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Multi-View Geometry for General Camera Models

P. Sturm
INRIA Rhône-Alpes, 38330 Montbonnot, France

Abstract

We consider the structure from motion problem for a pre-
viously introduced, highly general imaging model, where
cameras are modeled as possibly unconstrained sets of pro-
jection rays. This allows to describe most existing cam-
era types, including pinhole cameras, sensors with radial or
more general distortions, catadioptric cameras (central or
non-central), etc. We introduce a hierarchy of general cam-
era models: the most general model has unconstrained pro-
jection rays whereas the most constrained model dealt with
here is the central model, where all rays pass through a sin-
gle point. Intermediate models are what we call axial cam-
eras (all rays touch a single line), and x-slit cameras (rays
touch two lines). The foundations for a multi-view geometry
of completely non-central cameras are given, leading to the
formulation of multi-view matching tensors, analogous to
the fundamental/essential matrices, trifocal and quadrifo-
cal tensors of perspective cameras. This framework is then
specialized explicitly for the two-view case, for the interme-
diate camera types mentioned above.

1. Introduction
Many different types of cameras including pinhole,

stereo, catadioptric, omnidirectional and non-central cam-
eras have been used in computer vision. Most existing cam-
era models are parametric (i.e. defined by a few intrinsic pa-
rameters) and address imaging systems with a single effec-
tive viewpoint (all rays pass through one point). In addition,
existing calibration or structure from motion procedures are
often taylor-made for specific camera models, see examples
e.g. in [3, 11, 7].

The aim of this work is to relax these constraints: we
want to propose and develop calibration and structure from
motion methods that should work for any type of camera
model, and especially also for cameras without a single ef-
fective viewpoint. To do so, we first renounce on parametric
models, and adopt the following very general model: a cam-
era acquires images consisting of pixels; each pixel captures
light that travels along a ray in 3D. The camera is fully de-
scribed by [9]:
• the coordinates of these rays (given in some local co-

ordinate frame).
• the mapping between rays and pixels; this is basically

a simple indexing.

Figure 1. Examples of imaging systems; (c)–(e) are non-central
devices. (a) Catadioptric system. (b) Central camera (e.g. per-
spective, with or without radial distortion). (c) Camera looking at
reflective sphere. (d) Omnivergent imaging system [18, 21]. (e)
Stereo system.

This general imaging model allows to describe virtually
any camera that captures light rays travelling along straight
lines. Examples are (cf. figure 1):
• a camera with any type of optical distortion, such as

radial or decentering.
• a camera looking at a reflective surface, e.g. as often

used in surveillance, a camera looking at a spherical
or otherwise curved mirror [12]. Such systems, as op-
posed to central catadioptric systems [1, 6] using e.g.
parabolic mirrors, do not in general have a single ef-
fective viewpoint.

• multi-camera stereo systems: put together the pixels of
all image planes; they “catch” light rays that definitely
do not travel along lines that all pass through a sin-
gle point. Nevertheless, in the above general camera
model, a stereo system (with rigidly linked cameras) is
considered as a single camera.

• other acquisition systems, many of them non-central,
see e.g. [2, 14, 17, 18, 21, 25, 26], insect eyes, etc.

In this paper, we propose the foundations for a mult-
view geometry of the general, non-central camera model,
leading to the formulation of multi-view matching tensors,
analogous to the fundamental or essential matrices, trifocal
and quadrifocal tensors of perspective cameras. The multi-
view geometry will be formulated for calibrated cameras,
i.e. we do not directly work with image point correspon-
dences, but rather with correspondences between associated
camera rays in 3D.

We also introduce a natural hierarchy of camera models:
the most general model has unconstrained projection rays



whereas the most constrained model dealt with here is the
central model, where all rays pass through a single point.
Intermediate models considered in this paper are axial and
x-slit cameras. The two-view geometry, first established for
non-central cameras, is specialized for these intermediate
camera types in this paper. Several works exist on epipo-
lar geometry for omnidirectional cameras, central and non-
central ones [5, 8, 15, 19, 22, 24]. Most of them aimed
at obtaining matching constraints between uncalibrated im-
ages, whereas in this paper, we deal with calibrated cameras
and give a rather complete treatment of the problem.

The paper is organized as follows. §2 gives some back-
ground on Plücker coordinates for 3D lines, used to param-
eterize camera rays. A hierarchy of camera models is pro-
posed in §3. §4 gives parameterizations of projection rays,
for the different camera models. The multi-view geometry
for the general camera model, as well as two-view geometry
for intermediate models, is given in §5.

2. Plücker Coordinates

We represent projection rays as 3D lines, via Plücker co-
ordinates. Several definitions exist for them; we use the fol-
lowing. Let A and B be the homogeneous coordinates of
3D points defining a line. The line can be represented by the
skew-symmetric 4 × 4 Plücker matrix L = ABT − BAT.
It is independent (up to scale) of the points used to repre-
sent the line. An alternative representation for the line is its
Plücker coordinate vector of length 6:

L =











A4B1 − A1B4

A4B2 − A2B4

A4B3 − A3B4

A3B2 − A2B3

A1B3 − A3B1

A2B1 − A1B2











(1)

We sometimes split it in two 3-vectors a and b,

aT =
(
L1 L2 L3

)
bT =

(
L4 L5 L6

)

which satisfy the so-called Plücker constraint: aTb = 0.
Consider a metric transformation defined by a rotation

matrix R and a translation vector t, acting on points via:

C →

(
R t

0T 1

)

C

Plücker coordinates are then transformed according to
(

a

b

)

→

(
R 0

−[t]×R R

)(
a

b

)

Two lines intersect if the following relation holds:

LT

2

(
0 I

I 0

)

L1 = aT

2
b1 + bT

2
a1 = 0 (2)

Table 1. Camera models, defined by 3D points and lines that have
an intersection with all projection rays of a camera.

Points/lines cutting rays Description
None Non-central camera
1 point Central camera
2 points Camera with a single ray
1 line Axial camera
1 point, 1 line Central 1D camera
2 skew lines X-slit camera
2 coplanar lines Union of a non-central 1D

camera and a central camera
3 coplanar lines without Non-central 1D camera
a common point

3. A Hierarchy of Camera Models

A non-central camera may have completely uncon-
strained projection rays, whereas for a central camera,
there exists a point – the optical center – that lies on all
projection rays. An intermediate case is what we call axial
cameras, where there exists a line that cuts all projection
rays – the camera axis (not to be confounded with optical
axis). Examples of cameras falling into this class are:

• x-slit cameras [16, 27] (also called two-slit or crossed-
slits cameras), and their special case of linear pushb-
room cameras [10]. Note that these form a sub-class
of axial cameras, as explained below.

• stereo systems consisting of 2 central cameras or 3 or
more central cameras with collinear optical centers.

• non-central catadioptric cameras of the following type:
the mirror is any surface of revolution and the opti-
cal center of the central camera looking at it (can be
any central camera, not only pinhole), lies on its axis
of revolution. It is easy to verify that in this case, all
projection rays cut the mirror’s axis of revolution, i.e.
the camera is an axial camera, with the mirror’s axis
of revolution as camera axis. Note that catadioptric
cameras with a spherical mirror and a central camera
looking at it, are always non-central axial cameras.

These three classes of camera models may also be de-
fined as: existence of a linear space of d dimensions that
has an intersection with all projection rays: d = 0 defines
central, d = 1 axial and d = 2 general non-central cameras.

Intermediate classes do exist. X-slit cameras are a spe-
cial case of axial cameras: there actually exist 2 lines in
space that both cut all projection rays. Similarly, central 1D
cameras (cameras with a single row of pixels) can be de-
fined by a point and a line in 3D. Camera models, some of
which without much practical importance, are summarized
in table 1. A similar way of defining camera types was sug-
gested in [16].



Table 2. Parameterization of projection rays for different camera models (see text).
Camera model Central Axial X-slit

finite infinite finite infinite finite+finite finite+infinite

Parameterization
of projection rays
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0 0 0 0
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0 0 0 0
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It is worthwhile to consider different classes due to the
following observation: the usual calibration and motion es-
timation algorithms proceed by first estimating a matrix or
tensor by solving linear equation systems (e.g. the calibra-
tion tensors in [23] or the essential matrix [19]). Then, the
parameters that are searched for (usually, motion parame-
ters), are extracted from these. However, when estimating
for example the 6 × 6 essential matrix of non-central cam-
eras based on image correspondences obtained from central
or axial cameras, then the associated linear equation system
does not give a unique solution (much like when estimating
a fundamental matrix from correspondences coming from
coplanar 3D points). Consequently, the algorithms for ex-
tracting the actual motion parameters, can not be applied
without modification.

In the following, we deal with central, axial, x-slit and
fully non-central cameras.

4. Parameterizations

Multi-view geometry will be formulated in terms of the
Plücker coordinates of camera rays. For other models than
the fully non-central one, camera rays belong to constrained
sets, as explained in the previous section. We may thus
choose the cameras’ local coordinate systems such as to ob-
tain “simpler” coordinate vectors for camera rays, and in
turn simpler matching constraints. Since we deal with cali-
brated cameras, rays are given in metric coordinate systems,
and we may apply rotations and translations to fix local co-
ordinate systems. Appropriate parameterizations for differ-
ent models are explained in the following.

4.1. Central Cameras
All rays go through a single point, the optical center. We

distinguish the cases of a finite and infinite optical center.
Finite optical center. We choose a local coordinate sys-
tem with the optical center as origin. This leads to projec-
tion rays whose Plücker sub-vector b is zero, cf. table 2.
This is one reason why the multi-focal tensors, e.g. the fun-
damental matrix, can be written with a “base size” of 3.
Infinite optical center (e.g. affine camera). We can not
adopt the optical center as origin, thus choose a coordinate
system where it has coordinates (0, 0, 1, 0)T. Projection
rays are then of the form given in the 3rd column of table 2.

4.2. Axial Cameras
All rays touch a line, the camera axis. Again, by choos-

ing local coordinate systems appropriately, the formulation
of the multi-view relations may be simplified. We distin-
guish the cases of a finite and an infinite camera axis.
Finite axis. Assume that the camera axis is the Z-axis.
Then, all projection rays have Plücker coordinates with
L6 = b3 = 0, cf. the 4th column of table 2.
Infinite axis. We choose a local coordinate system where
the axis is the line at infinity with coordinates (1, 0, 0)T (line
coordinates on plane at infinity). The camera axis’ Plücker
coordinates are then given by (0, 0, 0, 1, 0, 0)T. Projection
rays thus have coefficients with L1 = a1 = 0 (this is ob-
tained using (2)), cf. the 5th column of table 2.

Multi-view relations for axial cameras, with finite or in-
finite axis, can thus be formulated via tensors of “base size”
5, e.g. the essential matrix will be of size 5× 5 (see §5.3.2).

4.3. X-Slit Cameras

As mentioned above, x-slit cameras are defined as fol-
lows: there exist two lines – camera axes – that cut all pro-
jection rays. The case of the two axes cutting one another,
i.e. being coplanar, is not of interest here, so we consider
two mutually skew axes. Two cases are thus possible: (i)
both axes are finite lines or (ii) one of the two axes is a
line at infinity. In any case, one axis at least is a finite line;
we adopt a local coordinate system as said above for axial
cameras (with finite axis). As for the second axis, we have
to distinguish the two cases.
Two finite axes. Having fixed the first axis, we still have
the freedom to rotate about it and translate along it. Since
the two axes are skew, we may thus obtain a local coordinate
system, where the second axis goes through a point on the
Y -axis, and is parallel to the XZ-plane. Hence, it will be
defined by two points as follows:

AT =
(
0 Y 0 1

)
BT =

(
X 0 Z 0

)

The second axis’ Plücker coordinates are thus given by:

LT

2
=
(
X 0 Z −Y Z 0 Y Z

)

Projection rays cut the two axes, so must be of the form:

PT =
(
a1 a2 a3

(
Y Z
X

a1 − Y a3

)
b2 0

)



We divide by X , but this is no problem since it can not
be zero, otherwise the second axis would be parallel to the
first one, and thus coplanar, which is excluded here. Let us
replace Y Z

X
by W . Then, each projection ray can be param-

eterized by 4 coefficients (which are defined up to scale), as
given in the 6th column of table 2.

One finite and one infinite axis. Having fixed the first
axis, we still have the freedom to rotate about it and trans-
late along it. Translation has no effect on the infinite sec-
ond axis, but we may rotate about the first axis, such that
the second one has coordinates (0, cosΘ, sinΘ)

T (homo-
geneous coordinates of a line at infinity). The second axis’
Plücker coordinates are thus:

LT

2 =
(
0 0 0 0 cosΘ sin Θ

)

Projection rays cut the two axes, so must be of the form:

PT =
(
a1 −a3 tanΘ a3 b1 b2 0

)

For ease of notation, let us define W = − tanΘ. Then,
each projection ray can be parameterized by 4 coefficients
(defined up to scale), as given in the last column of table 2.

4.4. General Non-Central Cameras
No such simplification occurs, and multi-view tensors

will have “base size” 6.

5. Multi-View Geometry

We establish the foundations of a multi-view geometry
for general (non-central) cameras. Its cornerstones are, as
with perspective cameras, matching tensors. We show how
to establish them, analogously to the perspective case.

Here, we only talk about the calibrated case; the uncali-
brated case is nicely treated for perspective cameras, since
calibrated and uncalibrated cameras are linked by projective
transformations. For non-central cameras however, there is
no such link: in the most general case, every pair (pixel,
camera ray) may be completely independent of other pairs.

5.1. Reminder on Perspective Multi-View Geometry

We briefly review how to derive multi-view matching re-
lations for perspective cameras [4]. Let Pi be projection
matrices of n images. Image points qi are matching, if there
exist a 3D point Q and scale factors λi with:

λiqi = PiQ, ∀i = 1 · · ·n

This may be formulated as the following matrix equation:








P1 q1 0 · · · 0

P2 0 q2 · · · 0
...

...
...

. . .
...

Pn 0 0 · · · qn








︸ ︷︷ ︸

M










Q

−λ1

−λ2

...
−λn










=








0
0
...
0








The matrix M, of size 3n×(4+n) has thus a null-vector,
meaning that its rank is less than 4 + n. Hence, the deter-
minants of all submatrices of size (4 + n) × (4 + n) must
vanish. These determinants are multi-linear expressions in
terms of the coordinates of image points qi. Every possible
submatrix should be considered, but only those with 2 or
more rows per view, give rise to constraints linking all pro-
jection matrices. Hence, constraints can be obtained up to n

views with 2n ≤ 4+n, meaning that only for up to 4 views,
matching constraints linking all views can be obtained.

The constraints for n views take the form:
3∑

i1=1

3∑

i2=1

· · ·

3∑

in=1

q1,i1q2,i2 · · · qn,in
Ti1,i2,··· ,in

= 0 (3)

where the multi-view matching tensor T of dimension
3 × · · · × 3 depends on and partially encodes the cameras’
projection matrices Pi.

Note that as soon as cameras are calibrated, this the-
ory applies to any central camera: for a camera with ra-
dial distortion for example, the above formulation holds for
distortion-corrected image points.

5.2. Multi-View Geometry of Non-Central Cameras

Here, instead of projection matrices (depending on cali-
bration and pose), we deal with pose matrices:

Pi =

(
Ri ti

0T 1

)

(4)

These are the similarity transformations that map a point
from some global reference frame, into the camera’s local
coordinate frames (note that since no optical center and no
camera axis exist, no assumptions about the local coordinate
frames are made). As for image points, they are now re-
placed by camera rays. We will obtain expressions in terms
of the rays’ Plücker coordinates, i.e. we will end up with
matching tensors T and matching constraints of the form
(3), with the difference that tensors will have size 6×· · ·×6
and act on Plücker line coordinates:

6∑

i1=1

6∑

i2=1

· · ·

6∑

in=1

L1,i1L2,i2 · · ·Ln,in
Ti1,i2,··· ,in

= 0 (5)

In the following, we explain how to derive such matching
constraints. Consider a set of n camera rays and let them be
defined by two points Ai and Bi each; the choice of points
to represent a ray is not important, since later we will fall
back onto the ray’s Plücker coordinates.

Now, a set of n camera rays are matching, if there exist
a 3D point Q and scale factors λi and µi with:

λiAi + µiBi = PiQ, ∀i = 1 · · ·n

i.e. if the point PiQ lies on the line spanned by Ai and Bi.



Like for perspective cameras, we group these equations
in matrix form:







P1 A1 B1 · · · 0 0

P2 0 0 · · · 0 0
...

...
...

. . .
...

...
Pn 0 0 · · · An Bn








︸ ︷︷ ︸

M












Q

−λ1

−µ1

...
−λn

−µn












=








0

0
...
0








As above, this equation shows that M must be rank-
deficient. However, the situation is different here since the
Pi are of size 4×4 now, and M of size 4n×(4+2n). We thus
consider submatrices of M of size (4+2n)× (4+2n). Fur-
thermore, in the following we show that only submatrices
with 3 rows or more per view, give rise to constraints on all
pose matrices. Hence, 3n ≤ 4 + 2n, and again, n ≤ 4, i.e.
multi-view constraints are only obtained for up to 4 views.

Let us first see what happens for a submatrix of M where
some view contributes a single row. The two columns cor-
responding to its base points A and B, are multiples of one
another: they contain only zeroes, besides a single non-zero
coefficient, in the single row associated with the considered
view. Hence, the determinant of the considered submatrix
of M is always zero, and no constraint is available.

In the following, we exclude this case, i.e. we only con-
sider submatrices of M where each view contributes at least
two rows. Let N be such a matrix. Without loss of gener-
ality, we start to develop its determinant with the columns
containing A1 and B1. The determinant is then given as a
sum of terms of the following form:

(A1,jB1,k − A1,kB1,j) det N̄jk

where j, k ∈ {1..4}, j 6= k, and N̄jk is obtained from N by
dropping the columns containing A1 and B1 as well as the
rows containing A1,j and A1,k. We observe several things:

• The term (A1,jB1,k −A1,kB1,j) is nothing else than a
Plücker coordinate of the ray of camera 1 (cf. §2). By
continuing with the development of the determinant of
N̄jk, it becomes clear that the total determinant of N

can be written in the form:
6∑

i1=1

6∑

i2=1

· · ·
6∑

in=1

L1,i1L2,i2 · · ·Ln,in
Ti1,i2,··· ,in

= 0

i.e. the coefficients of the Ai and Bi are “folded to-
gether” into Plücker coordinates of camera rays and T

is a matching tensor relating the n cameras. Its coeffi-
cients depend exactly on the cameras’ pose matrices.

• If camera 1 contributes only two rows to N, then the
determinant of N becomes of the form:

L1,x

(
6∑

i2=1

· · ·

6∑

in=1

L2,i2 · · ·Ln,in
Ti2,··· ,in

)

= 0

Table 3. Cases of multi-view matching constraints for central and
non-central cameras. Columns named “useful” contain entries of
the form x-y-z etc. that correspond to sub-matrices of M that give
rise to matching constraints linking all views: x-y-z refers to sub-
matrices containing x rows from one camera, y from another etc.

central non-central
# views M useful M useful

2 6 × 6 3-3 8 × 8 4-4
3 9 × 7 3-2-2 12× 10 4-3-3
4 12 × 8 2-2-2-2 16× 12 3-3-3-3

i.e. it only contains a single coordinate L1,x of the ray
of camera 1, and the tensor T does not depend at all on
the pose of that camera. Hence, to obtain constraints
relating all cameras, each camera has to contribute at
least three rows to the considered submatrix of M.

We are now ready to establish the different cases that
lead to useful multi-view constraints. As mentioned above,
for more than 4 cameras, no constraints linking all of them
are available: submatrices of size at least 3n× 3n would be
needed, but M only has 4+2n columns. So, only for n ≤ 4,
such constraints exist.

Table 3 gives all useful cases, both for central and non-
central cameras. These lead to two-view, three-view and
four-view matching constraints, encoded by essential ma-
trices, trifocal and quadrifocal tensors. Deriving their forms
is now mainly a mechanical task.

5.3. The Case of Two Views

We have so far explained how to formulate bifocal, tri-
focal and quadrifocal matching constraints between non-
central cameras, expressed via matching tensors of dimen-
sion 6× 6 to 6× 6× 6× 6. To make things more concrete,
we explore the two-view case in some more detail in the
following. We show how the bifocal matching tensor, or es-
sential matrix, can be expressed in terms of the motion/pose
parameters. This is then specialized from non-central to ax-
ial, x-slit and central cameras. The essential matrices for
these cases are summarized in table 4. That table also gives
the minimum numbers of correspondences required for esti-
mating the essential matrices using linear equations. These
are not explained in detail due to lack of space, but can be
derived easily by considering coefficients in essential matri-
ces, that are zero are appear twice.

5.3.1. Non-Central Cameras
For simplicity, we assume here that the global coordinate
system coincides with the first camera’s local coordinate
system, i.e. the first camera’s pose matrix is the identity.
As for the pose of the second camera, we drop indices, i.e.
we express it via a pose matrix P, composed of a rotation



Table 4. Essential matrices for different camera models. The last column gives the minimum number of correspondences between projection
rays required for computing essential matrices using linear equations.

Camera model Essential matrix Size # corr.

Non-central En =

(
−[t]×R R

R 03×3

)

6 × 6 17

Axial with finite axis Eaf =









−[t]×R





R11 R12

R21 R22

R31 R32





(
R11 R12 R13

R21 R22 R23

)

02×2









5 × 5 16

Axial with infinite axis Eai =









t1R32 − t3R12 t1R33 − t3R13 R21 R22 R23

t2R12 − t1R22 t2R13 − t1R23 R31 R32 R33

R12 R13 0 0 0
R22 R23 0 0 0
R32 R33 0 0 0









5 × 5 11

X-slit with two finite axes Exff =







1 0 0 W2 0
0 1 0 0 0
0 0 1 −Y2 0
0 0 0 0 1







Eaf









1 0 0 0
0 1 0 0
0 0 1 0

W1 0 −Y1 0
0 0 0 1









4 × 4 13

X-slit with one finite and one infi-
nite axis

Exfi =







1 0 0 0 0
0 1 W2 0 0
0 0 0 1 0
0 0 0 0 1







Eaf









1 0 0 0
0 1 0 0
0 W1 0 0
0 0 1 0
0 0 0 1









4 × 4 10

Central with finite optical center Ecf = −[t]×R 3 × 3 8

Central with infinite optical center Eci =





t2R13 − t1R23 R31 R32

R13 0 0
R23 0 0



 3 × 3 4

matrix R and a translation vector t, according to (4). The
matrix M is thus given as:

M8×8 =

(
I4×4 A1 B1 0 0

P 0 0 A2 B2

)

For a matching pair of rays, M must be rank-deficient.
Here, this implies that its determinant is equal to zero. It can
be developed to the following expression, where the Plücker
coordinates L1 and L2 are defined as in equation (1):

LT

2

(
−[t]×R R

R 0

)

︸ ︷︷ ︸

En

L1 = 0 (6)

We find the essential matrix En, as was done in [19].

5.3.2. Axial Cameras
Finite axis. As mentioned in §3, we adopt local coordi-
nate systems where camera rays have L6 = 0. Hence, the
epipolar constraint (6) can be expressed by a reduced es-
sential matrix of size 5 × 5, which acts on reduced Plücker
vectors, consisting of the first five Plücker coordinates. This
essential matrix is obtained from the non-central one En (6),
by dropping its sixth row and column, leading to Eaf , as
given in table 4.

Note that this essential matrix is in general of full rank
(rank 5), but may be rank-deficient. It can be shown that it is
rank-deficient exactly if the axes of the two camera cut each
other. In that case, the left and right null-vectors of Eaf rep-
resent the camera axes of one view in the local coordinate
system of the other one (one gets their Plücker vectors when
adding a zero as 6th coordinate).

Infinite axis. The epipolar constraint (6) can be expressed
by a reduced essential matrix Eai (cf. table 4) of size 5× 5,
acting on reduced Plücker vectors, consisting of the last
five Plücker coordinates (cf. table 2). It is always rank-
deficient; its right null-vector is (0, 0, R11, R12, R13)

T,
which represents the second camera’s axis, expressed in
the first camera’s coordinate system (to get its Plücker vec-
tor, add a zero as 1st coordinate). The left null-vector is
(0, 0, R11, R21, R31)

T, which represents the first camera’s
axis, expressed in the second camera’s coordinate system.

5.3.3. X-Slit Cameras
Two finite axes. We get a reduced essential matrix Exff

(cf. table 4) of size 4×4, acting on reduced Plücker vectors
of the form (a1, a2, a3, b2)

T (cf. §4.3).



Contrary to previous cases, the essential matrix now not
only encodes motion, but also “intrinsic parameters” (the
coefficients Wi and Yi of the two cameras’ second axes).

One finite and one infinite axis. We get a reduced es-
sential matrix Exfi (cf. table 4) of size 4 × 4, acting on
reduced Plücker vectors of the form (a1, a3, b1, b2)

T (cf.
§4.3). Again, it not only encodes motion, but also “intrinsic
parameters” (the coefficients Wi of the two cameras’ infi-
nite axes).

5.3.4. Central Cameras
Finite optical center. As mentioned in §3, we here deal
with camera rays of the form (L1, L2, L3, 0, 0, 0)T. Hence,
the epipolar constraint (6) can be expressed by a reduced
essential matrix of size 3 × 3. We actually find here the
“classical” 3 × 3 essential matrix Ecf = −[t]×R [11, 13].

Infinite optical center. The essential matrix in this case
is Eci, cf. table 4. This resembles the affine fundamental
matrix [20], but is not the same: here, the essential matrix
acts on 3D lines, not on image points. For example, the right
null-vector of Eci is (0, R32,−R31)

T, which represents the
3D line with Plücker coordinates (0, 0, 0, R32,−R31, 0)

T.
This is the line spanned by the two optical centers, i.e. the
baseline (expressed in the first camera’s coordinate system).

6. Conclusion

We have proposed a multi-view geometry for non-central
cameras, the first to our knowledge. A natural hierarchy
of camera models has been introduced, grouping cameras
into classes depending on, loosely speaking, the spatial dis-
tribution of their projection rays. Two-view geometry was
specialized in detail to different camera models. We hope
that this theoretical work allows to define some common
ground for recent efforts in characterizing the geometry of
non-classical cameras.

Concerning possibilites for further work, geometrical re-
lations between cameras of different types would be simple
to derive along the lines used here, and all expressions can
of course be transcribed in tensor notation. In this paper, we
concentrated on the theory and did not address the issue of
actually estimating the matching tensors and extracting mo-
tion parameters from them. It is relatively straightforward
though to extract the motion parameters from the various
essential matrices, due to their forms given in table 4. Ex-
periments with the essential matrix for non-central cameras
were successful, as also reported in [19], and experiments
with intermediate camera types are ongoing.

Finally, we would like to note that, although motivated
by the generic imaging model associating rays to pixels,
the multi-view relations derived here hold naturally for any
camera model that allows to attribute projection rays to im-
age points with sub-pixel precision.
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