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ABSTRACT 
A very common and effective approach for 3D 
reconstruction is a camera based system where 3D 
information is extracted from images. Different systems 
involve different camera calibration methods/tools. 
Characteristically for many systems is to calibrate the 
cameras using a single wand of known length. As integral 
part of the calibration procedure, initial camera 
parameters are commonly computed by putting and 
imaging two or three orthogonal wands inside the 
working volume. This is usually followed by the second 
step: sweeping the working volume with a single wand of 
known length. This paper presents two alternative ways of 
initializing camera parameters using essentially the same 
calibration tools (orthogonal wands), however by 
sweeping the volume with an orthogonal pair or triad of 
wands instead of a single one. The proposed methods 
exploit the orthogonality of the used wands and familiar 
linear constraints to calculate the image of the so-called 
absolute conic (IAC). Extracted internal parameters 
values from IAC are closer to the refined ones, assuring 
faster and safer convergence. Even without refinement, 
sometimes not necessary, reconstruction results using our 
initial sets are better than using commonly obtained initial 
values. Besides, the entire calibration procedure is 
shortened since the usual two calibration steps become 
one. 
 
KEY WORDS 
camera calibration, 3D reconstruction, absolute conic 
 
 
1.  Introduction 
 
3D reconstruction of points in space is a task present in a 
variety of areas and applications: entertainment, 
animation, industrial design, sports/medicine etc. 
Different applications contributed to parallel 
developments of a variety of principles (and 
instrumentations) to obtained 3D information [1]. One of 
the many areas where 3D reconstruction is highly desired 
is the field of human motion analysis [2]. A very common 
and effective approach for that particular purpose uses 
camera based systems. The image created by a camera 
represents a two-dimensional projection of a three-
dimensional object. Two such images are sufficient to 

yield 3D coordinates by the means of photogrammetric 
reconstruction [3]. Prior to the reconstruction of the 
unknown object points, a camera calibration procedure 
takes place. 
 
The projection of a point from 3D space to the 2D camera 
image sensor plane is described by a camera model and 
the parameters of that model. Calibration is a process 
during which particular parameters are determined [4]. 
Over the course of years different methods/tools evolved 
in order to make calibration as simple as possible and at 
the same time satisfying a high degree of reconstruction 
accuracy. Essentially, we need to provide images whose 
known scene geometry can be used to calibrate camera. 
An easy way to do this is to build and image a special 
calibration object of some kind. Traditionally, data for 
calibration were provided by some form of 3D calibration 
cage. Such an approach, apart from apparent advantages 
of being rather accurate and reliable, has many 
disadvantages that nowadays are less and less acceptable. 
For instance, accurate fabrication, manipulation and 
storage of 3D cages very often asks for considerable 
amounts of money, patience (sometimes even with no 
guarantee that calibration will be successful after all) and 
space, respectively. All those conditions are quite relaxed 
if we decide to calibrate cameras using calibration planes, 
i.e. 2D calibration tools [5], [6]. Taking one more step in 
simplifying things is to use 1D calibration objects [7]. 
There is an ongoing tendency to make calibration 
methods as simple as possible and using as little data as 
possible. These approaches heavily rely on (hopefully) 
readily available scene constraints and/or assumptions 
about camera parameters (spatial configurations) [8], [9], 
[10], [11]. The ultimate goal of auto-calibration 
(calibration without any specific calibration object) is 
theoretically feasible, but often inapplicable in practice 
due to unrealistic assumptions about camera parameters 
and/or degenerate camera configuration [12], which are 
typical for a certain applications. 
 
Presently a lot of commercially available systems are 
offering camera calibration using simply wand(s) of 
known length(s), for example [13]. A typical procedure of 
such 3D reconstruction systems consists of two steps. The 
first step requires to place and image two or three 
orthogonal wands. The origin and orientation of these 
wands actually determine the spatial coordinate system in 
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accordance with user needs. Additionally each wand has a 
certain number of markers, whose relative positions are 
known, so that the correspondence between 3D space and 
camera image planes can be readily established and used 
to initialize camera parameters. Due to the existence of 
various sources of errors or noise, primarily those caused 
by lens imperfection and non linear distortion, these 
initial estimates of camera parameters are only rough 
approximations [14]. The task of the second calibration 
step is to refine these initial cameras parameters by 
waving with a wand of known length (so called wand 
dance) throughout the desired calibration volume.  
 
The aim of this paper is to use commonly present 
calibration tools (orthogonal wands with attached 
markers) and to investigate the applicability of alternative 
scene constraints that would allow a better parameter 
initialization, i.e. closer to the true parameter values 
and/or providing better reconstruction accuracy right from 
the start. Providing initial parameters which are closer to 
true (refined) ones would not only assure faster and saver 
convergence, as result of the refinement procedure, but 
also allow the possibility that reached refined convergent 
set would be closer to the true values and ultimately 
increase the reconstruction accuracy [15]. Specifically, 
using orthogonal attached wands we show two common 
ways to provide linear constraints on a geometric entity 
known as the absolute conic. Hence, internal camera 
parameters are then in principle trivially obtainable.  
 
 
2.  Theoretical background 
 
Our approach of extracting initials value of camera 
parameters starts with the identification of the image of 
the absolute conic (IAC). The complete description and 
properties of the absolute conic and its image can be 
found elsewhere [16]. Here, only the basics will be 
reviewed.  
 
The absolute conic is a conic on the plane at infinity, 
consisting of points X such that 
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where points with t=0 are called points at infinity and 
their images are so called vanishing points v. Writing the 
first three components of point X separately as d the 
defining equation for the absolute conic within the plane 
at infinity, has  even simpler form: 
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Let us recall the decomposition of a camera's projection 
matrix P,  
 

[ ]tR|RK=P ⋅−⋅  (3) 

 
where K is the upper triangular matrix of internal camera 
parameters, R and t represent external camera parameters 
(orientation and position). The image point (i.e. vanishing 
point) corresponding to a point at infinity mapped by a 
camera with matrix P (3) is given by 
 

[ ] dRK=dP=v T ⋅⋅⋅ 0  (4) 

 
Solving (4) for d and combining with (2) gives: 
 

vωv=v)K(Kv TTT ⋅⋅⋅⋅⋅ −1  (5) 

 
Image point v is on the image of the absolute conic if and 
only if (5) is equal to zero. Thus, the image of the 
absolute conic is a plane conic ω represented by the 
matrix (KKT)−1. Obviously, the internal camera 
parameters are neatly embedded in the IAC and once the 
matrix ω is found, its Cholesky decomposition would 
yield us the matrix K itself. It can further be shown that 
the angle α between two lines in 3D space can be found 
using the information about the vanishing points v1 and v2 
of those two lines and ω:  
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Conversely, if the angle between two lines is known we 
have a constraint on ω. Generally, the above expression is 
quadratic. However, assuring that the angle between the 
lines is 90° will give us a linear constraint: 
 

021 =vωvT ⋅⋅  (7) 

 
The matrix ω is symmetric and defined up to scale. 
Without any further assumption about internal camera 
parameters (such as zero skew or known aspect ratio) we 
need a minimum of five such orthogonal line pairs to find  
a solution for ω. With more than five pairs a least squares 
solution can be found. And in our case during the wand 
dance with an orthogonal triad of wands this is exactly 
what is obtained. Vanishing points themselves can be 
commonly found as intersections of images of parallel 
lines or, as it is in our case, from known ratios on single 
lines. 
 
A similar linear constraint to (7) can be acquired for any 
point whose image lies on the IAC. In the case of planar 
projective geometry we can define two characteristic 
points, so called circular points (or, absolute points). The 
circular points I and J are a pair of complex conjugate 
ideal points: 
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[ ] [ ]TT i=Ji=I 0101 −  (8) 

 
For a given plane, points at infinity all lie on the so-called 
line at infinity. The name ‘circular points’ originated from 
the fact that every circle intersects the line at infinity at 
the mentioned circular points. In 3D projective space 
every plane π intersects the plane at infinity π∞ at the line 
at infinity l∞ of that particular plane π. Also, this line l∞ 
intersects the absolute conic in two circular points of 
plane π. Furthermore the images of those circular points 
lie on the IAC. Thus, if we can find the homography H 
between some plane π and the camera image plane we can 
easily apply that homography H on the circular points (8) 
to find images of circular points. Knowing the images of 
circular points we have another linear constraint on the 
elements of the IAC, similar to (7). Let h1 and h2 be the 
first two columns of H, then: 
 

02121 =)hi±(hω)hi±(h T ⋅⋅⋅⋅  (9) 

 
This constraint on ω is used also in [5], [6]. To find the 
plane homography H a minimum of four points are 
needed. In our case, each pair of orthogonal wands 
represents such a plane π and from markers on the wands, 
the homography H can thus be computed.  
 
 
3.  Materials and methods 
 
The 3D reconstruction system used during the course of 
this work, called Smart, is commercially available by the 
eMotion company [13]. The system version used (version 
1.10, Build 2.39) consists of 9 cameras (50 Hz). It is a so-
called optoelectronic system which actually reconstructs 
positions of passive retro-reflective markers, attached to 
the subject’s points of interest. Markers are illuminated by 
stroboscopic IR sources of light attached to the cameras  
and the cameras are additional equipped with IR filters. 
Smart is installed in the Biomechanic laboratory of 
Peharec Polyclinic in Pula, Croatia [17]. The system is 
there used on a daily basis for various motion analyses of 
healthy and injured subjects. For more in-depth motion 
analysis the synchronized system add-ons are also two 
Kistler force platforms and 8 channels EMG device.  
 
The first experiment consisted of a typical system 
calibration as proposed by the system's manufacturer. An 
orthogonal triad (each axis 60cm long) was positioned on 
the floor (Figure 1). Each axis of the triad defined one of 
the world coordinate axes and had a certain number of 
retro-reflective markers on it. The vertical axis Y had 3 
markers and the horizontal axes, X and Z, had 4 and 2, 
respectively. The relative positions of markers are 
accurately known. A visual check if each camera ‘sees’ 
all triad wands, i.e. the markers on it, was performed and 
the image acquisition was undertaken for a few seconds. 
Afterwards, as a part of the second step, the orthogonal 
triad was removed and a wand dance with a single wand 
was performed for a couple of minutes. The entire 

procedure was carried out by trained polyclinic personnel 
to ensure that calibration results would not be impaired by 
inexperience. Finally, Smart’s software routines were 
started to compute cameras parameters based on acquired 
images from the above two calibration steps. 
 
In the second experiment, our approach was used where 
the wand dance started right away with the orthogonal 
triad. It lasted roughly 60 seconds (half of the time 
proposed by Smart for its wand dance with a single wand) 
and at the end the triad was simply put on the floor to set 
the origin of the working volume's coordinate system. In 
both experiments, the volume was approximately 3.2m × 
2.2m × 2.0m. 
 

 
 

Figure 1. Image of the orthogonal triad with attached 
markers. Markers distances [cm] with respect to the 
triad origin are: X-axis 15, 30, 45, 60; Y-axis 15, 45, 

60; Z-axis 30, 60. 

 
 
4.  Results 
 
Besides a rather comprehensive analyzing software, 
Smart also has the capability to export/import various data 
into/from Matlab: 2D image data (extracted marker 
centroids for the acquired sequence), 3D reconstruction 
data for the markers, camera projection matrices etc. 
Three things were exported for further analysis: 2D image 
data of markers for the orthogonal triad when put to the 
floor which otherwise serves for camera parameter 
initialization in the Smart calibration procedure. Then, 
camera projection matrices calculated by Smart's 
calibration procedure were exported and finally the 2D 
image data corresponding to the wand dance with the 
orthogonal axes triad. 
 
Once exported into Matlab the following was calculated. 
First, based on 2D image data of markers on the 
orthogonal triad and their known spatial relationship, 
camera projection matrices were calculated which are 
supposed to be further processed by the Smart software to 
refine them after the wand dance. Next, from 2D image 
data of the orthogonal triad wand dance, vanishing points 
for each axis were calculated in each frame, for all 
different cameras, using the known length ratios of the 
markers. As explained before this enabled us to set up 

Y 
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linear equations to compute the IAC and consequently an 
initial set of internal camera parameters. This type of 
calibration will be further referred to in the text as Type 
A. Finally, again from the wand dance and due to the 
known spatial configuration of some orthogonal wands 
and their markers (which define a plane), and along with 
their image coordinates, we computed plane 
homographies. These were used like described above to 
establish another set of linear constraints on the IAC. This 
type of calibration will be further referred to as Type B.  
 
Initial values of internal camera parameters from the 
Smart method, final values as provided by Smart and 
from our two approaches (Type A and Type B) are given 
for comparison in Table 1, Table 2, Table 3 and Table 4, 
respectively. Each row represents values for one of the 
nine cameras. Once the internal parameters of cameras are 
known and given enough image correspondences for 
every camera pair, their fundamental matrix can be 
calculated and therefore the orientation of each camera 
with respect to each other can be extracted from [16]. 
Finally, the complete projection matrices for each camera 
pair can be constituted. Projection matrices originating 
from data in Table 1, Table 3 and Table 4 were separately 
calculated in order to reconstruct the length of the wand 
during the wand dance. Furthermore, the same length was 
reconstructed using the (final) projection matrices 
provided by Smart and exported in Matlab. Mean errors 
between reconstructed and true lengths (45cm) are given 
in Table 5 for all 36 possible camera pairs. The first, 
second, third and fourth columns reflect data from Table 
1, final Smart provided projection matrices (Table 2), 
Table 3 and Table 4 respectively. All 3D reconstructions 
and length calculations are performed on distorted image 
coordinates and no distortion correction was undertaken. 
 

Table 1.Internal camera parameters, initial values, Smart 

Focal length [pixels] 

X 
direction 

Y 
direction 

Skew 
factor 

Principal point 
[pixels] 

751,9 387,0 12,7 400,0 175,3 
755,6 381,0 18,3 330,3 233,5 
676,6 343,3 7,4 272,3 200,5 
704,1 367,4 6,4 320,7 171,3 
765,2 399,0 5,0 335,9 170,2 
746,8 386,4 19,0 376,9 215,3 
691,0 354,6 9,2 285,3 164,5 
672,7 343,3 14,4 297,2 142,7 
672,8 348,2 10,3 292,1 156,2 

 

 
Table 2. Internal camera parameters, refined values, Smart 

Focal length [pixels] 

X 
direction 

Y 
direction 

Skew 
factor 

Principal point 
[pixels] 

727,7 375,9 0,0 349,4 153,7 
723,8 374,6 0,0 304,4 145,4 
723,9 375,2 0,0 290,3 138,4 
724,3 374,7 0,0 325,4 140,0 
724,2 375,1 0,0 347,7 137,0 
724,8 375,0 0,0 349,9 143,4 
719,2 371,8 0,0 328,9 134,7 
730,1 377,2 0,0 350,7 133,4 
715,9 370,5 0,0 345,0 138,6 

 
Table 3. Internal camera parameters, initial values, our first 

approach (type A) 

Focal length [pixels] 

X 
direction 

Y 
direction 

Skew 
factor 

Principal point 
[pixels] 

724,8 376,2 0,0 376,9 128,0 
749,7 390,0 0,7 321,9 136,0 
743,4 390,7 -0,5 267,5 132,1 
728,3 376,5 -0,3 346,9 133,5 
715,6 373,8 -1,5 332,8 145,2 
734,6 381,0 0,2 381,5 136,6 
715,3 372,9 -2,3 274,4 126,3 
704,4 370,2 0,9 308,0 122,2 
723,3 373,4 0,5 341,9 136,2 

 
Table 4. Internal camera parameters, initial values, our 

second approach (type B) 

Focal length [pixels] 

X 
direction 

Y 
direction 

Skew 
factor 

Principal point 
[pixels] 

683.91 354.36 0 379.76 128.79 
689.64 357.33 0 322.63 135.05 
669.16 346.71 0 260.05 138.78 
699.19 362.27 0 343.82 138.23 
695.17 360.19 0 368.39 141 
709.06 367.39 0 391.62 140.19 
640.2 331.71 0 312.66 172.37 
688.78 356.88 0 362.46 131.42 
676.49 350.52 0 357.15 143.89 
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Table 5. Mean length error between reconstructed and true 

wand length [mm] 

Smart 
initial 

Smart 
final 

Proposed 
method, 
type A 

Proposed 
method, 
type B 

22.84 8.82 15.09 11.85 
16.00 8.21 7.66 7.56 
15.16 6.91 4.52 9.29 
13.01 6.18 3.95 7.88 
22.98 9.01 6.99 6.74 
13.15 11.48 3.60 14.57 
13.92 5.42 5.05 8.61 
11.93 7.15 3.98 7.68 
19.37 6.35 6.87 8.45 
17.06 5.73 4.98 7.18 
15.24 5.14 4.12 7.14 
24.92 7.18 9.66 7.30 
15.18 8.49 5.40 16.56 
15.54 4.69 5.65 7.78 
30.62 6.07 4.96 7.32 
15.13 5.82 4.52 6.41 
38.16 10.86 6.58 9.06 
23.22 7.41 6.03 5.71 
15.59 10.27 14.41 61.37 
14.46 4.74 5.29 10.08 
12.03 4.82 3.78 8.01 
14.16 5.47 6.30 7.08 
23.99 6.72 6.20 10.01 
14.38 6.52 3.86 15.81 
15.48 5.93 6.18 7.62 
10.88 4.86 3.96 8.51 
20.73 6.06 4.58 7.75 
15.94 9.48 4.11 14.01 
13.24 5.32 7.15 8.50 
7.85 4.59 6.05 11.93 
21.50 10.93 4.55 10.84 
21.62 6.89 6.33 9.32 
18.48 5.13 4.69 7.91 
12.55 7.22 5.66 13.01 
8.90 6.43 2.87 10.32 
13.14 5.04 13.85 8.73 

 
 
5. Discussion and concluding remarks 
 
The camera parameters in Table 2 are the result of Smart's 
refinement procedure. Although these values may still not 
be the perfect true ones they can at least be regarded as 
very close to the true ones. Thus, an initialization that 
gives closer values to these refined ones is generally more 
desirable. A closer comparison of Table 1 (initial values 
by Smart) and Table 3 (initial values by type A) with 
Table 2 (Smart refined values) reveals that in practically 

all cases the parameters computed by type A calibration 
are quite closer to Smart’s refined ones. The results 
obtained from type B calibration (Table 4) are not as good 
as type A, but still better than Smart’s initial ones. The 
most likely reason for type A being better then type B has 
to do with the implementation (practical) issues.  
 
Type B assumes the computation of planar homographies 
H between planes in space defined by two orthogonal 
wands and the image plane. To determine H we need a 
minimum of four point correspondences. In the presence 
of noise the computed H would be more accurate if one 
had more than four correspondences and hopefully 
equally distributed throughout the plane. However, in our 
case equal distribution is not possible since we are 
obtaining correspondences from markers attached on two 
orthogonal wands forming the plane. Consequently, 
images of circular points, found by such H, will not 
provide optimal constraints for the linear equation system 
used to compute the IAC. An additional practical issue 
with type B calibration, noticed throughout 
experimentation, is to avoid frames where images of two 
wands make small angles. Including such images, 
together with noise, would impair the ultimate solution 
for camera parameters. We set a rather strict threshold 
value which discards all those frames where the angle 
between wands in the image plane is less than 80º. This 
threshold left us with even less data (redundancy) for 
subsequent processing. One feature that brought an 
improvement for type B was enforcing the zero skew and 
known aspect ratio. Given the fact of working with high 
quality cameras those two assumptions are reasonable. 
First, a so-called soft constraining was tried to enforce the 
mentioned values. It basically means adding a couple of 
more equations to the equation system, where appropriate 
elements of IAC are explicitly set to zero, i.e. to a known 
ratio. As intuitively expected, the significance of adding 
those two equations to a system of a large number of 
equations (~several thousands) was negligible. Second, a 
so called hard constraining was undertaken. In this case 
the system of equations to calculate elements of IAC was 
set right from the start to accommodate the fact of zero 
skew and known aspect ratio (thus, decreasing the number 
of unknowns in the IAC). This approach did bring an 
improvement (not shown due to limited space) over the 
case where skew factor and both focal lengths were 
explicitly calculated as well. One can note that skew 
factors in Table 4 are all zero. 
 
There are some noteworthy implementation issues for 
type A also. First at all, here the desired equal distribution 
of image points for calibration is easier to achieve. 
However, in this case two potentially problematic 
situations exist:  wand positions which are (close to) 
either perpendicular or parallel to the image plane. The 
first problem is easily solved by discarding all those 
frames where the image distance between markers on a 
wand is less than a certain number of pixels. The second 
potential problem (parallelism) could have been resolved 
perhaps by detecting vanishing points that are at a large 
distance from the image center. However, we took a 
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different approach here. We start with considering 
vanishing points around the image center and then 
gradually increasing the image area, taking more and 
more vanishing points into the computation of the IAC. 
Each time a different set of vanishing points would give 
us different set of camera parameters. How to choose the 
right set? We accept the set which has the smallest skew 
factor. Namely, vanishing points which originated from 
those wand positions close to parallel with the image 
plane and under the influence of noise will be quite off 
their true values. Consequently, including such data, and 
perhaps some others that are also for some reason quite 
off, will very likely give incorrect values for internal 
camera parameters. One parameter that we know for a 
fact value is the skew being zero. Thus, it is reasonable to 
accept that set of IAC elements that contains the smallest 
skew is the one satisfactory approaching true parameter 
values. Analyzing type A and type B we can conclude 
that type A calibration would be the method of choice for 
parameter initialization. 
 
To test the quality of initial sets of parameters, perhaps 
the simplest, 3D reconstruction was undertaken, assuming 
a linear camera model and no distortion correction. 
Furthermore, testing separate camera pairs gave insight of 
results consistency for various camera configuration 
setups. As shown in Table 5, the mean errors of our two 
approaches are not only significantly better than when 
using Smart’s initial results, but results from type A are in 
particular very close to the case when final Smart’s 
parameter sets are used. That strongly indicates, once 
again, that our initial set is very close to Smart’s final one.  
 
It has already been noted that closeness of the initial 
solution to the final one highly determines speed of 
convergence and in a large number of cases determines 
whether there will be any convergence or none at all. It is 
not rare in practice that after Smart parameters refinement 
is done the user is notified that calibration failed due to 
the fact that no convergent set of solutions is obtained and 
the calibration procedure has to be done again. Or giving 
the larger residuals of parameter refinement procedure the 
user is indirectly encouraged to redo calibration anyway. 
That is another issue that goes in favor of our approach 
which gives as initial estimates values closer to the final 
ones and when starting with them it is less likely that the 
calibration procedure will have to be repeated.  
 
Let us underline that Smart’s final sets of parameters are 
used also on distorted image data, using the linear camera 
model. For completeness, we need to say that the 3D 
reconstruction mean errors that Smart normally outputs, 
after distortion correction on images, are of the order of 
millimeter, in the case where camera pairs are considered. 
In case where all available cameras are simultaneously 
used for triangulation, results are even better. The exact 
procedure how Smart refines parameters, based on known 
wand length, is not known to the authors. Besides, an 
open question still remains what would be our wand 
length reconstruction results after parameter refinement, 
either for type A or for type B. The answer to that 

question is left for future work. Still, closeness of our 
initial sets of solution to Smart's final ones strongly 
suggests that it should be at least about the same, if not 
perhaps better. 
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