Dominance-Based Pareto-Surrogate for Multi-Objective Optimization

Ilya Loshchilov 1 Marc Schoenauer 1, 2 Michèle Sebag 1, 2
1 TAO - Machine Learning and Optimisation
CNRS - Centre National de la Recherche Scientifique : UMR8623, Inria Saclay - Ile de France, UP11 - Université Paris-Sud - Paris 11, LRI - Laboratoire de Recherche en Informatique
Abstract : Mainstream surrogate approaches for multi-objective problems build one approximation for each objective. Mono-surrogate approaches instead aim at characterizing the Pareto front with a single model. Such an approach has been recently introduced using a mixture of regression Support Vector Machine (SVM) to clamp the current Pareto front to a single value, and one-class SVM to ensure that all dominated points will be mapped on one side of this value. A new mono-surrogate EMO approach is introduced here, relaxing the previous approach and modelling Pareto dominance within the rank-SVM framework. The resulting surrogate model is then used as a filter for offspring generation in standard Evolutionary Multi-Objective Algorithms, and is comparatively validated on a set of benchmark problems.
Type de document :
Communication dans un congrès
Simulated Evolution And Learning (SEAL-2010), Dec 2010, Kanpur, India. 2010
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00522653
Contributeur : Loshchilov Ilya <>
Soumis le : vendredi 1 octobre 2010 - 12:13:56
Dernière modification le : jeudi 5 avril 2018 - 12:30:12
Document(s) archivé(s) le : dimanche 2 janvier 2011 - 02:49:34

Fichier

seal2010_dominanceMOsurrogate....
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00522653, version 1

Collections

Citation

Ilya Loshchilov, Marc Schoenauer, Michèle Sebag. Dominance-Based Pareto-Surrogate for Multi-Objective Optimization. Simulated Evolution And Learning (SEAL-2010), Dec 2010, Kanpur, India. 2010. 〈inria-00522653〉

Partager

Métriques

Consultations de la notice

239

Téléchargements de fichiers

875