A. Auger, J. Bader, D. Brockhoff, and E. Zitzler, Theory of the hypervolume indicator, Proceedings of the tenth ACM SIGEVO workshop on Foundations of genetic algorithms, FOGA '09, pp.87-102, 2009.
DOI : 10.1145/1527125.1527138

URL : https://hal.archives-ouvertes.fr/inria-00430540

K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, 2001.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A Fast Elitist Multi-Objective Genetic Algorithm: NSGA-II, IEEE TEC, vol.6, pp.182-197, 2000.

R. Herbrich, T. Graepel, and K. Obermayer, Large margin rank boundaries for ordinal regression, Advances in Large Margin Classifiers, pp.115-132, 2000.

C. Igel, N. Hansen, and S. Roth, Covariance Matrix Adaptation for Multi-objective Optimization, Evolutionary Computation, vol.15, issue.1, pp.1-28, 2007.
DOI : 10.1109/TEVC.2003.810758

Y. Jin, A comprehensive survey of fitness approximation in evolutionary computation, Soft Computing, vol.9, issue.1, pp.3-12, 2005.
DOI : 10.1007/s00500-003-0328-5

T. Joachims, A support vector method for multivariate performance measures, Proceedings of the 22nd international conference on Machine learning , ICML '05, pp.377-384, 2005.
DOI : 10.1145/1102351.1102399

J. Knowles and H. Nakayama, Meta-Modeling in Multiobjective Optimization, Multiobjective Optimization, number 5252 in LNCS, pp.245-284, 2008.
DOI : 10.1007/978-3-540-88908-3_10

J. Knowles, L. Thiele, and E. Zitzler, A tutorial on the performance assessment of stochastic multiobjective optimizers, 2006.

I. Loshchilov, M. Schoenauer, and M. Sebag, A mono surrogate for multiobjective optimization, Proceedings of the 12th annual conference on Genetic and evolutionary computation, GECCO '10, pp.471-478, 2010.
DOI : 10.1145/1830483.1830571

URL : https://hal.archives-ouvertes.fr/inria-00483948

B. Schölkopf, J. Platt, J. Shawe-taylor, A. Smola, and R. Williamson, Estimating the Support of a High-Dimensional Distribution, Neural Computation, vol.6, issue.1, pp.1443-1471, 2001.
DOI : 10.1214/aos/1069362732

V. Vapnik, Statistical Learning Theory, 1998.

Y. Yun, H. Nakayama, and M. Arakava, Generation of pareto frontiers using support vector machine, MCDM'04, 2004.

E. Zitzler, K. Deb, and L. Thiele, Comparison of Multiobjective Evolutionary Algorithms: Empirical Results, Evolutionary Computation, vol.8, issue.2, pp.173-195, 2000.
DOI : 10.1109/4235.797969