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Abstract

The paper proposes a new calibration algorithm for cameras with lens distortion, that
uses a single image of a planar chessboard pattern acquired in general position. The ra-
dial distortion is modeled using the first order division model, and the method provides a
closed form estimation of the intrinsic parameters and distortion coefficient. The exper-
imental evaluation shows that the calibration accuracy is comparable to state-of-the-art
algorithms requiring multiple input images. We believe that our approach is particu-
larly well suited for the the calibration of medical endoscopes in computer aided surgery.
Since the lens is mounted on the camera before each usage in the OR, the calibration pro-
cedure must be performed by the clinical practitioner with minimum effort. We solve this
problem by proposing a fully automatic procedure that requires no human intervention
other than acquiring a single calibration image1.

1 Introduction

Endoscopes enable minimally invasive medical procedures with little or no injury to healthy
organs and tissues. Most of these procedures are very difficult to execute, and even the best
trained professionals make mistakes with inevitable consequences for the patient. In the last
decade efforts have been done towards developing systems for computer aided surgery [2].
The idea is to assist the practitioner during the intervention in order to minimize human error
and improve clinical results. Many of these systems rely in the processing of endoscopic
video to increase surgeon’s perception of the scene [8], and provide guidance inside the
human body [7].

Camera calibration can hardly be avoided in the context of image-based computer aided
surgery. However, developing an effective method for geometric calibration of a medical
endoscope is a very challenging task [14]. The reasons are the following: (i) in general
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the calibration result must be extremely accurate, because many medical procedures require
positioning accuracies of the order of tenth of millimeter; (ii) the endoscope optics introduces
strong radial distortion that must be considered in the projection model; (iii) and finally the
calibration procedure has to be performed by a non-expert in the Operation Room (OR),
which requires the method to be simple, fast and robust.

Geometric camera calibration is a well studied topic, and currently several methods and
software are available for accomplishing the task. Bouguet’s implementation of Zhang’s
method for calibrating a camera from a minimum of three grid images is particularly popular
[3, 15]. The toolbox is also able to accommodate non-linear lens distortions by considering
a 7th order polynomial model in a global iterative optimization step [5]. Unfortunately the
necessary calibration procedure does not meet the usability requirements specified above.
Camera calibration using the Bouguet toolbox involves the acquisition of several grid im-
ages and the manual selection of corner points. This selection is usually problematic in the
presence of strong lens distortion, with the user being asked to provide a rough initialization
of the relevant parameters. We can hardly imagine a medical doctor being eager to acquire
10 to 20 grid images during his regular clinical practice, and then struggle to manually select
points over all this imagery. Not solving this usability issue can potentially condemn to fail-
ure any kind of assistive technology relying on endoscopic video processing. Wengert et al.
address the problem by proposing an add-on to the Bouguet toolbox, where a dot grid is used
to avoid manual point selection [14]. Unfortunately, and since it is impossible to determine
the centers of the dots in an image with radial distortion, replacing the chessboard by dot
grid implies a decrease in the calibration accuracy.

This article proposes a method for endoscope calibration that overcomes the usability is-
sues without compromising the accuracy. The approach is fully automatic and, to the best of
our knowledge, it is the first algorithm in the literature able to calibrate a camera with radial
distortion from a single image of a planar grid. We build on recent developments in using
lifted coordinates to model the projection in central catadioptric systems [12]. This theory
is extended to the case of medical endoscopes by exploring the similarities between the di-
vision model for radial distortion and the para-catadioptric projection [1]. The experimental
results show that our linear calibration method from a single image presents an accuracy
comparable with Bouguet, that uses multiple images and iterative non-linear optimization.

Notation: We do not distinguish between a projective transformation and the matrix
representing it. Matrices are represented by symbols in sans serif font, e.g. M, and vectors
by bold symbols, e.g. Q. Equality of matrices or vectors up to a scalar factor is written as ∼.
By default points and conics are represented in homogeneous coordinates.

2 Camera Model

The images provided by medical endoscopes present strong radial distortion with straight
lines in the scene being projected into curves in the image. In the last century different
authors have proposed different models for radial lens distortion [5, 6]. This article assumes
that the endoscope follows the first order division model proposed in [4, 9].
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2.1 Projection using the Division Model for Lens Distortion

The division model maps undistorted points u into distorted points d as follows [1]:

d ∼ Γ ξ (u) ∼
[
2u1 2u2 u3 +

√
u2

3 −4ξ (u2
1 +u2

2)
]T

Γ ξ is a function in the projective plane P2, and ξ is a negative parameter that accounts for
the amount of radial distortion. Let Q be the non-homogeneous coordinates of a 3D point
with respect to an arbitrary world reference frame. Q is projected by the camera with lens
distortion into the image point

q ∼ KΓ ξ

([
R t

]
︸ ︷︷ ︸

P

[
Q

1

])

P is a 3×4 projection matrix depending on the camera rotation R and translation t [11]. K

stands for the matrix of intrinsic parameters, with f being the focal length, a the aspect ratio,
s the skew, and (cx,cy) the principal point.

K ∼




a f s f cx

0 a−1 f cy

0 0 1





Let’s assume that the imaged 3D points lie on a plane Π and, without loss of generality,
consider that the world reference frame is aligned with Π such that Π ∼

[
0 0 1 0

]T
.

Under such conditions the projection matrix P is replaced by a 3×3 plane-to-image homog-
raphy H, which encodes the translation t and the two first columns of the rotation R [11]. A
point in the 3D plane, with local homogeneous coordinates g, is projected at

q ∼ KΓ ξ

([
r1 r2 t

]
︸ ︷︷ ︸

H

g
)

(1)

2.2 Projection using Lifted Coordinates

The projection equations derived above are non-linear in homogeneous coordinates because
of the radial distortion function Γ ξ . This section shows how they can be written in a linear
manner using the so called lifted coordinates [12]. As pointed out by Barreto in [1], the
division model for lens distortion is isomorphic to projecting the 3D points Q on an parabolic
surface, and imaging the paraboloid by a pin-hole camera placed at its vertex. The paraboloid
model relates with cameras with lens distortion as the sphere model relates with central
catadiotpric systems [10]. Fig. 1(a) schematizes the model where O is the origin of the
camera reference frame (the effective viewpoint). The pin-hole camera is placed at the vertex
C with its optical axis aligned with the symmetry axis of the paraboloid. The vertex is
displaced with respect to O by a negative distance ξ that accounts for the amount of radial
distortion.

Let Q be the 3D non-homogeneous coordinates of a point in the camera reference frame.
Line L, defined by Q and the effective viewpoint O, intersects the paraboloid in two distinct
points, which are imaged at locations q+ and q−. The former is the ’real’ image of Q

(q ∼ q+), while the latter is a ’virtual’ image henceforth referred as the antipodal image
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(a) Paraboloid Model.

 

 

Initial/Seed Points (STEP 1)
Grid Projection (STEP 2)
Final Set of Points (STEP 3)

(b) Test Image 1

Figure 1: The left side is a scheme of the paraboloid model for cameras with lens distor-
tion proposed in [1]. The right side shows one of the test images used in the experimental
evaluation of section 4. The marked points are the outcome of steps 1, 2 and 3 of the algo-
rithm outlined in section 3.3. These steps concern the automatic detection of plane-image
correspondences.

point. Thus, Q has two images q+ and q− that are algebraically coupled. Consider the
projective points d± ∼ K−1 q±. As suggested by Sturm in [12], a pair of points can be
represented by a rank 2 dual conic Ω.

Ω ∼ d+ dT

− +d− dT

+ ∼

[
Q2

1 Q1Q2
1
2 Q1Q3

Q1Q2 Q2
2

1
2 Q2Q3

1
2 Q1Q3

1
2 Q2Q3 4ξ (Q2

1+Q2
2)

]
(2)

Since Ω is a 3×3 symmetric matrix with 6 distinct entries, it can be uniquely represented by
a 6× 1 homogeneous vector. This vector stacks the upper triangular part of the matrix and
can be computed using the vsym operator

vsym(Ω) ∼ D




1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0
1 0 0 0 0 0 0 0 1





︸ ︷︷ ︸
S

vec(Ω) ,

with vec(Ω) being the column-wise vectorization of Ω, S a permutation matrix that adds re-
peated entries in vec(Ω), and D a diagonal matrix such that Dii = ∑

9
j=1 Si j. Since Ω depends

on the second order monomials of Q, equation 2 can be written as a linear transformation of
the vector of lifted coordinates Q̂ ∼ vsym(QQT). It follows that

vsym(d+ dT

− +d− dT

+) ∼




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1

2 0 0

0 0 0 0 1
2 0

ξ 0 ξ 0 0 0




︸ ︷︷ ︸
Xξ

Q̂ .

Let’s return to the case of projecting points g lying on a 3D plane Π (equation 1). Taking
into account that q± ∼ Kd±, and that the homography H maps points g in plane coordinates,
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into points Q in camera coordinates (Q ∼ Hg), it arises that

vsym(q+ qT

− +q− qT

+) ∼ K̂Xξ Ĥ
︸ ︷︷ ︸

Hdist

ĝ , (3)

with K̂ and Ĥ being the lifted representations of K and H. The lifted representation of a
generic 3× 3 matrix A is given by the following formula, where ⊗ denotes the Kronecker
product [12]

Â ∼ D
−1

S(A⊗A)S

3 Calibration from a Single Plane-to-Image Homography

Equation 3 shows that the projection of plane by a camera with lens distortion can be ex-
pressed by a 6× 6 matrix Hdist . The lifted homography Hdist is a singular matrix (Xξ has
rank 5) that encodes the camera calibration (K and ξ ), as well as the relative pose between
the camera and the plane (H). This section shows that, while perspective camera calibration
requires a minimum of three plane homographies [15], cameras with radial distortion can be
fully calibrated from a single homography Hdist .

3.1 DLT Estimation of Hdist

The homography Hdist maps lifted point coordinates ĝ into pairs of antipodal image points
q±. When calibrating from a grid image, we know the point in the plane g, and and the
position q ∼ q+ where g is imaged. In general the ’virtual’ image point q− is unknown,
which precludes the direct estimation of Hdist following equation 3. Fortunately Sturm shows
in [12] that vsym(q+ qT

− + q− qT
+) is always in the null space of the lifted skew-symmetric

matrix [̂q]×. Thus, Hdist can be estimated by considering the following relation that arises
from equation 3

[̂q]×Hdist ĝ = 0 .

Since matrix [̂q]× is rank 3, each plane-image correspondence imposes 3 independent linear
constrains in the 36 entries of Hdist . Therefore the lifted homography can be estimated from
a minimum of 12 correspondences using a standard DLT-like approach.

3.2 Camera Calibration by Considering the Null Space of Hdist

Consider points d± ∼ K−1 q±. From the second equation of Fig. 1(a) it follows that any pair
d+ and d− is harmonic with respect to the circle of radius ξ−1. Thus, any pair of antipodal
image points q± must be harmonic with respect to the conic Ωξ .

Ωξ ∼ K
−T

[
−ξ 0 0
0 −ξ 0
0 0 1

]
K
−1

Moreover the equation qT
−Ωξ q+ = 0 can be re-written using lifted vector representation

vsym(Ωξ )T Dvsym(q+ qT

− +q− qT

+) = 0 .
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Let’s return to the homographic relation of equation 3. The left multiplication by vsym(Ωξ )T D

must zero both sides of the equation. This means that vsym(Ωξ ) can be computed from the
left null space of Hdist as shown below

vsym(Ωξ ) ∼ D
−1

N (HT

dist) (4)

By considering the Cholesky decomposition of Ωξ we obtain

Kη ∼




aη sη cx

0 a−1 η cy

0 0 1



 with η =
f√
−ξ

. (5)

Remark that Kη is such that Ωξ = K−T
η K−1

η . This matrix directly encodes every calibra-
tion parameter with the exception of the focal length and the distortion coefficient. Param-
eters f and ξ define the ratio η , but decoupling them requires inverting the plane-to-image
homography. It can be shown that the following relation holds (the proof is omitted because
of space limitations).

g ∼ H
−1

[
1 0 0
0 1 0
0 0

√
−ξ

]

︸ ︷︷ ︸
Gξ

[
0 0 0 1 0 0
0 0 0 0 1 0
−1 0 −1 0 0 1

]

︸ ︷︷ ︸
B

K̂ξ q̂ (6)

Each image point q can be mapped into a direction b ∼ BK̂ξ q̂. b is the back-projection
direction of q up to a similarity transformation Gξ [11]. Let’s use the correspondences b-g
to estimate the matrix product H−1 Gξ , and factorize the similarity transformation Gξ from
the result following the approach suggested in [13]. The distortion parameter ξ can now be
determined from Gξ , and the focal length can be computed as f = η

√
−ξ .

3.3 Algorithm for Single Image Calibration (SIC)

This section outlines our algorithm for calibrating a medical endoscope from a single image
of a planar grid. The method is fully automatic and requires no human intervention for
detecting the correspondences between image and plane. It is assumed that the calibration
plane is in the image foreground (see Figures 1(b) and 3(a)), that the grid is regular with
known dimensions, and that lens distortion follows the division model.

1. Initial detection of plane-to-image correspondences (seed points): Radial distortion
avoids the accurate detection of corners in the image periphery (see Fig. 1(b)). We
start by establishing an initial mask using conservative edge detection with a high
threshold. Corners over the mask are detected as local maxima in the entropy of the
image gradient. Square regions are segmented and counted to match the detected
corners with the corresponding grid points.

2. Projection of the grid into the image using an initial estimate of Hdist : The detected
plane-to-image correspondences enable an initial DLT estimation of Hdist (section
3.1). The result is used to project an augmented grid into the image (Fig. 1(b)).

3. Harris corner detection: Many points of the projected grid do not correspond to a
real image corners. Standard corner detection, with a small search window, is used to
discard wrong candidates and refine the position of valid ones (Fig. 1(b)).
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η f ξ a s cx cy

Mean Value 438.85 301.34 −0.47 0.998 −4.1e−4 375.72 317.29
Standard Deviation 8.73 26.88 0.08 1.3e−3 2.4e−3 3.34 7.18

Bouguet Value - 300.82 - 0.984 2.2e−3 371.70 318.95
Table 1: Mean and standard deviation of the calibration parameters across the 12 test images.

4. Final estimation of the homography Hdist : The homography is re-estimated from the
entire set of correct plane-to-image correspondences (section 3.1).

5. Computation of Ωξ and Kξ : Ωξ is computed from the left null space of Hdist (equation
4), and Kξ is determined by Cholesky decomposition. The aspect ratio a, skew s, and
principal point (cx,cy) are directly recovered from Kξ (equation 5).

6. Decoupling of the focal length f from the distortion parameter ξ : The similarity trans-
formation Gξ is estimated after back-projecting the image points. ξ and f are com-
puted from Gξ and η as explained at the end of section 3.2.

4 Experimental Results

The performance of the SIC algorithm was evaluated using a set of 12 images acquired by
an off-the-shelf medical arthroscope. Two of these images are exhibited in Figures 1(b) and
3(a), where the grid is viewed from two substantially different viewpoints. The calibration
procedure is independently run for each test image. Fig. 2(a) shows the outcome of steps 1
to 3, which concern the automatic detection of plane-image correspondences. The number
of detections varies across examples, with images 11 and 12 having the minimum number
of initial points required for the homography estimation. Despite the input variability the
calibration results present good repeatability across test images (see Fig. 2(b)(c) and Tab.
1). The larger standard deviations were observed for parameters f and ξ . This is explained
by the singularity in estimating Gξ (step 6 of the procedure) when the calibration plane is
fronto-parallel to the camera [15]. Thus, in some examples the decoupling between f and ξ
tends to be ill-conditioned. This is also the reason explaining the poor results in recovering
f from image 1(Fig. 2(c)).

In addition to applying our method to each image, we also calibrated the arthroscope
using the Bouguet toolbox [3]. This toolbox implements Zhang’s method [15], and it is
probably the state-of-the-art software for camera calibration. The cameras was calibrated
using manually selected points in the 12 test images. The radial distortion was modeled
using a 7th order polynomial model [5] with the coefficients being estimated in a final global
optimization step. As shown in Figures 2 and 3 the calibration results achieved by the SIC
algorithm are comparable with the ones obtained with Bouguet.

5 Conclusions and Future Work

We proposed the first algorithm in the literature able to calibrate a camera with radial distor-
tion from a single image of a planar grid in general position. Our method is fully automatic,
which makes it particularly relevant for computer aided medicine relying in the processing of
endoscopic imagery. For these applications the endoscope has to be calibrated by the clinical
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Figure 2: Single Image Calibration (SIC) applied to 12 test images. The graphic on the left
shows for each example the plane-image correspondences detected at the end of steps 1 (seed
points) and 3 (final points). The graphic in the middle concerns the results in estimating the
principal point (cx,cy). The right graphic shows the estimated η and focal length f . The
figure compares the results of 12 independent calibrations using SIC (each image enables a
full calibration), against the result obtained with Bouguet’s that simultaneously uses the 12
images and performs final global refinement with iterative optimization.

practitioner in its environment, which implies a minimal effort procedure. We believe that
our solution is the first one meeting such requirements without compromising the calibration
accuracy. We are currently running clinical trials to better assess the usability of method.

The experiments show that our single image calibration has good repeatability and pro-
vides results comparable to the ones obtained with the Bouguet toolbox [3]. As future work
we intend to improve the accuracy of our calibration by refining the parameters in a comple-
mentary non-linear optimization step. This step will also enable using higher order models
that better accommodate certain types of distortions.
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