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2D Centroidal Voronoi Tessellations with
Constraints

Jane Tournois, Pierre Alliez and Olivier Devillers

Abstract

We tackle the problem of constructing 2D centroidal Voronoi tessellations
with constraints through an ef�cient and robust construction of bounded
Voronoi diagrams, the pseudo-dual of the constrained Delaunay triangulation.
We exploit the fact that the cells of the bounded Voronoi diagram can be ob-
tained by clipping the ordinary ones against the constrained Delaunay edges.
The clipping itself is ef�ciently computed by identifying for each constrained
edge the (connected) set of triangles whose dual Voronoi vertices are hidden
by the constraint. The resulting construction is amenable to Lloyd relaxation
so as to obtain a centroidal tessellation with constraints.

1 Introduction

Voronoi diagrams have been extensively studied in the �eld of computational
geometry [ Aur91] . Given a set of pointsX = f x i g

N
i= 1, called sites or gener-

ators, the Voronoi diagram is de�ned as the space decomposition into cells
according to the nearest site. Namely, the Voronoi cell associated tox i , de-
noted Vi , is de�ned as

Vi =
¦

x 2 R2 j d( x, x i ) � d( x, x j ), 8 j 2 f 1..Ng, j 6= i
©

.

One popular way to ef�ciently construct Voronoi diagrams consists in ex-
ploiting its duality property with the Delaunay triangulation: The Delaunay
triangulation can be de�ned as the dual of the Voronoi diagram, as the trian-
gulation obtained by creating a Delaunay edgexi x j if the Voronoi cells Vi and
V j are neighbors (they share a Voronoi edge). A direct characterization of the
Delaunay triangulation is also possible: a triangle de�ned by three points of
X belongs to the Delaunay triangulation if none of any other point of X is
located inside its circumcircle.
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Centroidal Voronoi diagrams are commonly used in some applications
which require a good sampling of an input domain. One way to distribute
a set of points isotropically and in accordance with a density function is to ap-
ply the Lloyd iteration (described in Section 3) over an initial Voronoi diagram
of the input points. Du et al. [ DFG99] have shown how the Lloyd iteration
transforms an initial ordinary Voronoi diagram into a centroidal Voronoi di-
agram, where each generator happens to coincide with the centroid of its
Voronoi cell. This process is a way to trade global requirements (the density
function) for local requirements of generating a locally uniform distribution
of the Voronoi sites.

The Lloyd iteration assumes a Voronoi tessellation with bounded cells so
that the centroid of each Voronoi cell is well de�ned. Assuming a bounded in-
put domain 
 , one direct way to proceed consists of intersecting each Voronoi
cell with 
 and computing the centroid of the resulting intersection (more
speci�cally the connected component containing the cell generator). In addi-
tion to suffering from the usual robustness issues, the intersections may result
in non-convex or non-simply connected cells and hence in centroids located
outside 
 (see Figure 2-Left & Middle).

For cases where the input domain boundary is a polygonal line, one solu-
tion consists of relying on a constrained Delaunay triangulation(CDT). It is a
generalization of the Delaunay triangulation which allows the addition of con-
strained line segments appearing as edges of the triangulation[ Che87] . The
end points of those line segments are also the generators of the dual Voronoi
tessellations. In a CDT, a triangle is valid if its circumcircle does not contain
any point of X visible from inside the triangle. To de�ne the visibility notion,
the input domain boundary is considered as a set of occluding barriers (see
Figure 1-Left).

One of our goals is to consider these geometric constraints in a generic
manner so as to handle inner isolated constraints, evolving cracks, etc. Among
others, natural elements and natural neighbor methods [ SMB98, YRLC04,
MCA+ 04, YCLR05] need to handle this type of constraints. In these appli-
cations the constraints can move in an unpredictable manner. Robustness is
thus a key point of our work, since at every step convex Voronoi cells are re-
quired.

We now have to deal with Voronoi cells with constraints. As explained
above, Delaunay triangulation and Voronoi diagram are dual structures. For
our purpose de�ning a dual of the CDT would thus be useful. It is possible
to construct the usual Voronoi diagram from the Delaunay triangulation with
the following dual rule:
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Voronoi vertices are constructed at circumcenters of Delaunay tri-
angles and Voronoi edges are drawn between dual of neighboring
Delaunay triangles.

The standard dual of the CDT is theconstrained Voronoi diagram(CVD), de-
�ned by a slight modi�cation of this rule:

constrained Voronoi vertices are constructed at circumcenter of con-
strained Delaunay triangles and constrained Voronoi edges are drawn
between dual of Delaunay triangles which are neighbors through a
non constrained Delaunay edge

(see Figure 1-Middle). Note that this de�nition allows the Voronoi diagram
to cross the constraints, or more exactly, some part of the Voronoi diagram
(dashed in Figure 1-Middle) continue on the wrong side of the constraints as
if they were on the right side. Several approaches have been proposed[ WS87,
Lin89,Sei88] . We base our work on Seidel's[ Sei88] de�nition of the bounded
Voronoi diagram (BVD) which clips the CVD with constraints (see Figure 1-
Right and 2-Right).

Figure 1: (Left) CDT: Constrained Delaunay triangulation of a set of vertices.
(Middle) Constrained Voronoi diagram: CVD, standard dual of the CDT.
(Right) BVD: Bounded Voronoi Diagram.

Contribution

We propose a simple and ef�cient algorithm to construct the BVD from the
CDT, as follows. First, mark the triangles whose dual BVD vertices belong to
the CVD but not to the BVD. Then, extract the BVD cells from the CVD. Notice
that a Voronoi edge of the CVD may be clipped by constraints which are not
close to its dual Delaunay edge (see Figure 3). This BVD construction makes
possible to take the constraints into account in an ef�cient manner during the
Lloyd iterations, as explained in Section 3.
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Figure 2: (Left) CDT: Constrained Delaunay triangulation of a set of vertices.
(Middle) A CVD cell (green), from standard dual of the CDT. Its inter-
section with the domain has two connected components. (Right) The
suitable BVD clipped cell.

2 Bounded Voronoi Diagram

While the ordinary Voronoi diagram does not take constraints into account,
we wish here to prevent the Voronoi regions to cross over the constraints.
To be able to run Lloyd iterations, each Voronoi cell must be convex and
simply connected. To this aim we use abounded Voronoi diagram, de�ned
by Seidel [ Sei88] as a pseudo-dual to the constrained Delaunay triangula-
tion [ Che87,She96] (see Section 1).

The common duality between Delaunay triangulation and Voronoi dia-
gram links each triangle to its circumcenter. In our context, each triangle 4
may have its circumcenter c on the other side of a constrained edge. Hence,
c is the dual of 4 if it is on the same side of the constraint. Otherwise, it is a
pseudo-dual, and some Voronoi edges of4 must be clipped by the constraint.
The BVD is de�ned as follows: each cellVi of a generator x i is composed by
the points of the domain 
 which are closer to x i than to any other generator.
As for the constrained Delaunay triangulation, the distance incorporates visi-
bility constraints. The distance dS( x, y) between two points x and y of R2 is
de�ned as:

dS( x, y) =

¨
jj x � yjjR2 if x “sees” y,
+ 1 otherwise.

In this de�nition, x “sees” y when no constrained edge intersects the seg-
ment [ x, y] . This visibility notion can be extended to triangles. We will see
later how the notion of triangle sight, or symmetrically triangle “blindness”,
is important to construct the bounded Voronoi diagram. Figure 4 illustrates
a constrained Delaunay triangulation and its pseudo-dual bounded Voronoi
diagram. Notice that trying to construct the naïve Voronoi diagram by joining
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Figure 3: Two Voronoi cells and their clipped bounded Voronoi counter parts.
These cells are generated by a site which is far from the constraints and
must be clipped.

the circumcenters of all pairs of incident triangles would not even form a par-
tition. The notion of triangle blindness is pivotal for constructing the bounded
Voronoi diagram.

De�nition 2.1 (Blind triangle) . A triangle 4 is said to beblind if the triangle
and its circumcenter c lie on the two different sides of a constrained edge E.
Formally, 4 is blind if and only if there exists a constrained edge E such that
one can �nd a point p in 4 (not an endpoint of E), such that the intersection
[ p, c] \ E is non-empty.

Figure 4: Constrained Delaunay triangulation of a set of points (left) and its
pseudo-dual bounded Voronoi diagram (right).

The BVD construction algorithm initially tags all triangles of the triangu-
lation as being blind or not blind (Algorithm 1). It then constructs each cell
of the diagram independently using these tags (Algorithm 2). Finally, all cells
are assembled to build the complete bounded Voronoi diagram of a given set
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Figure 5: Construction of a cell of the bounded Voronoi diagram. The standard
Voronoi diagram is truncated on the constrained edge (colored triangles
are blind).

of points and constrained edges.

Algorithm 1 tags all triangles of the triangulation as being either blind or
non-blind. In addition, each blind triangle stores which constrained edge in
the triangulation acts as a visibility obstacle, i.e., which edge prevents it to see
its circumcenter (it is the �rst constraint intersected by the oriented line join-
ing any point of the triangle to its circumcenter). Notice how the algorithm
only needs to iterate over the constrained edges of the triangulation, as all
sets of blinded triangles form connected components incident to constrained
edges. Indeed, the Voronoi diagram of the vertices of the blind triangles on
one side of any constraint is a tree rooted from the dual ray of the constraint.

We de�ne a robust predicate, called P in the sequel, to test if a triangle
is blinded by a constrained edge. More speci�cally, P takes as input a tri-
angle and a segment, and returns a Boolean indicating whether or not the
circumcenter of the triangle lies on the same side of the segment than the
triangle. The circumcenter is never constructed explicitly in order to obtain
a robust tagging of the blind triangles. Each cell of the bounded Voronoi di-
agram can be constructed by circulating around vertices of the triangulation,
and by choosing as cell vertex either circumcenters or intersections of the
standard Voronoi edges with the constrained edges. Note that we do not need
to construct bounded Voronoi cells incident to input constrained vertices as
the latter are constrained and therefore not relocated by the Lloyd iteration.
Algorithm 2 describes this construction, and Figure 5 illustrates the construc-
tion of a single bounded Voronoi cell. Figure 6 illustrates a bounded Voronoi
diagram.
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Algorithm 1 Tag blind triangles

Input: Constrained Delaunay triangulation cd t.

Tag all triangles non-blind by default.

for each constrained edgee of cd t do
Create a stack: t r iangles

for both adjacent triangles fe to e tagged non-blind do
Push fe into t r iangles

while t r iangles is non-empty do
Pop f from stack t r iangles
if f is blinded by e (use P ) then

Tag f as blinded by e
for each adjacent triangle f 0 to f do

if f 0 is �nite and tagged non-blind
& the common edge between f and f 0 is unconstrained then

Push f 0 into t r iangles.

Figure 6: CDT with its blind triangles, and bounded Voronoi diagram of a PSLG.
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Algorithm 2 Construct a BVD cell

Input: Unconstrained vertex x of the constrained Delaunay triangulation cd t.

Call P the polygon (cell) in construction,
Call f ini t a triangle incident to x,
Let f be initialized to f ini t

Call fnex t the next triangle counterclockwise around z,
Call L f , fnex t

the line going through the circumcenters of f and fnex t.

repeat
if f is tagged non-blind then

Insert the circumcenter of f into P.
if fnex t is blind then

Call Sfnex t
the constrained edge blinding fnex t,

Insert point L f , fnex t
\ Sfnex t

into P.

else
Call Sf the constrained edge blinding f .
if fnex t is tagged non-blind then

Insert L f , fnex t
\ Sf into P.

else
Call Sfnex t

the constrained edge blinding fnex t,
if Sf 6= Sfnex t

then
Insert L f , fnex t

\ Sf and L f , fnex t
\ Sfnex t

into P.
f  fnex t

Call fnex t the next triangle counterclockwise around z,
until f = f ini t

Output: Bounded Voronoi cell of x in counterclockwise order.

3 Lloyd iteration

Energy minimization The Lloyd iteration [ Llo82] is a minimizer for the
energy functional:

E =
NX

i= 1

Z

y2V i

� ( y)jj y � x i jj
2d y,

where � is a density function de�ned over the domain 
 , f x i g
N
i= 1 the genera-

tors and Vi
N
i= 1 the corresponding Voronoi cells.

It minimizes this energy by alternately moving the generators to the cen-
troid of their Voronoi cells, and recomputing the Voronoi diagram. The cen-
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troid x? of the cell V is de�ned as:

x? =

R
V

y� ( y)d y
R

V
� ( y)d y

.

After convergence, the space subdivision obtained is acentroidal Voronoi Tes-
sellation (CVT) [ DFG99, DEJ06] . As it corresponds to a critical point of the
energy E, it is a necessary condition for minimizing E. Figure 7 is an illustra-
tion of the evolution during Lloyd iterations.

Figure 7: Lloyd iteration with a uniform density. Four clusters of vertices (0), ran-
domly located inside a square with constraints. Black points are the
generators, red points are the cells' centroids. In the reading order, gen-
erators and centroids after 1, 5, 10, 100 of iterations; and after conver-
gence of the Lloyd iteration, when generators and centroids coincide.

Convergence criterion We choose to stop the Lloyd iteration when all
generators move less than a user-de�ned distance threshold. We �rst de�ne
the notion of move ratio of a generator x in its Voronoi cell V as mr(x) =

jj x� x?jj
d iameter(V )

. The Lloyd iteration is stopped when maxx2f xi g
N
i= 1

mr(x) < p (p is
typically set to 1%).
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The Lloyd iteration requires computing centroids of (possibly bounded)
Voronoi cells in 2D. Such computations require a quadrature formula when a
variable density function is speci�ed, i.e., when the input sizing function is not
uniform. The density function � and the sizing function � are linked by the
following formula [ DW03, DW06] : � ( x) = 1

� ( x)d+ 2 , where d is the dimension

of the domain. In 2D, this yields

� ( x) =
1

� ( x)4 .

The key idea behind a quadrature is to decompose a simple domain (a
convex polygon in our case) into smaller sub-domains (so-called quadrature
primitives) where simple interpolation schemes are devised. The numbern
of quadrature primitives used for each element allows the user to tune the
computation accuracy of the centroids. In practice this number is increased
as the iterations go. During �rst iterations, vertices are moving a lot, inside
their cells and inside the domain. The computation of the centroid location
needs only a low precision, andn = 10 typically is enough. Later in the course
of iterations, the Voronoi tessellation is getting close to be centroidal. To en-
sure the convergence of the tesselation to a CVT through Lloyd iterations,
the precision needs to be increased. Otherwise, and in particular when the
chosen sizing �eld is highly graded, it might happen that the Lloyd algorithm
does not converge to a stable CVT. In practice, we run �nal steps withn = 100.

We use the midpoint approximation rule in 2D, with a decomposition of
each bounded Voronoi cell into n sub-triangles. More precisely, an initial step
triangulates the cell by joining each of its vertices to its generator. The next
step recursively bisects the longest edge of these triangles until the number
of quadrature triangles reachesn. On each quadrature triangle, the midpoint
approximation formula is applied:

Z

4

f ( x)d x �
j4j

3
( f ( x12) + f ( x23) + f ( x13)) ,

where x12, x23 and x13 are the midpoints of a quadrature triangle edges.
Finally, we sum the integrals on each quadrature triangle in order to obtain
an approximate centroid of the whole bounded Voronoi cell. Our algorithm
is implemented in C++ using the Computational Geometry Algorithms Library
CGAL[ CGA08] .

4 Results

Algorithms 1 and 2 construct the bounded Voronoi diagram of a set of points,
with respect to a set of line segment constraints. Running Lloyd algorithm on
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the bounded Voronoi diagram turns it into a centroidal and bounded Voronoi
tessellation. This optimization process alternates relocating each vertex to its
cell centroid, and updating the tessellation. This is made possible thanks to
the BVD properties: each bounded cell is convex and simply connected.

Figures 8, 10, and 9 show centroidal Voronoi tessellations generated from
random initial point sets. Figure 8 highlights the fact that vertices lying in a
bounded region are not allowed to cross the constraints.

Figures 10 and 9 show examples where the density function used in the
Lloyd iteration can be either constant, or automatically adapted and k-Lipschitz.
The automatically adapted density function that we use derives from the siz-
ing function described in [ ACSYD05] as:

� ( x) = inf
s2@


[ kd(s, x) + size(s)] ,

where @
 is the domain boundary, d the Euclidean distance,size(s) the pre-
scribed size ats, and k a user-de�ned constant. It is shown to be the maximum
k-Lipschitz function that is smaller or equal to size(s) on the boundary of the
domain.
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Figure 8: France. CVT inside the domain. Vertices lying in a bounded region are
not allowed to cross the constraints.

Figure 9: World. CVT inside the domain. The sizing function is chosen as being
uniform (left) and adapted, with k = 0.1 (right).
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Figure 10: Sea horse. CVT inside the bubble domain. The sizing function is chosen
as being uniform (left) and adapted, with k = 0.1 (right). Both CVT's
contain 2000 points. Starting from a uniformly distributed initial set of
points, Lloyd optimization reaches convergence in about 100 iterations.
In the uniform case (left), it takes about 7 seconds, and in the adaptive
case (right), it takes about 80 seconds.
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5 Conclusion

We have proposed a robust and simple algorithm to compute 2D centroidal
Voronoi tessellations with constraints. This algorithm is among others moti-
vated by meshless simulation applications which require computing natural
neighbor interpolation over bounded Voronoi diagrams. As future work we
wish to elaborate upon a fully dynamic construction of the bounded Voronoi
diagram such that removing a constrained edge leads to local updates of the
blind triangles. Finally, we plan to elaborate upon the ef�cient computation
of 2D natural neighbor interpolation coordinates based upon the proposed
bounded Voronoi diagram.
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