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Une classe de préconditionneurs paralleles multiniveaux

Résumé : Dans ce papier nous décrivons une classe de préconditionneurs multiniveaux paralléles pour
résoudre des systémes linéaires de grande taille. Ils se basent sur une renumérotation de la matrice d'entrée
en forme block diagonale bornée et emboitée, qui permet une dé nition emboitée des préconditionneurs.

Nous prouvons qu'un des préconditionneurs, NSSOR, converge quand la matrice d'entrée est sym-
métrique et dé nie positive. Les préconditionneurs sont adaptés au calcul paralléle.

Mots-clés :  systéme linéaire, préconditionneur, GMRES, factorisation LU incompléete



A class of multilevel parallel preconditioning strategies 3

1 Introduction
The problem of nding an approximate solution of a large sparse linear system of the form
Ax =b (1)

is an important operation in many scienti ¢ applications. Consequently, a considerable amount of research
focuses on iterative methods, in particular on Krylov subspace type methods[15]. The convergence of these
methods mainly depends on how well the given problem is preconditioned. Given a linear system of the
form @ above, we seek an approximation B to A and consider the following preconditioned problem

B 'Ax = B lb; 2

where B is chosen such that the spectrum of8 A is favorable for the Krylov subspace type methods
[15].

A particular class of methods for solving sparse linear systems of equations are the algebraic multigrid
methods [14]18[20]. They have proved to be successful for certain classes of problems as for example elliptic
type PDEs. However, they can involve a high setup cost and hence other alternatives can be sometimes
more e cient. Preconditioned Krylov subspace methods with incomplete LU (ILU) (see for example [2,[15])
as preconditioner are designed to be general purpose methods for solving arbitrary sparse linear systems
of equations. They tend to work on problems where the above methods fail. However, the main drawback
of ILU type preconditioners are their poor convergence rate with increasing problem size. Moreover, they
usually need tuning of parameters for di erent problem types. Recently, several multilevel methods based on
ILU have been designed, that use a combination of techniques from direct and iterative method§1[6] 9, 116].
Another unique approach is based on a direct approximation of the error propagation matrix, nhamely
I B !A. This method commonly known as SPAI (see for example ]3,]4]) is very promising.

In this work we introduce and compare three recursive multilevel parallel preconditioners, which are
shown to be e cient for a range of problems. The new preconditioners are the following:

" NSSOR : nested SSOR
~ NMILUR : nested MILU with rowsum constraint

~ NMILUC : nested MILU with colsum constraint

The methods consider that the input matrix has a nested bordered block diagonal structure, which allows
a nested de nition of the preconditioner. In addition it is suitable for parallel computation. The methods
can be seen as a multilevel extension of classical preconditioners as SSOR and modi ed ILU (MILU) (see
for example [2,[15]).

The method of NSSOR is built by approximating the Schur complements simply by the diagonal blocks of
the original matrix. This preconditioner is attractive because the construction cost and storage requirements
are relatively minimal. Moreover its construction is embarassingly parallel.

The methods NMILUR and NMILUC can be seen as nested extensions of the classic MILU method
with a rowsum or a colsum property. They can also be seen as an extension of the Nested Factorization
preconditioner introduced in [1] for matrices arising from the discretization of PDEs on structured grids. A
relaxed version of Nested Factorization is presented in[12]. The NMILUR and NMILUC preconditioners
satisfy the rowsum and colsum property respectively. We say that a preconditioneB satis es rowsum

Itering property for a given vector 1 =[1;1;:::;1]if the following holds:

A1T = B1T (3)
On the other hand, colsum property is de ned as follows
1A = 1B 4)

It is proved that the NSSOR method is convergent for a given SPD problem. We also show that NMILUR
and NMILUC satisfy the respective Itering properties.

The nested bordered block diagonal form can be obtained by k-way partitioning techniques, as for exam-
ple implemented in Metis graph partitionning package [10]. In addition of allowing a recursive formulation
of the preconditioner, this form has several advantages. First, it allows for a parallel construction and
application of the preconditioner in the iterative process. Second, such reordering creates a structure which
itself presents several advantages. One of the key steps in solving linear systems of the fo@ (1) via iterative
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Figure 1. Graph partitioned into 4 parts, its corresponding separator tree and matrix obtained after re-
ordering.

methods is the multiplication of a sparse matrix with a dense vector. The reordering based on k-way parti-
tioning helps in minimizing communication for this critical matrix vector operation for distributed memory
model [8]. It also creates data locality, which is important for exploiting well the memory hierarchy and for
shared memory machines. Third, the ordering reduces the Il incured by the factorization of the diagonal
blocks, and hence it is important as in the case of direct methods.

The methods are compared with ILU using natural ordering, ILU using 2-way nested dissection ordering,
and MILU preconditioners. Our test matrices include matrices arising from convection-di usion problems
on structured grids, nite element problems generated by FreeFEM++ package [13] on unstructured meshes,
and several problems from University of Florida Sparse Matrix Collection[[5]. We nd that NSSOR compares
favorably with ILU based on nested dissection. When applied to matrices arising from problems with smooth
coe cients (see the results for matrices airfoil2d, chipcooll, Lapl, Lap2, mat_mem, and mat_heat in Tables
[, [5), the NMLIUR/C methods perform very well. They are strongly scalable and this is most probably
due to the Itering property.

We note that domain decomposition methods are also well suited for parallelism and are very e cient
for many classes of problems. The methods discussed in this paper have the same level of parallelism. In
addition, the methods NMILUR and NMILUC are relatively stable with respect to the number of domains,
similar to scalable domain decomposition methods. While in our case this is due to satisfying a ltering
property, in domain decomposition this is ensured by using a coarse grid correction [19,17].

The paper is organized as follows. In sectiop]2, we explain the partitioning and reordering used to de ne
the methods proposed. We focus on the usage of 2-way nested dissection. In sectjgn 3, we discuss and
explain the methods in detail. In section[4, we prove some results for these methods. Finally, in sectigr 5
a comparison is done for all the methods discussed.

2 Partitioning, reordering, and associated notations

The multilevel preconditioners presented in this paper consider that the input matrix has a structure referred
to as nested bordered block diagonal form. This structure can be obtained by reordering the matrix based
on nested k-way partitioning (see for example[[11]), that we present brie y in this section.

The undirected graph G(V; E) of a symmetric matrix A of sizen n is formed by a set ofn vertices V
and a set of edge€. There is a vertexv; 2 V for each row/column i of A and an edge(v;;v;) for each
nonzero elementA; . A subsetS of V is called a vertex separator ofG, if the removal of all the nodes of
S from the graph leaves the graph disconnected into two or more components. In k-way partitioning, a
separator S is found that separates the graph intok disconnected components. Each of these components

INRIA



A class of multilevel parallel preconditioning strategies 5

can be further divided into k disconnected components, and this process can be repeated for desired number
of times. In this paper we consider the case whelk = 2, and this partitioning technique is referred to as
nested dissection. It is implemented for example invetis graph partitioning library [10].

Figure (1) shows a pictorial representation of a graph corresponding to nested dissection ordering and its
associated separator tree. On the right, the matrix corresponding to the graph is shown. In the separator
tree, the nodes numbereds, 5, and 4 correspond to separators. Once a separator is found we would like to
group them together by renumbering the nodes. For our purpose, we are concerned only with the undirected
graph or symmetric matrices and the actual weights (values in the matrix ) are irrelevant. Renumbering
the nodes in a matrix means a symmetric permutation of the rows and columns such that the resulting
adjacency graph remains isomorphic to the original one i.e., no new nodes or edges are created or destroyed.
In gure L] the separator block number 6 is numbered last after the left subtree of nodes in {4, 0, 1} and
right subtree made up of {5, 2, 3 } are numbered. This process of nding the separator nodes and later
renumbering them last after the two disconnected components have been numbered leads to the matrix with
special structure as shown in the Figure ) on the left.

We now introduce a general convenient notation. After obtaining a suitable separator and renumbering
the child nodes and subsequently renumbering the separator nodes we obtain a bordered block diagonal

matrix 0 1
T Ui
PTAP = @ T? U A: (5)
L L st

Here P is the symmetric permutation matrix that renumbers the nodes. The interior nodes of the separator
tree obtained after nested dissetion have two children, namely, left and right child. The blockS? corresponds
to the vertices of the separator associated with the root node. Here the subscript refers to the level
of dissection1 in the separator tree, and 1 refers to the number of the node at this level. The blocks
corresponding to the two independent partitions obtained after one dissection ardl{ and T} respectively.
These blocks are associated with the two children nodes of the root node. Each of these children nodes are
connected via lower blocksL1 and L} and upper blocksU} and U} to the root separator. In the notation
of T; L, and U, the subscript correspnds to the level of dissection in the separator tree, and the superscript
refers to the number of the child node, that is the number of the node in the next level of the separator
tree.

For a matrix with nested bordered block diagonal form, the blocksT{ and T2 have recursively a bordered
block diagonal form. The matrix is denoted recursively in a similar fashion for each node and their children.

For K levels of nested dissection, that is a separator tree of height , we denote byL;Uc;1 k K
the lower and upper matrices of same size as original matrix A, where only those blocks which represent
the connection between the separators of levek and k + 1 are present. Also, we denote byD the block
diagonal part of A. The additive decomposition of A can be written as

PTAP =D+  (Ly+ Uy):
k=1

If we consider two levels of nested dissection, the permuted matrix has the following structure

0 1
T} Uy
A Ui
X2 L; L5|S;
PTAP =D+  (Lc+ U= T3 U3 : (6)
k=1 TS| Uf | U?
L3 L3|S5
L1 LT St
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where
0 T21 1
T
S
D = T3 ;
y g
S5
Si
0 1 0 1
0 0
0 0
0 LI L3]0
L,y = 0 Lo = 0 ;
0 0
0 L3 L3]0
LT LZ |0 0

and Uz; U, are de ned in a similar way to L;; L, respectively.

3 Nested preconditioners

In this section we present the nested preconditioners in detail. They are based on a nested bordered block
diagonal form of the input matrix A. This form can be obtained by partitionning and reordering techniques
presented in section 2, which are for example implemented in thevetis graph partitioner [L0]. We rst
describe the algebra of an exact decomposition of the input matrixA, on which our preconditioners are
based. For the ease of understanding, we condiser that the input matrix has 2 independent domains, a form
that can be obtained by 2-way nested dissection partitionning and reordering. However the methods are
easily generalized to a nested bordered block diagonal form with any number of diagonal blocks at each
level of the partitioning.

3.1 Nested exact factorization

We consider rst a matrix that has a bordered block diagonal form obtained after applying one level of

nested dissection, as follows: 0 1
Tl Ul
1 1
A=L;+D+U; =@ T2 U?A:
L L St
where 0 1 0 1 0 1
T2 0 o Ul
D=@ T2 A;LL=@ 0 A;yu =@ o0 UZA:
st L} L3 o 0

An exact factorization of A can be written as

A (Li+ F)F, Y(F1+ Uy)  LiF, Uy,
Fl = D:

Note that due to the bordered structure of A, the Schur complementL1F; 1U; uses the rst two diagonal
blocks of F; and modi es the third diagonal block of F;. Hence, the exact factorization of A can also be
written as

A = (Li+ FpF; Y(Fi+ Uy); (1)
Fi = D LiF, 'Us; (8)
where F; has the following block diagonal structure:
0 1
Ti
Fl = @ Tf A

St Li(TH 'up LE(TY) fuf
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The latter decomposition in equations @) @) makes more apparent the factored form ofA, which is usefull
in solving equations of the formAx = b, and this approach will be used in the rest of the paper.

Consider that the matrix A has a nested bordered block diagonal structure, that is the submatrices
Ti and T? have themselves a nested bordered block dlagonar!, structure. With the notation introduced in
section@, the additive decomposition ofA is given asA = D + k , (Lx + Ux), and its exact factorization
can be written in a nested way as following:

A = Fo; 9)

Fk = (Lksr + Fre1)Fed (Foer + Ui ); fork =0::K 1 (10)
X

Fk = D LiF, Uk (11)
k=1

This recursive procedure can start from a certain level kK 1). Once all the Schur complements are
computed in the expression ofFx , we get a factorization of A in terms of block lower and block upper
factors.

We note that the expression ofFk involves terms of the recurrencery for k =1 ::: K. The computation
is possible due to the structure ofLy; Fx; and Uy matrices. The factored form of F¢+; gives to each of the
subdomainsTy a factored form in terms of block lower triangular and block upper triangular factors. Then
the Schur complementLyF, *Ux can be computed, it uses the factored forms of the blocks corresponding
to Tk, and modi es the blocks corresponding to the separatorSi. The computation will become more clear
shortly, when it will be illustrated in the context of the proposed preconditioners.

3.2 Preconditioners

We introduce now two types of preconditioners, that we refer to as NSSOR and NMILU. In an exact
factorization, the blocks Fx need to be inverted to compute the Schur complements in equationl).
These inversions introduce Il in the matrix Fy, and are costly in terms of both storage requirements and
computation time. Hence the goal of a nested preconditioner is to nd suitable approximations to the
inverse of matricesFy in equations (10) and {17).

De nition 3.1  Let A be a matrix of sizen n which hq§ a nested bordered block diagonal structure and
whose additive decomposition can be written a$ = D + k 1 (Lk + Uk). A nested SSOR preconditioner
Bnssor is de ned as

Bnssor = Go; (12)
Gk = (Lks1 + Gks1)Gy (Gkor + Uksa); fork =0:::K 1 (13)
Gk = D; (14)
where we suppose that the matrice&y for k =1;:::;K are invertible.

In the NSSOR preconditioner, the Schur complements which appear in an exact factorization in equation
are simply dropped. That is, there is no explicit coupling term in between the di erent partitions Ty
at di erent levels k of the nested factorization. We note that NSSOR is relatively cheap to compute, and
highly parallel. In fact, once the diagonal blocksD are factored, the preconditioner is ready to be applied in
the iterative solver. We describe later in Algorithm (@ the details of the construction of the preconditioner.

We now introduce two variants of a nested modi ed ILU preconditioner. The rst variant, NMILUR,
ensures that the rowsum property is satis ed, that is 1A = 1Bymiur - The second variant, NMILUC,
ensures that the colsum property is satis ed, that isA1T = Bymiuc 17. We give formal proofs for these
properties in the analysis sectiorﬂﬂf. In the following,Diag (v) is the diagonal matrix formed from vector v.

De nition 3.2  Let A be a matrix of sizen n whilgh has a nested bordered block diagonal structure and
whose additive decomposition is written aA = D + E=1 (Lx + Ux). An NMILU preconditioner BnmiLu
is de ned as

Bumiu = Go; (15)
Gk = (Lg+1 + Gg+1 )Gk+ll (Gk+1 + Uks1); fork =0:::K 1 (16)

X
Gk = D Hy (17)

k=1
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Hy = rowsum(LxG, 'Ux) = Diag (LkG, *Uc1); for k =1;:::;K; (18)

Hy = colsum(LxG, *Ux) = Diag (1" LkG, *Uy); for k =1;:::;K (19)
wherel =[1;1;:::;1] is a vector of appropriate dimension.

Consider a levelk 1 of the computation of NMILU preconditioner. Two approximations are used.
The approximation of the factorization of the blocks correspoding to di erent parts of Ty is given by the
expression ofGy.; . The Schur complements involved in the computation of the blocks ofSy that couple
the domains of Ty are approximated by the formulas ), ).

In this paper, we use the same approach as in modi ed ILU preconditioner, in which the terms dropped
are added to the diagonal of the preconditioner, such that the rowsum or the colsum property is satis ed.
However, other approximations can be used for the inverse dBx matrices, as for example the approximation
presented in [7].

3.3 Algorithms for nested preconditioners

We present algorithms to compute the NSSOR and NMILU preconditioners and to apply them during the
iterative process. Although they are sequential, we also outline the parallelism available in this computation.

Algorithm 1 BuildNSSOR(T; level; K): recursive procedure to buildByssor preconditioner for a matrix
A.
Input : K is the height of the separator tree obtained from nested dissectiorigvel is the current level of
computation in the separator tree. If level K, then T is partitioned as

oTl Ull
T=@ T U*A
Lt Lz st

Output : Updated factored form of Gk
if level >K then
Factor(T)
else
BuildNSSOR(T?; level + 1;K)
BuildNSSOR(T?; level + 1;K)
Factor(S?t)
end if

Algorithms [[]and [Z present the construction of NSSOR and NMILUR preconditioners in a recursive
manner, as a postorder traversal of the separator tree. The construction of NMILUC is similar to NMILUR.
In both algorithms, Factor stands for exact factorization, but in practice an incomplete factorization can
be used.

NSSOR preconditioner is build by a call toBuildNSSOR (A; 1;K) in algorithm [] where K is the height
of the separator tree obtained from nested dissection. Once the diagonal blocks corresponding @& = D
matrix (equation (L4)) are factored, the preconditioner is ready to be applied in the iterative solver. Since
the factorizations of the diagonal blocks are independent computations, this algorithm is embarassingly
parallel.

NMILUR preconditioner is computed through a call to BuildNMILUR (A; 1;K) in Algorithm E]where
K is the height of the separator tree obtained from nested dissection. At each leved of the recursion, the
input matrix T has a bordered block diagonal form. The goal is to compute an approximate factorization
T of T. This is achieved by computing approximate factorizations of the two subdomainsT?*; T2 through
recursive calls toBuildNMILUR . Then the approximate Schur complement for matrix S* is computed,
which corresponds to a diagonal block of matrixGg .

The solution procedure for solving with these nested preconditioners is the same, once the factored form
of matrix Gk in equations[14 and[1} is computed. The solve will involve calling recursively the forward
and backward sweep routines shown in Algorithms|(B) and[(}) respectively.

INRIA



A class of multilevel parallel preconditioning strategies 9

Algorithm 2 BuildNMILUR( T;level;K): recursive procedure to build BymiLur ~ preconditioner for a
matrix A.
Input : K is the height of the separator tree obtained from nested dissectiorlevel is the current level of
computation in the separator tree. If level K, then T is partitioned as

0Tl Ull
T=@ T2 U2A
Lt L% st

Output : Updated factored form of Gk , approximate factorization T of T
if level >K then
T = Factor(T)
else
Call BuildNMILUR( T?;level 1;K) to compute the factored form T+
Call BuildNMILUR( T2;level 1;K) to compute the factored form T2
Compute Schur complement

st = s rowsum(LY(TYH 'U?) rowsum(L?(T?) U?)

Let T be formed as

O T’l 1 _]_1 1 1 _rl Ull
T=@ T A @ T A @ T2 UA
Lt Lz st st st

end if

We describe more in detail the solution procedure for NSSOR preconditioner. Recall thaByssor =
(L1 + G)(I + G, 1U;) = BBy, where G; has recursively a similar factored form until some level.
The solve Byssor X = b is computed by a call to ForwardSweep B, ;b;1;K), followed by a call to
BackwardSeepBy;y; 1K), where K is the height of the separator tree. We notice here that for both
forward and backward sweep, the solve with the subdomaind?! and T2 involve a recursive call to forward
and backward sweeps within these subdomains. The recursion stops when the last level of the multilevel
factorization of Byssor IS attained. At each level of the factorization, the solves within the two subdomains
T and T2 can be performed in parallel.

Algorithm 3  ForwardSweep(Ty ; b; level; K): recursive procedure to solveT, y = b using nested precondi-
tioner B = B By. This routine is used when solving the equationB, Byx = b, whereByx = .
Input : K is the height of the separator tree obtained from nested dissectiorlgvel is the current level of
computation in the separator tree. If level K, then the procedure solves the system
0 1 0,1 0,1

T! y! bt
TLy= b; thatis @ T2 A @y2A = @A
Lt L2 st y? b’
Output :y
if level >K then
SolveTLy=b
else

Solve T'y! = bt by calling ForwardSweep(T?; b*; level + 1;K)
Solve T2y? = I by calling ForwardSweep(T?; b?; level + 1;K)
SolveS'y® = ¥ Lly! L2y?

end if

4  Analysis

In this section, we collect some of the results on the methods presented in sectiph 3. By SPD we shall mean
symmetric positive de nite matrix. The input matrix A is reordered using techniques described in section
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Algorithm 4  BackwardSweep(y ;y; level; K): recursive procedure to solveTyx = y using nested precon-
ditioner B = B By . This routine is used when solving the equationB| Byx = b, whereByx = vy.

Input : K is the height of the separator tree obtained from nested dissectiorigvel is the current level of
computation in the separator tree. If level K, then the procedure solves the system

0 1 0 .1 0 .1
| (T-l) 1ul Xl 1
Tux =y, thatis @ | (T?) 1U2A @x2A = @y?A ;
| X3 y3

Output : X
if level >K then
Solve Tyx =y
else
Setx3=y3
Find xt = yr (T1) fuxs.
Find x2 = y2 (T?) 1u2x2.
end if

into a nested bordered block diagonal form. LetK be the height of the separator tree of nested dissection
ordering. For example in Figure @), K is equal to 2. The nodef 6q is situated at level 1, the nodes {4,5} are
at level 2 and subsequently the leaf nodes {0,1,2,3} are at leveB in the separator tree. Using the notations
introduced in section @ PTAP has the following additive decomposition

PTAP—D+X< (L + Ug):
- k k) -
k=1

Further, recall that 1 denotes [1,1;::,1].

Theorem 4.1 For a given SPD matrix A, the NSSOR preconditionerBynssor is SPD and (BNéSOR PTAP) <
1

Proof: The preconditioner Byssor can be seen as a multilevel preconditioner as in de nitior] 3JL. If the
original matrix A is SPD, then PTAP is SPD. The proof of the theorem follows from de nition, i.e., we
have (PTAPx;Px) = (APx;Px) > 0; for x 6 0. Notice that P2 = | sinceP is a permutation matrix, and
henceP is non-singular thusPx 6 0;for x 6 0.

Consequently, Gk = D is SPD. We have

Gk = (Lk+1 + Gka1 )Gk+11 (Gk+1 + I-I+1 );

It is easy to see that Gx+; is symmetric if A is symmetric. Also, Gk+1 is a block diagonal matrix and
Gk+1 + Lk+1 is a lower block triangular matrix with the same diagonal blocks as that of Gx+; . Thus
the eigenvalues ofGg+; + Lk+1 counting multiplicities are same as the eigenvalues ofs¢.; and hence
Gk+1 + Lk+1 is non-singular, sinceGg+1 is SPD. Thus it follows that

(Gt + Lis )G (Gicor + LT )%iX) = (Gy (Giss + Liba )X (Groa + LIy )X) > O; for x 60

Thus we have proved that Gy is SPD given that Gk, is SPD and henceByssor is SPD. Also, we have

X
Bnssor = PTAP + LG, 'Ly
k=1

X
(PTAPX;x)+ (G LIxLEx);
k=1

(Bnssor X;X)

(PTAPX; X);
0;8x60:

\%

Thus (Bydsor PTAP) 2 (0;1].
The following theorem shows that NMILUR preconditioners satisfy a particular Itering property.

INRIA
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Theorem 4.2 For a given matrix A for which NMILUR (NMILUC) as de ned in de nition 3.2 ekists,
NMILUR (NMILUC) satis es the following right (left) Itering property

Bumiur 17 = PTAP1T (rowsum property)
1Bnmiuc = 1PTAP (colsum property)

Proof: The preconditioners BymiLur  and BymiLuc  can be seen as multilevel preconditioners as in
De nition 3.2] For NMILUR we have,

X
Gk = D rowsum(Ly G, *Ux);
k=1
while for NMILUC we have,
X
Gk =D colsum(Lk G, *U):
k=1

Recall that rowsum(G) = Diag(G1") and colsum(G) = Diag (1G), where Diag (v) is the diagonal matrix
formed from vector v. We shall prove the row sum property forByviLur ~ @and the colsum property can be
proved in a similar way for BymiLuc - Writing

X
BnMILUR PTAP = (Lka 1Uk rOWSle(Lka 1Uk))
k=1

and observing the fact that rowsum(L;G; *LT)1™ = (LG, *L])17, the proof follows.

5 Numerical Results with Matlab

This section presents numerical results for the three nested preconditioners when applied to several real
world problems. The numerical results were performed in MATLAB 7.7 in double precision arithmetic on a
dual core intel processor with multi-threading enabled. The iterative scheme used is restarted GMRES(60).
The algorithm is stopped whenever the relative normkb  Ax k=kbk is less than10 8. The exact solution

is generated randomly. The maximum Krylov subspace dimension allowed i400Q For all our experiments

in MATLAB, we equilibrate the matrix by scaling the rows and columns by their respective norms. From
our experience, we nd that this is important for several problems. We refer to this equilibration routine
as unsymmetric equilibration (UE), since it can destroy the symmetry of the input matrix. We also discuss
results obtained with an equilibration that preserves symmetry. Given a symmetric matrix A, we use a
symmetric equilibration (SE) R = RAR, whereR is a diagonal matrix such that

Here a;; is the (i;j )th entry of A and n is the size of the square matrixA.

The input matrix is reordered using the nested dissection routine from theMetis graph partitioner [LO],
which is called inside MATLAB via a mex interface. The local sub-domain solver is built using LU routine of
MATLAB, while the GMRES routine is the one available at http://www-users.cs.umn.edu/ saad/software/ .

The methods are denoted in the tables as following:

MILU: modi ed ILU, with colsum constraint

NMILUR: nested MILU with rowsum constraint

NMILUC: nested MILU with colsum constraint
~ NSSOR: nested SSOR

ILUND: ILU(0) after the input matrix is reordered using 2-way nested dissection

ILUNO: ILU(0) with natural ordering of the input matrix

RR n° 7410
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Table 1: Test matrices.

| MATRICES | STANDS FOR | Size [ Non-zeros | Symmetric

2DNHm 2-dimensionall non-| m? 5(m?) Yes
homogenous problem
discretized onm m grid

2DADM 2-dimensionall advec-| m? 5(m?) No
tion diusion problem
discretized onm m grid

2DSKYm 2-dimensional sky scrap-| m? 5(m?) Yes
per problem discretized on
m m grid

2DCSm 2-dimensional convective| m? 5(m?) No
skyscrapper discretized on
m m grid

3DSKYm 3-dimensional  skyscrap-| m?® 7(m3) Yes
per problem discretized
onm m mgrid

3DCONSKYm | 3-dimensional convective| m3 7(m3) No
skyscrapper discretized on
m m m grid

3DANIM 3-dimensional anisotropic | m?® 7(m3) No
problem discretized on
m m m grid

mat_heat Heat equation on unstruc- | 19770 | 136152 Yes
tured mesh

mat_mem Equilibrium of a mem- | 31365| 358431 Yes
brane under load

crystm03 matrices from crystal sim- | 24696 | 583770 Yes
ulation

chipcooll convective thermal ow 20082 | 281150 No

airfoil_2d Unstructured 2D mesh | 14214 | 259688 No
(airfail)

Lapl Laplace 3D unstructured | 26082 | 362328 Yes

Lap2 Laplace 3D unstructured | 34960 | 501394 Yes

bodyy4 Structural problem, | 17546 | 121550 Yes
Florida matrix market

bo