Face recognition from caption-based supervision

Matthieu Guillaumin 1, * Thomas Mensink 1, 2 Jakob Verbeek 1 Cordelia Schmid 1
* Auteur correspondant
1 LEAR - Learning and recognition in vision
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : In this report, we present methods for face recognition using a collection of images with captions. We consider two tasks: retrieving all faces of a particular person in a data set, and establishing the correct association between the names in the captions and the faces in the images. This is challenging because of the very large appearance variation in the images, as well as the potential mismatch between images and their captions. We survey graph-based, generative and discriminative approaches for both tasks. We extend them by considering different metric learning techniques to obtain appropriate face representations that reduce intra person variability and increase inter person separation. For the retrieval task, we also study the benefit of query expansion. To evaluate performance, we use a new fully labeled data set of 31147 faces which extends the recent Labeled Faces in the Wild data set. We present extensive experimental results which show that metric learning significantly improves the performance of all approaches on both tasks.
Type de document :
[Technical Report] RT-392, INRIA. 2010, pp.37
Liste complète des métadonnées

Littérature citée [55 références]  Voir  Masquer  Télécharger

Contributeur : Thoth Team <>
Soumis le : lundi 21 février 2011 - 11:21:45
Dernière modification le : mardi 12 février 2019 - 10:30:05
Document(s) archivé(s) le : dimanche 22 mai 2011 - 02:51:14


Fichiers produits par l'(les) auteur(s)


  • HAL Id : inria-00522185, version 2



Matthieu Guillaumin, Thomas Mensink, Jakob Verbeek, Cordelia Schmid. Face recognition from caption-based supervision. [Technical Report] RT-392, INRIA. 2010, pp.37. 〈inria-00522185v2〉



Consultations de la notice


Téléchargements de fichiers