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Abstract

The usual approach to design subdivision schemes for curves and surfaces basically consists in combining proper

rules for regular configurations, with some specific heuristics to handle extraordinary vertices. In this paper, we

introduce an alternative approach, called Least Squares Subdivision Surfaces (LS3), where the key idea is to

iteratively project each vertex onto a local approximation of the current polygonal mesh. While the resulting pro-

cedure haves the same complexity as simpler subdivision schemes, our method offers much higher visual quality,

especially in the vicinity of extraordinary vertices. Moreover, we show it can be easily generalized to support

boundaries and creases. The fitting procedure allows for a local control of the surface from the normals, mak-

ing LS3 very well suited for interactive freeform modeling applications. We demonstrate our approach on diadic

triangular and quadrangular refinement schemes, though it can be applied to any splitting strategies.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations

1. Introduction

During the last twenty years, subdivision surfaces have be-
come increasingly popular as a powerful surface represen-
tation for interactive modeling applications [ZS00]. A sub-
division surface takes as input a relatively coarse polygo-
nal mesh with arbitrary (manifold) topology and produces a
smooth surface through an iterative refinement process. This
refinement naturally yields a multiresolution structure which
is particularly useful to enable adaptive rendering or to effi-
ciently edit 3D objects at different scales [ZSS97, Zor06].
Furthemore, subdivision surfaces offer a relatively high de-
gree of flexibility to artists: arbitrary topology, sharp edges
and corners with controllable sharpness [DKT98], etc. For
all these reasons, subdivision surfaces are now a well estab-
lished standard, especially in the game and movie industries.

So far, many different schemes have been pro-
posed [CC78, DS78, Loo87, DLG90, Kob96, PR97, Kob00,
CADS09]. In most cases, subdivision rules are designed to
reproduce some given (box-) splines. However, such rules
can be derived in the regular case only. Consequently, sub-
division surfaces are also famous to exhibit severe artifacts
around so called extraordinary vertices [SB02] for which no
ideal subdivision rule can be derived. In particular, we can
distinguish three combined effects: the polar artifact (con-
traction or dilatation around vertices of low or high valence

Figure 1: Loop’s subdivision surface (left) and our LS3

method (right). Note the pinch in the shading in the vicin-

ity of the extraordinary vertex lying at the eye corner.

respectively), poor fairness (ripples), and the lack of curva-
ture continuity.

During the last decade, many work has been focused on
improving the behavior of subdivision surfaces around ex-
traordinary vertices. The classical approach consists in tun-
ing extraordinary point rules by analyzing the eigenstruc-
ture of the subdivision matrix [DS78, Rei96, ZS00, WW02,
BK04]. While most approaches strive to satisfy bounded cur-
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(a) (b) (c) (d)

Figure 2: Illustration of one LS3 iteration. Starting from the current mesh (a), we first apply the splitting rule to obtain a denser

mesh (b). Then the relaxation rule regularizes the mesh (c). The final position of each vertex (d) is obtained by projecting it onto

its respective local least-squares approximation patch (shown in green).

vature, it has been shown that such schemes are likely to
decrease the surface fairness [KPR04] and increase the po-
lar artifact [BK04] yielding surfaces of poor visual quality.
Cashman et al. [CADS09] shown higher degree subdivision
can improve the surface fairness at the cost of increased
computation, increased shrinkage, and less local influence
of the control points. Levin [Lev06] managed to guaranty
C2 continuity by carefully blending the limit surface in the
vicinity of extraordinary vertices to a C2 polynomial patch.
This is a non stationary scheme which requires a special
non trivial handling of such regions, and a few initial refine-
ment iterations which already degrades the surface fairness.
While focusing on C2 continuity and/or bounded curvature
makes sense for CAD applications, we are primarily inter-
ested in freeform modeling for game-like and movie appli-
cations where visual quality (fairness), simplicity and effi-
ciency are more critical. These last two criteria become even
more obvious with the introduction of a tessellation engine
into graphic cards, since we can expect that subdivision sur-
faces will also become a standard of real-time rendering en-
gines.

In this paper we propose a novel approach to design
approximating subdivision surfaces called Least Squares

Subdivision Surfaces (LS3 for short). The key idea behind
LS3 is to explicitely decouple the smoothing rule of classi-
cal subdivision surfaces into a relaxation rule regularizing
the mesh, and a parameterization-free projection operator.
The later offers new possibilities to control the shape and
smoothness of the surface regardless of the other steps of
the subdivision. Central to our framework is the choice of
the projection operator. In this paper, we focus on the use
of local least-square approximations. At each step, each ver-
tex is relaxed by centroid averaging and then it is projected
onto a dynamically fitted surface patch locally approximat-
ing the old neighbor vertices. This is inspired from the Point
Set Surfaces (PSS) literature [ABC∗03] where surfaces with
arbitrary smoothness can be defined by mean of local Mov-

ing Least Squares (MLS) approximations [Lev03]. Unlike
our approach, PSS require strong sampling criteria on the
input point clouds as they do not rely on any connectivity
information.

In particular, we adapt the Algebraic Sphere Fitting (ASF)

procedure developed by Guennebaud et al. [GGG08] which
offers a good compromise between the approximation power
and the performance. The key feature of ASF is the clever
use of surface normals such that high stability is achieved
with a very few number of input points. In other words, a
first-ring neighborhood plus normals is almost equivalent to
a 2-ring neighborhood, thus allowing us to generate surfaces
of very high quality with very limited overhead. As shown
by our experimental results, the new approach significantly
reduces the artifacts of classical subdivision surfaces, while
treating all vertices in a uniform manner. Owing to the non
linearity of our scheme, we also developed numerical tools
to observe the C0, G1, and G2 behaviors where the subdivi-
sion scheme is seen as a black box.

Furthermore, the input normal vectors may be freely
tweaked by the user, to offer additional fine control of the
final surface shape. LS3 also supports boundaries and sharp
edges with controllable sharpness. Finally, LS3 is gener-
alizable to any splitting strategy, though we mainly focus
here on primal diadic subdivison schemes such as Loop and
Catmull-Clark schemes.

2. Least Squares Subdivision

Our method follows the same principle than classical subdi-
vision surfaces: an initial polygonal mesh M0 with arbitrary
connectivity is iteratively refined by applying a subdivision
operator to the currently refined mesh. This process gener-
ates a sequence of meshes M0,M1,M2, . . . with increasing
density which converges to a final limit surface. The subdi-
vision operator is usually a two-step procedure: splitting and
smoothing. In order to gain more flexibility, this last step is
decloupled into a relaxation rule combined with a projection
operator. This lead to the following three-step procedure il-
lustrated in figure 2.

The splitting rule refines the mesh by inserting new ver-
tices and creating new faces (fig. 2-b). To simplify the de-
scription, we only consider primal diadic refinements of tri-
angular meshes, but the process can be easily generalized
to other refinement schemes, such as quadrangular meshes,
dual or

√
3 subdivisions.

The relaxation rule aims at producing meshes which are
locally uniform by weighted affine combinations of the old
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Figure 3: Generic relaxation masks where the weights c0
0,

c1
0, and c1

1 depend on the valence n of the square vertex and

are given in [BK04]-Table 2. α = (1− c0
0)/n and β = 1−

c0
1 −2c1

1.

vertices (fig. 2-c, section 3). In practice this step is similar to
the smoothing step of classical subdivisions.

The projection operator aims at improving the surface
fairness by projecting each relaxed vertex onto an algebraic
surface locally approximating the old vertices in a weighted
least-square sense. (fig. 2-d, section 4).

Since the splitting rule remains standard, in the next sec-
tions we will only focus on the two other steps of the algo-
rithm, and we will show how boundaries and sharp edges
can be properly handled in section 5. Section 6 presents nu-
merical tools to analyze the continuity of our surface.

3. Relaxation rule

The purpose of the relaxation rule is to locally tend towards
more uniform meshes that appears to be a necessary condi-
tion to generate surfaces of high visual quality. For instance,
shading algorithms have a strong ability to depict mesh ir-
regularities and exhibit odd behaviors in the case of, e.g.,
elongated triangles. Moreover, as we will discuss later, lo-
cal uniformity is important to ensure a good behavior of our
projection operator.

Ideally, the relaxation rule should move the vertices tan-
gentially such that:

• the edges form smooth curves with smoothly varying edge
lengths,

• the neighbors of each vertex are uniformly spread onto a
given ellipsoid with smoothly varying shape,

• the initial shape of the mesh is preserved.

For regular vertices, these goals are already well satisfied
using the smoothing masks of classical approximating sub-
division schemes. For extraordinary vertices, however, they
usually exhibit strong dilatation or contraction of the vertices
in the case of high or small valence respectively. Fortunately,

it has been shown that this polar artifact can be easily over-
come by relaxing some C2 necessary conditions [BK04].
Such rules are ideal in our case since the final shape of the
surface will be given by the projection operator.

More precisely, this relaxation step boils down to classical
subdivision. The intermediate position qk

i of each vertex pro-
duced by the splitting rules is computed by weighted affine
combinations of the old vertex positions pk−1

j of the mesh

Mk−1. The respective masks are shown in figure 3 where
the weights c0

0, c1
0, and c1

1 are appropriately set to reduce the
polar artifact according to [BK04]- Table 2.

4. Projection operator

The relaxation step alone already produces relatively smooth
surfaces most of the time, but with severe smoothness and
fairness issues in the vicinity of extraordinary vertices. The
role of the projection operator is to alleviate these issues
while offering additional controls on the limit surface by
mean of the input surface normals.

In a nutshell, our projection operator consists in project-
ing each vertex of position qk

i coming from the relaxation
rule, onto a simple surface patch that locally approximates
the neighbor vertices of the previous mesh Mk−1. This yields
the final positions pk

i of the new mesh Mk. In the rest of this
section, we will motivate our choice for a given local ap-
proximation method and discuss the details.

4.1. Local surface approximation

When it comes to local surface approximation, polynomi-
als are an obvious choice for the corresponding basis func-
tions. However, the minimization procedure and the accu-
racy of the approximation significantly vary according to
the parameterization on which the polynomial surface is de-
fined. For instance, a first possibility would be to compute
a 2D local parameterization of the neighborhood and fit a
bivariate R

2 → R
3 polynomial surface. However, it remains

the difficulties of computing such a (local) parameterization
in a consistent fashion across the different combinations,
and to compute the projection onto it. A simpler possibil-
ity would be to use a planar parameterization by first fit-
ting a reference plane and then fitting a bivariate polynomial
height field (R2 → R) as it was done in former PSS defini-
tions [ABC∗03]. However, such an approach requires locally
relatively flat data such that the plane fit is stable enough and
that the neighborhood can be well represented as a height
field [AK04b].

More recently, it has been shown that PSS can be advanta-
geously defined by directly working in the natural cartesian
parameterization by fitting algebraic (i.e., implicit) surfaces
onto the sample points [AK04a, GG07]. More precisely,
such approaches fit trivariate s : R3 → R implicit polyno-
mials such that the 0-isosurface S = {x ∈ R

3;s(x) = 0} is
as close as possible to the input sample points. In order to
avoid the trivial solution s= 0, additional regularization con-
straints have to be added. While it is possible to fit implicit
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planes [AA04], such a solution is far to be ideal in our case
as it would suffer from the same aforementioned limitations
of planar parameterizations. More recently, Guennebaud et
al. introduced an efficient Algebraic Sphere Fitting (ASF)
method [GGG08] to robustly approximate points equipped
with normals by spheres. Their method naturally deals with
planar regions, and thanks to the use of the normals, it re-
quires only two input points to be well constrained. There-
fore, minimal neighborhoods can be used that is especially
important to avoid the need to loop through multiple neigh-
borhood rings that is a tedious and expensive task.

In the next sections we briefly review ASF and show how
it is adapted to our case.

4.2. Algebraic sphere fitting

An algebraic sphere is defined as the 0-isosurface of a scalar
field s(x) = [1,xT ,xT x]u where u ∈ R

d+2 is a vector of
parameters defining the shape of the sphere, and d is the
dimension of the ambient space (in our case d = 3). This
representation allows the sphere to naturally degenerate to a
plane, which is required to approximate planar regions and
to robustly move across inflexion points. The key idea of the
ASF procedure [GGG08] is to first minimize for the con-
straint ∇s(pi) = ni stating that the gradient of s at each in-
put constraint position pi is as close as possible to the surface
normal ni attached to this point. This allows to solve for the
d+1 coefficients u1 to ud+1 of u. The constant coefficient u0
is obtained by minimizing the standard distance constraint
(s(pi) = 0). This leads to a very fast fitting procedure with
closed form formulas:

ud+1 =
1

2
∑wip

T
i ni − p̃T

∑wini

∑wip
T
i pi − p̃T ∑wipi







u1
...

ud






= ∑wini −2ud+1p̃ (1)

u0 = −[u1 . . . ud ]p̃ − ud+1 ∑wip
T
i pi

where wi are the weights associated to the constraint points
pi (such that ∑wi = 1), and p̃ is the weighted centroid
∑wipi. We refer to [GGG08] for more details.

The projection of an arbitrary point onto an algebraic
sphere is performed by converting it to an explicit sphere
or plane if |ud+1| > ε or ud+1 = 0 respectively. If ud+1 is
close to zero, then a few newton iterations are required for
high stability [GGG08].

4.3. Topological weighting

Most sophisticated PSS methods use for the weights wi el-
lipsoid weight functions allowing to handle some limited
anisotropy in the input data [AA06]. In our case, in order to
avoid any sampling issue and to make sure the fitted sphere
matchs well our input, these weights should follow the mesh
structure as do the relaxation masks. Moreover, let us remark

that the weights of the relaxation masks are barycentric co-
ordinates of the point qk

i for the old neighbor vertices pk−1
j .

Therefore the most natural and obvious choice for the fitting
weights wi is to take the exact same masks and weights than
the ones used at the relaxation steps.

This choice is also motivated by the following remark. To
ensure a smooth transition of the fitted spheres, and thus, a
high quality surface, such topological weights should tend
to meshless (i.e., ellipsoidal) weights between the point qk

i

and the old neighbor vertices pk−1
j . This goal can only be

reached by the combination of the relaxation rule and an ap-
propriate weighting scheme for the fitting of the spheres.

4.4. Normal update

Finally, the normal nk
i of each new vertex pk

i is set to the
normal of the locally fitted sphere s at the projection point,
i.e., nk

i = ∇s(pk
i ). These normals will be used at the next

iteration to fit the spheres. We emphasize that these normal
vectors does not necessarily match well the actual surface,
and for shading, more accurate normals have to be computed
from the mesh itself. On the other hand, using such normal
vectors instead of recomputing them from scratch at each
iteration has several advantages: it is faster, it allows to bet-
ter propagate user specified normals through the subdivision
levels, and it yields smoother surfaces since our projection
step behaves like a smoothing operator of the normal vec-
tors.

5. Boundaries and Sharp edges

As with any subdivision method, boundaries and sharp edges
require some special treatments. For borders we propose to
simply employ the exact same three step procedure than for
the rest of the surface using the standard boundary masks and
weights for both the relaxation and projection steps. The re-
laxation step ensures the necessary tangential smoothing of
the curve, while the projection will make sure the curve is
consistently “aligned” with the rest of the surface (see fig-
ure 4 for an illustration of the the effect of this projection).
In the case of primal diadic subdivision, these masks imple-
ment cubic spline subdivision and they are recalled in fig-
ure 3. Let us also recall that the fitting procedure we adopted
works well with only two vertices, so these very small masks
are not an issue at all.

Sharp edges are usually handled by treating them as two
separated boundaries. This is no longer possible with our

Figure 4: A coarse sphere model with a sharp edge (left),

subdivided using cubic spline rules (middle), and our LS3

specific rules (right).
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Intersection curve

Left hand side

Right hand side

Figure 5: Left, a sharp edge (bold line) is shared by two dif-

ferent smooth surfaces. During the refinement, the extremity

vertices of the edge have different surface normals yielding

to two different local spherical approximations. The new ver-

tex (at the center of the edge) is projected onto the intersec-

tion curve of these two spheres. Right, illustration of sharp

and semi-sharp creases.

method since we are taking into account the surface nor-
mals and both sides are very unlikely to converge to the
same curve. As illustrated in figure 5-left, our solution con-
sists in fitting an algebraic sphere on each side as for bound-
aries, and then project the common relaxed point onto their
intersection curve. The sharpness can be easily controlled
by repeating a fixed number of sharp iterations followed by
smooth iterations as explained in [DKT98], and shown in
figure 5-right.

6. Numerical Analysis

Subdivision surfaces are usually analyzed through the
eigen-structure of their respective subdivision matrix (e.g.,
[ZS00]). Unfortunately, owing to the projection step, in our
case the new position of a vertex cannot be expressed as a
linear combination of the old vertex positions, and therefore
the subdivision matrix cannot be formed. This makes the the-
oretical analysis of our scheme rather difficult.

In the context of subdivision curves, a well established
method to analyze non linear schemes is to numerically com-
pute the Hölder regularity of several limit curves and retains
the worst case [Kui98, MDL05]. Even though this is limited
to curves, it still allows us to get some initial insights on the
effect of our projection operator. Using the methodology de-
scribed in [Kui98] and applying our LS3 approach to planar
2D curves using the weighting masks of cubic spline sub-
division (figure 3-bottom), we found that our projection step
does not degrade the Hölder regularity which is in both cases
greater than two.

The case of surfaces is more difficult, but also more in-
teresting as it contains extraordinary vertices. To this end,
we developed a numerical parameterization-free method to
analyze the C0, G1, and G2 behaviors of any subdivision sur-
face. In a nutshell, we generate several 2-ring control meshes
around a central vertex p of a given valence, subdivide un-
til numerical convergence, and record some rates of conver-
gence for each continuity degree. In order to be able to per-
form a lot of iterations, at each iteration we safely remove

the two most exterior rings without affecting the result. Note
that in all cases, the iterations always converged.

C0 behavior is analyzed by recording at each iteration k

the contraction factor ρk as the maximal length ratio of the
edges around p between two successive iterations:

ρk = max
j

‖pk
j −pk‖

‖pk−1
j −pk−1‖

(2)

where pk
j are the neighbor positions of the central vertex of

position pk at the level k. ρk must be strictly lesser than one
and, for a diadic scheme, ρk should ideally be equal to 0.5.

G1 behavior is equivalent to analyze the convergence rate
of the neighborhood of p towards a planar configuration. To
this end, we propose to analyze the eigen-structure of the
covariance matrix Dk = ∑ j(p

k − pk
j)

T (pk − pk
j). Let λk

i be

the three eigenvalues of Dk sorted such that λk
0 < λk

1 < λk
2.

Since the magnitude of each eigenvalue varies quadratically
with respect to the scale of the input data, we can estimate
the contraction factor αk towards a planar configuration as:

αk =

(

λk
0/λk

1

λk−1
0 /λk−1

1

)
1
2

(3)

Again, αk must be strictly lesser than one and, for a diadic
scheme, αk should ideally be equal to 0.5.

Assuming G1 continuity, we can assign to the vertex pk

(resp. its neighbors pk
j) a normal nk (resp. nk

j) as the eigen-

vector of the covariance matrix Dk (resp. Dk
i ) corresponding

to the smallest eigenvalue. Then, G2 behavior can be ob-
served by comparing the convergence speed of the neighbor
normals nk

j to the normal nk of the central central vertex, to
the convergence speed of the vertex positions:

βk =
arclength(nk,nk

j)‖pk−1
j −pk−1‖

arclength(nk−1,nk−1
j )‖pk

j −pk‖
(4)

Here βk > 1 means the surounding normals converge slower
to the target normal than the vertices do, meaning the sur-
face is not G2. On the other hand, βk < 1 means the normals
converge too quickly and we are likely generating a flat spot.
So the ideal value is βk = 1.

We used these numerical metrics to compare our LS3

scheme for triangular meshes to the standard Loop scheme
(Std-Loop), and two other variants proposed by Barthe et
al. [BK04] exhibiting bounded curvature (Curv-Loop), and
no polar artifact (Polar-Loop) respectively. For regular ver-
tices (valence 6) and neglecting the very few first subdivision
steps, in all cases we always found the ideal values ρk = 0.5,
αk = 0.5, and βk = 1 that is coherent with our 2D analysis
of the Hölder regularity. In other words, our projection step
seems to not compromise the C2 continuity in the regular
case.

Figure 6 shows worse case plots of these three metrics
for thousands of random configurations generated around an

c© 2010 The Author(s)
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Subdivision level

Figure 6: From left to right, plots of our C0, G1, and G2 nu-

merical metrics for various schemes. They correspond to the

worst case of 10k random configurations around an extraor-

dinary vertex of valence 12.

extraordinary vertex of valence 12. For comparison purpose,
we also included a LS3 variant using the bounded curvature
masks [BK04] for both the relaxation and projection steps
(noted LS3-Curv). As can be seen, the LS3 variants behave
like their respective linear ones, meaning the projection step
has a minimal impact on the continuity of the surface. No-
tice how polar artifacts are well detected by the C0 metric ρ
while the bounded curvature scheme clearly exhibits a better
G2 behavior. This is an important observation showing our
numerical method matches well the theoretical results.

7. Implementation and Results

Implementation and performance

The complete LS3 algorithm is summarized as pseudocode
in figure 7 in the case of primal diadic subdivision of trian-
gular meshes. This algorithm can be easily adapted to other
refinement strategies. For instance, quadrangular meshes can
be handled by adding an additional loop through the faces
and using Catmull-Clark masks [CC78]. Figure 10 shows
some results of Catmull-Clark and

√
3 [Kob00] subdivision

enhanced with our LS3 method. In summary, LS3 subdivi-
sion mainly differs to standard subdivision by the additional
projection step and the propagation of surface normals. It is
therefore straightforward to adapt any existing implementa-
tion of Loop or Catmull-Clark subdivision to its respective
LS3 variant. Moreover, since the cost of the projection oper-
ator is in O(n) (where n is the size of the mask), the theo-
retical complexity is of the same order as classical schemes.
In practice, we observed that our implementation as a Mesh-
Lab [mes] plugin is half as fast than the initial implementa-
tion of the Loop scheme.

Initial normals

Our projection operator makes the final surface dependent on
the given vertex normals. Vertex normals are usually com-
puted as a weighted average of the adjacent face normals
where classical choices for the weights include the face ar-
eas, the angles, or even Max’s method [Max99]. While all
these weighting strategies are based on very different inter-
pretation of the underlying mesh connectivity, in practice the
differences are seldom perceptible for sophisticated enough

for each vertex p0
i of M0 do

compute its initial normal n0
i

for each subdivision step k do

for each vertex and edge o do

splitting rule:

• create a new point pk
i associated to o

relaxation rule:

• compute its intermediate position qk
i by weighted

averaging using the masks of fig. 3
projection operator:

• fit an algebraic sphere using eq. (1) and masks of fig. 3
• set pk

i as the projection of qk
i onto the sphere

• set its normal nk
i as the gradient of the sphere at pk

i

update the mesh topology yielding Mk

for each vertex pn
i of Mn do

re-compute its final normal nn
i using surrounding face normals

Figure 7: Pseudocode for LS3 subdivision.

models. The results of this paper have been obtained us-
ing for the weights the face areas. The same method has
been employed to compute the normals of the final refined
meshes.

Note that Max’s method [Max99] might be of some par-
ticular interest since the computed normals for a group of
neighboring vertices lying on a sphere exactly match the
sphere normals. This allows an exact reproduction of spher-
ical parts.

Figure 8 shows interesting results can be achieved by al-
lowing the user to edit the input normals. In practice this
might be useful to fine tune the shape without increasing the
mesh resolution. Interactive tools to edit these normals in an
intuitive way have yet to be developed.

Fairness comparisons

In section 6 we found that LS3 seems to possesses continuity
properties comparable to weighted centroid schemes. How-
ever, this does not bring much insights about the fairness of
the surface.

Figure 1 shows that LS3 generates surfaces which are
comparable to Loop’s scheme everywhere the control mesh
is regular but with a significantly improved behavior around
extraordinary vertices. This is even more visible in the sad-
dle example of Figure 9 where LS3 is clearly superior to
other variants of the Loop scheme and almost indistinguish-
able from the original quadric. Only a very small artifact is

Figure 8: A regular mesh (left) subdivided by LS3 using de-

fault normal computation (middle), and after tweaking the

normals (right).
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control mesh Std-Loop

Polar-Loop

Curv-LoopLS3

reference quadric

Figure 9: Comparison of various Loop’s variants on a sad-

dle sampled around a vertex of valence 12 and using reflec-

tion lines to depict surface flaws.

visible at the exact location of the extraordinary vertex. As
expected by Karčiauskas et al. [KPR04], the bounded curva-
ture variant exhibits severe fairness issues. Figure 10 shows
that similar gain on the surface fairness is obtained when ap-
plying our LS3 approach to Catmull-Clark and

√
3 schemes.

Figure 11 presents another classical test case where
weighted centroid subdivisions exhibit much stronger rip-
ples than LS3. This example also clearly shows that LS3 does
not possess the convex hull property since the projection step
can move vertices outside the convex hull of the mask. On
the other hand, surfaces produced by LS3 are usually closer
to the control mesh making the interactive edition more in-
tuitive. Another consequence is that details are better pre-
served. In practice, the more a region of the mesh is close to
a sphere (or a plane), the more the limit surface will be close
to interpolate the original mesh.

8. Discussions and Conclusion

We presented LS3, a simple generalization of subdivision
surfaces that considerably reduces surface fairness issues of
weighted centroid schemes. LS3 treats all vertices in a uni-
form manner and can handle boundaries and sharp edges.
We believe that part of the success of our approach is due to
an appropriate use vertex normals to locally approximate the
surface by spheres and, consequently, smooth out the oscil-
lations and ripples. The little disadvantage is that increases
the influence region of a control point to a 3-ring neighbor-
hood instead of only 2 rings for classical schemes. On the

Figure 10: Illustration of Catmull-Clark (left) and
√

3 sub-

division (right) using the respective standard rules (middle

row) and the LS3 enhanced versions (bottom row). Note the

shrinking effect of standard subdivisions.

other hand, this brings new edition possibilities to the artists.
Designing such a normal edition tool is an interesting and
challenging area for future work.

Despite the simplicity of our approach, the resulting sub-
division scheme is not linear anymore. As the main conse-
quences, we currently lack a rigorous theoretical analysis,
it is not possible to directly compute a point onto the limit
surface [Sta98], and invariance to general affine transforma-
tions is not guaranteed. Note that LS3 is invariant to transla-
tions, rotations, and uniform scalings. We also acknowledge
that the sphere fitting can lead to a slight unpleasant growing
effect when LS3 tries to smooth a sharp and anisotropic re-
gion (e.g., as in figure 5-right). For all these reasons, LS3

does not compete as a replacement of NURBS for CAD
applications. On the other hand, in practice we found that
these limitations are only visible in simple textbook cases,
and they become seldom perceptible for soft and/or sophisti-
cated enough models such as, e.g., characters. Therefore, we
believe that for many applications, the outstanding ability of
LS3 to remove ripples and other subdivision artifacts, com-
bined with its simplicity and efficiency largely compensate
these limitations. This is especially true for game and movie
industries where subdivision surfaces are already well estab-
lished, thus enforcing the artists to spend a large amount of
time to hide the extraordinary vertices of their models.

Our LS3 approach also opens the door to many future
researches, e.g. by investigating novel local approximation
methods. For instance, moving from algebraic spheres to

c© 2010 The Author(s)
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Figure 11: Comparison of Loop’s method (middle) and LS3

(right) on a 16-sided double cone. Note the high shrinking

effect and oscillations of the surface produced with Loop’s

scheme.

generic quadric could potentially solve the aforementioned
growing effect and bring affine invariance. However, our
initial efforts in that direction showed that quadrics intro-
duce more difficulties than solutions and good regularization
terms have to be found.
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