly simplifies comparison with the original XML schema.
When a literal comparison does not make sense, we plan to
use the tool presented in [5] to make sure that both schemas
define exactly the same type of XML documents.

At some point we could also have imagined to go one
step further and to generate the document template from
the XML schema, but this kind of transformation can work
only in the opposite direction. Indeed, given the many pos-
sibilities offered by the XML Schema language that have
no equivalent in XTiger, there is no hope for an automatic
transformation of a schema into a template. In addition, a
template contains XHTML code that could not be created
from a schema.

The second class of problems is to check whether a mod-
ified version of a template is backward-compatible with the
original template (can the new template accept XML con-
tent originating from the original template?), and in case of
discrepancy to automatically generate some transformations
for migrating the corresponding data. This is a very impor-
tant feature for allowing Web 2.0 applications to take advan-
tage of XML processing chains, because these applications
usually have evolving content models, at least until the web
site finds its audience. Moreover, developers of these sites
are accustomed to powerful MVC frameworks such as Ruby
on Rails, where they directly write data migration paths
with object relational mapping languages that generate the
migrations for them. Convincing these developers to adopt
XML languages requires equivalent migration tools for XML
data. The capability to generate an XML schema for every
template as presented in this paper is a step in that direc-
tion, that still needs to be complemented with versioning
and schema comparison tools [6], [3], [5] to come up with
similar support.

7. CONCLUSION
The approach presented in this paper provides a simple

and safe way to produce XML content. Well structured
XML documents can be edited directly on the web, using
only a browser. As the corresponding XML schemas are
available, these documents can be used in many different
ways. Although the expressive power of XTiger is not at
the same level as in the XML Schema language, its coverage
is large enough to cope with a wide variety of XML contents.
In addition, users do not need to learn XML and its associ-
ated technologies such as XSLT or XML Schema. Knowing
a bit of HTML and learning how to use the six XTiger el-
ements is enough to develop an environment for entering
XML content on the web. This lightweight process enables
new kinds of applications where web users can provide their
own information in a well structured way.

8. ACKNOWLEDGMENTS
Early work on this project has been initiated in the frame-

work of the PALETTE Integrated Project supported by the
IST programme of the European Commission (DG Informa-
tion Society and Media, no. 028038). Further developments
of the XTiger language are currently supported by the In-
novation Promotion Agency of Switzerland under grant No
10813.1 PFES-ES, a project in collaboration with Madein-
Local.com (www.madeinlocal.com).

9. REFERENCES
[1] J. Boyer. XForms for HTML. W3C Working Draft,

http://www.w3.org/TR/XForms-for-HTML/, 19
December 2008.

[2] F. Campoy-Flores, V. Quint, and I. Vatton. Templates,
microformats and structured editing. In D. Brailsford,
editor, Proceedings of the 2006 ACM Symposium on
Document Engineering, DocEng 2006, pages 188–197.
ACM Press, Oct. 2006.

[3] A. B. Coates and D. Dui. ”full impact” schema
differencing. In Proceedings of XML Prague 2010, pages
65–86. Institute for Theoretical Computer Science,
Mar. 2010.

[4] A. Di Iorio, F. Vitali, and S. Zacchiroli. Wiki content
templating. In WWW ’08: Proceeding of the 17th
international conference on World Wide Web, pages
615–624, New York, NY, USA, 2008. ACM.

[5] N. Layäıda and P. Genevès. Debugging standard
document formats. In M. Rappa, P. Jones, J. Freire,
and S. Chakrabarti, editors, Proceedings of the 19th
International Conference on World Wide Web (WWW
2010), pages 1269–1272. ACM, Apr. 2010.

[6] I. Mlýnková. Similarity of XML schema definitions. In
DocEng ’08: Proceeding of the eighth ACM symposium
on Document engineering, pages 187–190, New York,
NY, USA, 2008. ACM.

[7] S. Sire. XTiger XML editing with AXEL demos.
http://media.epfl.ch/Templates/.

[8] S. Sire, C. Vanoirbeek, V. Quint, and C. Roisin.
Authoring XML all the time, everywhere and by
everyone. In Proceedings of XML Prague 2010, pages
125–149. Institute for Theoretical Computer Science,
Mar. 2010.

[9] I. Vatton. Amaya. http://www.w3.org/Amaya/.

