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Abstract. Safe is a first-order eager functional language with facilities
for programmer controlled destruction of data structures. It provides also
regions, i.e. disjoint parts of the heap, where the program allocates data
structures, so that the runtime system does not need a garbage collector.
A region is a collection of cells, each one big enough to allocate a data
constructor. Deallocating cells or regions may create dangling pointers.
The language is aimed at inferring and certifying memory safety proper-
ties in a Proof Carrying Code like environment. Some of its analyses have
been presented elsewhere. The one relevant to this paper is a type system
and a type inference algorithm guaranteeing that well-typed programs
will be free of dangling pointers at runtime.
Here we present how to generate formal certificates about the absence
of dangling pointers property inferred by the compiler. The certificates
are Isabelle/HOL proof scripts which can be proof-checked by this tool
when loaded with a database of previously proved theorems. The key
idea is proving an Isabelle/HOL theorem for each syntactic construction
of the language, relating the static types inferred by the compiler to the
dynamic properties about the heap that will be satisfied at runtime.
keywords: Memory management, type-based analysis, formal certifi-
cates, proof assistants.

1 Introduction

Certifying program properties consists of providing mathematical evidence about
them. In a Proof Carrying Code (PCC) environment [14], these proofs should
be checked by an appropriate tool. The certified properties may be obtained
either manually, interactively, or automatically, but whatever is the effort needed
for generating them, the PCC paradigm insists on their checking to be fully
automatic.

In our setting, the certified property (absence of dangling pointers) is auto-
matically inferred as the product of several static analyses, so that the certificate
can be generated by the compiler without any human intervention. Certifying
the inferred property is needed in our case to convince a potential consumer that

⋆ Work supported by the projects TIN2008-06622-C03-01/TIN (STAMP), S2009/TIC-
1465 (PROMETIDOS), and MEC FPU grant AP2006-02154.



the static analyses are sound and that they have been correctly implemented in
the compiler.

Our functional language Safe, described below, is equipped with type-based
analyses for inferring regions where data structures are located [13], and for
detecting when a program with explicit deallocation actions is free of dangling
pointers [12]. One may wonder why a functional language with explicit deallo-
cation may be useful and why not using a more conventional one such as e.g.
C. Explicit deallocation is a low-level facility which, when used without restric-
tions, may create complex heap structures and programs difficult or impossible
to analyse for pointer safety. On the contrary, functional languages have more
structure and the explicit deallocation can be confined to a small part of it (in
our case, to pattern matching), resulting in heap-safe programs most of the time
and, more importantly, amenable to a safety analysis in an automatic way.

Region inference was proved optimal in [13]: assigning data to regions min-
imises their lifetimes, subject to allocating/deallocating regions in a stack-based
way. On the other hand, explicit deallocation eliminates garbage before the re-
gion mechanism does, so memory leaks are not a major concern here.

The above analyses have been manually proved correct in [11], but we em-
barked on the certification task by several reasons:

– The proof in [11] was very much involved. There were some subtleties that
we wanted to have formally verified in a proof assistant.

– The implementation was also very involved. Generating and checking certifi-
cates is also a way of increasing our trust in the implementation.

– A certificate is a different matter than proving analyses correct, since the
proof it contains must be related to every specific compiled program.

In this paper we describe how to create a certificate from the type annotations
inferred by the analyses. The key idea is creating a database of theorems, proved
once forever, relating these static annotations to the dynamic properties the
compiled programs are expected to satisfy. There is a proof rule for each syntactic
construction of the language and a theorem proving its soundness. These proof-
rules generate proof obligations, which the generated certificate must discharge.
We have chosen the proof assistant Isabelle/HOL [16] both for constructing and
checking proofs. To the best of our knowledge, this is the first system certifying
absence of dangling pointers in an automatic way.

The certificates are produced at the intermediate language level called Core-

Safe, at which also the analyses are carried out. This deviates a bit from the
standard PCC paradigm where certificates are at the bytecode/assembly lan-
guage level, i.e. they certify properties satisfied by the executable code. We chose
instead to formally verify the compiler’s back-end: Core-Safe is translated in two
steps to the bytecode language of the Java Virtual Machine, and these steps have
been verified in Isabelle/HOL [7, 6], so that the certified property is preserved
across compilation. This has saved us the (huge) effort of translating Core-Safe

certificates to the JVM level, while nothing essential is lost: a scenario can be
imagined where the Core-Safe code and its certificate are sent from the producer



to a consumer and, once validated, the consumer uses the certified back-end for
generating the executable code. On the other hand, our certificates are smaller
than the ones which could be obtained at the executable code level.

In the next section we describe the relevant aspects of Safe. In Sec. 3 a first
set of proof rules related to explicit deallocation is presented, while a second set
related to implicit region deallocation is explained in Sec. 4. Section 5 is devoted
to certificate generation and Sec. 6 presents related work and concludes.

2 The language

Safe is a first-order eager language with a syntax similar to Haskell’s. Its runtime
system uses regions, i.e. disjoint parts of the heap where the program allocates
data structures. The smallest memory unit is the cell, a contiguous memory
space big enough to hold a data construction. A cell contains the mark of the
constructor and a representation of the free variables to which the constructor
is applied. These may consist either of basic values, or of pointers to other
constructions. Each cell is allocated at constructor application time. A region is
a collection of cells. It is created empty and it may grow and shrink while it is
active. Region deallocation frees all its cells. The allocation and deallocation of
regions is bound to function calls. A working region, denoted by self, is allocated
when entering the call and deallocated when exiting it. Inside the function, data
structures not belonging to the output may be built there. The region arguments
are explicit in the intermediate code but not in the source, since they are inferred
by the compiler [13]. The following list sorting function builds an intermediate
tree not needed in the output:

treesort xs = inorder (makeTree xs)

After region inference, the code is annotated with region arguments (those ocur-
ring after the @):

treesort xs @ r = inorder (makeTree xs @ self) @ r

so that the tree is created in treesort’s self region and deallocated upon termi-
nation of treesort.

Besides regions, destruction facilities are associated with pattern matching.
For instance, we show here a destructive function splitting a list into two:

unshuffle []! = ([],[])

unshuffle (x:xs)! = (x:xs2,xs1) where (xs1,xs2) = unshuffle xs

The ! mark is the way programmers indicate that the matched cell must be
deleted. The space consumption is reduced with respect to a conventional version
because, at each recursive call, a cell is deleted by the pattern matching. At
termination, the whole input list has been returned to the runtime system.

The Safe front-end desugars Full-Safe and produces a bare-bones functional
language called Core-Safe. The transformation starts with region inference and
continues with Hindley-Milner type inference, pattern matching desugaring, and
some other simplifications. In Fig. 1 we show the syntax of Core-Safe. A program



prog → datai
n
; decj

m
; e {Core-Safe program}

data → data T αi
n @ ρj

m = Ck tks
nk @ ρm

l

{recursive, polymorphic data type}
dec → f xi

n @ rj
l = e {recursive, polymorphic function}

e → a {atom: literal c or variable x}
| x @ r {copy data structure x into region r}
| x! {reuse data structure x}
| a1 ⊕ a2 {primitive operator application}
| f ai

n @ rj
l {function application}

| let x1 = be in e {non-recursive, monomorphic}

| case x of alt i
n

{read-only case}

| case! x of alt i
n

{destructive case}
alt → C xi

n → e {case alternative}
be → C ai

n @ r {constructor application}
| e

Fig. 1. Core-Safe syntax

is a sequence of possibly recursive polymorphic data and function definitions
followed by a main expression e whose value is the program result. The over-line
abbreviation xi

n stands for x1 · · ·xn. case! expressions implement destructive
pattern matching, constructions are only allowed in let bindings, and atoms —or
just variables— are used in function applications, case/case! discriminant, copy
and reuse. Region arguments are explicit in constructor and function applications
and in copy expressions. As an example, we show the Core-Safe version of the
unshuffle function above:

unshuffle x34 @ r1 r2 r3 = case! x34 of

x49 : x50 -> let x40 = unshuffle x50 @ r2 r1 self in

let x15 = case x40 of (x45,x46) -> x45 in

let x16 = case x40 of (x47,x48) -> x48 in

let x38 = x49 : x16 @ r1 in

let x39 = (x38,x15) @ r3 in x39

[] -> let x36 = [] @ r1 in

let x35 = [] @ r2 in

let x37 = (x36,x35) @ r3 in x37

2.1 Operational Semantics

In Figure 2 we show the big-step operational semantics rules of the most relevant
core language expressions. We use v, vi, . . . to denote either heap pointers or
basic constants, p, pi, q, . . . to denote heap pointers, and a, ai, . . . to denote either
program variables or basic constants (atoms). The former are named x, xi, . . .
and the latter c, ci etc. Finally, we use r, ri, . . . to denote region arguments.

A judgement of the form E ⊢ (h, k), e ⇓ (h′, k), v states that expression e is
successfully reduced to normal form v under runtime environment E and heap h
with k+1 regions, ranging from 0 to k, and that a final heap h′ with k+1 regions
is produced as a side effect. Runtime environments E map program variables to



E ⊢ (h, k), c ⇓ (h, k), c [Lit ] E[x 7→ v] ⊢ (h, k), x ⇓ (h, k), v [Var1]

(f xi
n@ rj

m = e) ∈ Σ

[xi 7→ E(ai)
n
, rj 7→ E(r′j)

m
, self 7→ k + 1] ⊢ (h, k + 1), e ⇓ (h′, k + 1), v

E ⊢ (h, k), f ai
n@ r′j

m
⇓ (h′ |k, k), v

[App]

E ⊢ (h, k), e1 ⇓ (h′, k), v1 E ∪ [x1 7→ v1] ⊢ (h′, k), e2 ⇓ (h′′, k), v

E ⊢ (h, k), let x1 = e1 in e2 ⇓ (h′′, k), v
[Let ]

j ≤ k fresh(p) E ∪ [x1 7→ p] ⊢ (h ⊎ [p 7→ (j, C vi
n)], k), e2 ⇓ (h′, k), v

E[r 7→ j, ai 7→ vi
n] ⊢ (h, k), let x1 = C ai

n@r in e2 ⇓ (h′, k), v
[LetC ]

C = Cr E ∪ [xri 7→ vi
nr ] ⊢ (h, k), er ⇓ (h′, k), v

E[x 7→ p] ⊢ (h[p 7→ (j, C vi
nr )], k), case x of Ci xij

ni → ei
m

⇓ (h′, k), v
[Case]

C = Cr E ∪ [xri 7→ vi
nr ] ⊢ (h, k), er ⇓ (h′, k), v

E[x 7→ p] ⊢ (h ⊎ [p 7→ (j, C vi
nr )], k), case! x of Ci xij

ni → ei
m

⇓ (h′, k), v
[Case!]

Fig. 2. Operational semantics of Safe expressions

values and region variables to actual region numbers in the range {0 . . . k}. We
adopt the convention that for all E, if c is a constant, E(c) = c.

In a heap (h, k), h is a finite mapping from pointers p to construction cells
w of the form (j, C vi

n), where j ≤ k, meaning that the cell resides in a region j
in scope. By h[p 7→ w] we denote a heap mapping h where the binding [p 7→ w]
exists and is highlighted, h⊎[p 7→ w] denotes the disjoint union of h and [p 7→ w],
and (h |k, k) is the heap obtained by deleting from (h, k′) the bindings living in
regions greater than k.

The semantics of a program dec1; . . . ; decn; e is the semantics of the main
expression e in an environment Σ containing all the function declarations. We
only comment the rules related to allocation/deallocation, which may create
dangling pointers in the heap. The rest are the usual ones for an eager language.

Rule App shows when a new region is allocated. The formal identifier self

is bound to the newly created region k + 1 so that the function body may
create bindings in this region. Before returning, all cells created in region k + 1
are deleted. This action is a source of possible dangling pointers. Rule Case!
expresses what happens in a destructive pattern matching: the binding of the
discriminant variable disappears from the heap. This action is another source of
possible dangling pointers.

2.2 Safe Type System

We distinguish between functional and non-functional types. Non-functional al-
gebraic types may be safe types (internally marked as s), condemned types
(marked as d), or in-danger types (marked as r). In-danger types arise as an
intermediate step during typing and are useful to control the side-effects of de-
structions, but function arguments can only receive either safe or condemned
types. The intended semantics of these types is the following:



– Safe types (s): Data structures (DS) of this type can be read, copied or
used to build other DSs. They cannot be destroyed.

– Condemned types (d): A DS directly involved in a case! action. Its re-
cursive descendants inherit a condemned type. They cannot be used to build
other DSs, but they can be read/copied before being destroyed.

– In-danger types (r): A DS sharing a recursive descendant of a condemned
DS, so it can potentially contain dangling pointers.

Functional types can be polymorphic both in the Hindley-Milner sense and in
the region sense: they may contain polymorphic type variables (denoted ρ, ρ′ . . .)
representing regions. If a region type variable occurs several times in a type, then
the actual runtime regions of the corresponding arguments should be the same.
Constructor applications have one region argument r : ρ whose type occurs as
the outermost region in the resulting algebraic type T s @ ρm (i.e. ρm = ρ).
Constructors are given types forcing its recursive substructures and the whole
structure to live in the same region. For example, for lists and trees:

[ ] : ∀a ρ . ρ → [a] @ ρ
(:) : ∀a ρ . a → [a] @ ρ → ρ → [a] @ ρ
Empty : ∀a ρ . ρ → BSTree a @ ρ
Node : ∀a ρ . BSTree a @ ρ → a → BSTree a @ ρ → ρ → BSTree a @ ρ

Function types may have zero or more region arguments. For instance, the type
inferred for unshuffle is:

∀a ρ1 ρ2 ρ3 ρ4 . [a]! @ ρ4 → ρ1 → ρ2 → ρ3 → ([a] @ ρ1, [a] @ ρ2) @ ρ3

where ! is the external mark of a condemned type (internal mark d). Types
without external marks are assumed to be safe.

The constructor types are collected in an environment Σ, easily built from
the data type declarations. In typing environments Γ we can find region type
assumptions r : ρ, variable type assumptions x : t, and polymorphic scheme
assumptions for function symbols f : ∀a∀ρ.t. The operators between typing
environments used in the typing rules are shown in Fig. 3. The usual operator
+ demands disjoint domains. Operators ⊗ and ⊕ are defined only if common
variables have the same type, which must be safe in the case of ⊕. Operator �L is
an asymmetric composition used to type let expressions. Predicate utype?(t, t′)
tells whether the underlying types (i.e. without marks) of t and t′ are the same,
while unsafe? is true for types with a mark r or d.

In Fig. 4 we show the most relevant rules of the type system, which illustrate
the use of the above environment operators. Function sharerec(x, e) is the result
of a sharing analysis and returns the set of free variables in the scope of expression
e which at runtime may share a recursive descendant of variable x. An important
consequence of having a sharing analysis is the unusual feature of our type system
that the typing environment may contain type assumptions for variables which
are not free in the typed expression.

Predicates inh and inh! restrict the types of the case/case! patterns ac-
cording to the type of the discriminant. The most important restriction is that



Operator Γ1 • Γ2 defined if Result of (Γ1 • Γ2)(x)

+ dom(Γ1) ∩ dom(Γ2) = ∅
Γ1(x) if x ∈ dom(Γ1)
Γ2(x) otherwise

⊗ ∀x ∈ dom(Γ1) ∩ dom(Γ2) . Γ1(x) = Γ2(x)
Γ1(x) if x ∈ dom(Γ1)
Γ2(x) otherwise

⊕
∀x ∈ dom(Γ1) ∩ dom(Γ2) . Γ1(x) = Γ2(x)

∧ safe?(Γ1(x))
Γ1(x) if x ∈ dom(Γ1)
Γ2(x) otherwise

�
L ∀x ∈ dom(Γ1) ∩ dom(Γ2). utype?(Γ1(x), Γ2(x))

∧ ∀x ∈ dom(Γ1). unsafe?(Γ1(x)) → x /∈ L

Γ2(x) if x /∈ dom(Γ1)∨
x ∈ dom(Γ1) ∩ dom(Γ2) ∧ safe?(Γ1(x))

Γ1(x) otherwise

Fig. 3. Operators on type environments

Γ1 ⊢ e1 : s1 Γ2 + [x1 : τ1] ⊢ e2 : s utype?(τ1, s1) ¬danger?(τ1)

Γ1 �
fv(e2) Γ2 ⊢ let x1 = e1 in e2 : s

[LET]

ti
n
→ ρj

l → T @ρm E σ Γ = [f : σ] +
⊕l

j=1[rj : ρj ] +
⊕n

i=1[ai : ti]

R =
⋃n

i=1{sharerec(ai, f ai
n@rj

l)− {ai} | cmd?(ti)} ΓR = {y : danger(type(y))| y ∈ R}

ΓR + Γ ⊢ f ai
n@ rj

l : T @ρm
[APP]

∀i ∈ {1..n}.Σ(Ci) = σi ∀i ∈ {1..n}.si
ni → ρ → T @ρ� σi

Γ ≥
case x of Ci xij

ni→ei
n [x : T@ρ] ∀i ∈ {1..n}.∀j ∈ {1..ni}.inh(τij , sij , Γ (x))

∀i ∈ {1..n}.Γ + [xij : τij ]
ni

⊢ ei : s

Γ ⊢ case x of Ci xij
ni → ei

n
: s

[CASE]

(∀i ∈ {1..n}). Σ(Ci) = σi ∀i ∈ {1..n}. si
ni → ρ → T @ρ� σi

R = sharerec(x, case! x of Ci xij
ni → ei

n
) ∀i ∈ {1..n}. ∀j ∈ {1..ni}.inh!(tij , sij , T !@ρ)

∀z ∈ R, i ∈ {1..n}.z /∈ fv(ei) ∀i ∈ {1..n}. Γ + [x : T #@ρ] + [xij : tij ]
ni

⊢ ei : s
ΓR = {y : danger(type(y)) | y ∈ R− {x}}

ΓR ⊗ Γ + [x : T !@ρ] ⊢ case! x of Ci xij
ni → ei

n
: s

[CASE!]

Fig. 4. Some Safe typing rules for expressions

the recursive patterns of a condemned discriminant must also be condemned.
Predicate danger? is true for r-marked types, while function danger(t) attaches
a mark r to a safe type t. For a complete description, see [11]. An inference
algorithm for this type system has been developed in [12].

3 Cell deallocation by destructive pattern matching

The idea of the certificate is to ask the compiler to deliver some static infor-
mation inferred during the type inference phase, and then to use a database of
previously proved lemmas relating this information with the dynamic properties
the program is expected to satisfy at runtime. In this case, the static informa-
tion consists of a mark m ∈ {s, r, d} —respectively meaning safe, in-danger, and
condemned type— for every variable, and the dynamic property the certificate
must prove is that the heap remains closed during evaluation.

By fv(e) we denote the set of free variables of expression e, excluding function
names and region variables, and by dom(h) the set {p | [p 7→ w] ∈ h}. A



static assertion has the form [[L, Γ ]], where L ⊆ dom(Γ ) is a set of program
variables and Γ a mark environment assigning a mark to each variable in L and
possibly to some other variables. We will write Γ [x] = m to indicate that x has
mark m ∈ {s, r, d} in Γ . We say that a Core-Safe expression e satisfies a static
assertion, denoted e : [[L, Γ ]], if fv(e) ⊆ L and some semantic conditions below
hold. Our certificate for a given program consists of proving a static assertion
[[L, Γ ]] for each Core-Safe expression e resulting from compiling the program.

If E is the runtime environment, the intuitive idea of a variable x being
typed with a safe mark s is that all the cells in the heap h reached at runtime by
E(x) do not contain dangling pointers and they are disjoint from unsafe cells.
The idea behind a condemned variable x is that the cell pointed to by E(x)
will be removed from the heap and all live cells reaching any of E(x)’s recursive
descendants by following a pointer chain are in danger. We use the following
definitions, formally specified in Isabelle/HOL:

closure (E,X, h) Set of locations reachable in heap h by {E(x) | x ∈ X}
closure (v, h) Set of locations reachable in h by location v
recReach (E, x, h) Set of recursive descendants of E(x) including itself
recReach (v, h) Set of recursive descendants of v in h including itself
closed (E,L, h) There are no dangling pointers in h, i.e. closure (E,L, h) ⊆ dom(h)
p →∗

h V There is a pointer path in h from p to a q ∈ V

By abuse of notation, we will write closure(E, x, h) and also closed(v, h). Now, we
define the following two sets, respectively denoting the safe and unsafe locations
of the live heap, as functions of L, Γ , E, and h:

SL,Γ,E,h
def
=

⋃
x∈L,Γ [x]=s

{closure(E, x, h)}

RL,Γ,E,h
def
=

⋃
x∈L,Γ [x]=d

{p ∈ closure(E,L, h) | p →∗

h recReach(E, x, h)}

Definition 1. Given the following properties

P1 ≡ E ⊢ (h, k), e ⇓ (h′, k), v
P2 ≡ dom(Γ ) ⊆ dom(E)
P3 ≡ L ⊆ dom(Γ )
P4 ≡ fv(e) ⊆ L
P5 ≡ ∀x ∈ dom(E). ∀z ∈ L .

Γ [z] = d ∧ recReach(E, z, h) ∩ closure(E, x, h) 6= ∅ → x ∈ dom(Γ ) ∧ Γ [x] 6= s
P6 ≡ ∀x ∈ dom(E) . closure (E, x, h) 6≡ closure (E, x, h′) → x ∈ dom(Γ ) ∧ Γ [x] 6= s
P7 ≡ SL,Γ,E,h ∩RL,Γ,E,h = ∅
P8 ≡ closed(E,L, h)
P9 ≡ closed(v, h′)

we say that expression e satisfies the static assertion [[L, Γ ]], denoted e : [[L, Γ ]],
if P3 ∧ P4 ∧ (∀E h k h′ v . P1 ∧ P2 → P5 ∧ P6 ∧ (P7 ∧ P8 → P9)).

A notion of satisfaction relative to the validity of a function environment ΣM ,
denoted e,ΣM : [[L, Γ ]], is also defined.

Property P1 defines any runtime evaluation of e. Properties P2 to P4 just
guarantee that each free variable has a type and a value. Properties P5 to P7



c,ΣM⊢ (∅, ∅) LIT x,ΣM⊢ ({x}, Γ + [x : s]) VAR1

e1 6= C ai
n e1, ΣM⊢ (L1, Γ1) x1 6∈ L1 e2, ΣM⊢ (L2, Γ

′

2 + [x1 : s]) def (Γ1 ⊲
L2 Γ ′

2)

let x1 = e1 in e2, ΣM⊢ (L1 ∪ (L2 − {x1}), Γ1 ⊲
L2 Γ ′

2)
LET1

e1 6= C ai
n e1, ΣM⊢ (L1, Γ1) x1 6∈ L1 e2, ΣM⊢ (L2, Γ

′

2 + [x1 : d]) def (Γ1 ⊲
L2 Γ ′

2)

let x1 = e1 in e2, ΣM⊢ (L1 ∪ (L2 − {x1}), Γ1 ⊲
L2 Γ ′

2)
LET2

L1 = {ai
n} Γ1 = [ai 7→ sn] x1 6∈ L1 e2, ΣM⊢ (L2, Γ

′

2 + [x1 : s]) def (Γ1 ⊲
L2 Γ ′

2)

let x1 = C ai
n@r in e2, ΣM⊢ (L1 ∪ (L2 − {x1}), Γ1 ⊲

L2 Γ ′

2)
LET1C

L1 = {ai
n} Γ1 = [ai 7→ sn] x1 6∈ L1 e2, ΣM⊢ (L2, Γ2 + [x1 : d]) def (Γ1 ⊲

L2 Γ ′

2)

let x1 = C ai
n@r in e2, ΣM⊢ (L1 ∪ (L2 − {x1}), Γ1 ⊲

L2 Γ ′

2)
LET2C

∀i . (ei, ΣM⊢ (Li, Γi) ∀j.Γi[xij ] 6= d) Γ ⊇
⊗

i
(Γi\{xij}) x ∈ dom(Γ ) L = {x} ∪ (

⋃
i
(Li − {xij}))

case x of Cixij → ei, ΣM⊢ (L, Γ )
CASE

∀i . (ei, ΣM⊢ (Li, Γi) ∀j . Γi[xij ] = d → j ∈ RecPos(Ci))
L′ =

⋃
i
(Li − {xij}) Γ ⊇ (

⊗
i
Γi\({xij} ∪ {x})) + [x : d] ∀z ∈ dom(Γ ) . Γ [z] 6= s → (∀i . z 6∈ Li)

case! x of Cixij → ei, ΣM⊢ (L′ ∪ {x}, Γ )
CASE !

ΣM (g) = mi
n L = {ai

n} Γ0 =
⊕n

i=1[ai : mi] defined Γ ⊇ Γ0

g ai
n@ r′j

m
, ΣM⊢ (L, Γ )

APP

f xi
n@ rj

m = ef Lf = {xi
n} Γf = [xi 7→ mi

n] ef , ΣM ⊎ [f 7→ mi
n]⊢ (Lf , Γf )

ef , ΣM⊢ (Lf , Γf )
REC

Fig. 5. Proof rules for explicit deallocation

formalise the dynamic meaning of safe and condemned types: if some variable
can share a recursive descendant of a condemned one, or its closure changes
during evaluation, it should occur as unsafe in the environment.

The key properties are P8 and P9. If they were proved for all the judgements
of any e’s derivation, they would guarantee that the live part of the heap would
remain closed, hence there would not be dangling pointers. We have proved that
P8 is an ‘upwards’ invariant in any derivation, while P9 is a ‘downwards’ one.
Formally:

Theorem 1 (closedness). Consider a derivation E ⊢ (h, k), e ⇓ (h′, k), v. If
e : [[L, Γ ]], P2(Γ,E), P7(L, Γ,E, h) and P8(E,L, h) hold, then P8(Ei, Li, hi)
and P9(vi, h

′

i) hold for all judgements Ei ⊢ (hi, ki), ei ⇓ (h′

i, ki), vi belonging to

that derivation.

But P2, P7 and P8 trivially hold for the empty heap, empty environment Γ ,
and empty set L of free variables, which are the ones corresponding to the initial
expression, so P8 and P9 hold across the whole derivation of the program.

In Fig. 5 we show the proof rules related to this property. The following
soundness theorem (a lemma for each expression) has been interactively proved
by induction on the derivations obtained with these rules.

Theorem 2 (soundness). If e,ΣM ⊢ (L, Γ ) then e,ΣM : [[L, Γ ]].

When proving the soundness of the APP rule, the closedness of the heap before
returning from g does not in principle guarantee that the heap will remain closed



after deallocating the heap topmost region. Proving this, needs a separate col-
lection of theorems showing that the value returned by g does not contain cells
in that region. This part of the problem is explained in Sec. 4.

For each expression e, the compiler generates a pair (L, Γ ). According to
e’s syntax, the certificate chooses the appropriate proof rule, checks that its
premises are satisfied, and applies it in order to get the conclusion e,ΣM⊢ (L, Γ ).
For example, in an application expression g ai

n@ rj
m, the certificate access to

ΣM and checks that the given environment Γ contains the actual arguments ai
with these marks mi assigned. It also checks that operator

⊕
, requiring any

duplicated actual argument to be safe (see Fig. 3), is well-defined, and then it
applies the proof rule APP .

4 Region deallocation

We present here the proof rules certifying that region deallocation does not create
dangling pointers. As before, the compiler delivers static information about the
region types used by the program variables and expressions, and a soundness
theorem relates this information to the runtime properties of the actual regions.

In an algebraic type T ti
m
@ ρj

l, the last region type variable ρl of the list is
always the most external one, i.e. the region where the cell of the most external
constructor is allocated. By regions (t) we denote the set of region type variables

occurring in the type t. There is a reserved identifier ρfself for every defined
function f , denoting the region type variable assigned to the working region self

of function f . We will assume that the expression e being certified belongs to
the body of a context function f or to the main expression.

By θ, θi, . . . we denote typing environments, i.e. mappings from program vari-
ables and region arguments to types. For region arguments, θ(r) = ρ means that
ρ is the type variable the compiler assigns to argument r.

In function or constructor applications, the set of generic region types used
in the signature of an applied function g (of a constructor C) must be related
to the actual region types used in the application. Also, some ordinary poly-
morphic type variables of the signature may become instantiated by algebraic
types introducing additional regions. Let us denote by µ the type instantiation

mapping used by the compiler. This mapping should correctly map the types of
the formal arguments to the types of the corresponding actual arguments.

Definition 2. Given the instantiated types ti
n
, the instantiated region types

ρj
m, the arguments of the application ai

n, rj
m, and the typing mapping θ, we say

that the application is argument preserving, denoted argP (ti
n
, ρj

m, ai
n, rj

m, θ),
if: ∀i ∈ {1..n} . ti = θ(ai) ∧ ∀j ∈ {1..m} . ρj = θ(rj).

For functions, the certificate incrementally constructs a global environment
ΣT keeping the most general types of the functions already certified. For con-
structors, the compiler provides a global environment ΓT giving its polymorphic

most general type. If ΓT (C) = ti
n
→ ρ → T tj

l
@ ρi

m, the following property,
satisfied by the type system, is needed for proving the proof rules below:



Definition 3. Predicate wellT (ti
n
, ρ, T tj

l
@ ρi

m), read well-typed, is defined

as ρm = ρ ∧
⋃n

i=1
regions (ti) ⊆ regions (T tj

l
@ ρi

m)

So far for the static concepts. We move now to the dynamic or runtime
ones. By η, ηi, . . . we denote region instantiation mappings from region type
variables to runtime regions identifiers in scope. Region identifiers k, ki, . . . are
just natural numbers denoting offsets of the actual regions from the bottom of
the region stack. If k if the topmost region in scope, then for all ρ, 0 ≤ η(ρ) ≤ k
holds. The intended meaning of k′ = η(ρ) is that, in a particular execution
of the program, the region type ρ has been instantiated to the actual region
k′. Admissible region instantiation mappings should map ρfself to the topmost
region, and other region types to lower regions.

Definition 4. Assuming that k denotes the topmost region of a given heap, we

say that the mapping η is admissible, denoted admissible (η, k), if:

ρfself ∈ dom(η) ∧ η(ρfself ) = k ∧ ∀ρ ∈ dom(η)− {ρfself } . η(ρ) < k

The important notion is consistency between the static information θ and the
dynamic one E, η, h, h′. Essentially, it tells us that the static region types, its
runtime instantiation to actual regions, and the actual regions where the data
structures are stored in the heap, do not contradict each other.

Definition 5. We say that the mappings θ, η, the runtime environment E, and

the heap h are consistent, denoted consistent (θ, η, E, h), if:

1. ∀x ∈ dom(E) . consistent (θ(x), η, E(x), h) where:

consistent (B, η, c, h) = true -- B denotes a basic type

consistent (a, η, v, h) = true -- a denotes a type variable

consistent (T t′i
m
@ ρj

l, η, p, h) = ∃j C vk
n µ tkC

n
ρjC

l . h(p) = (j, C vk
n)

∧ ρl ∈ dom(η) ∧ η(ρl) = j

∧ ΓT (C) = tkC
n
→ ρlC → T t′iC

m
@ ρjC

l

∧ µ(T t′iC
m
@ ρjC

l) = T t′i
m
@ ρj

l

∧ ∀k ∈ {1..n} . consistent (µ(tkC), η, vk, h))
2. ∀r ∈ dom(E) . θ(r) ∈ dom(η) ∧ E(r) = (η · θ)(r)
3. self ∈ dom(E) ∧ θ(self ) = ρfself

We are ready to define the satisfaction of a static assertion relating the static
and dynamic properties referred to regions: A judgement of the form e : [[θ, t]]
defines that, if expression e is evaluated with an environment E, a heap (h, k),
and an admissible mapping η consistent with θ, then η, the final heap h′, and
the final value v are consistent with t. Formally:

Definition 6. An expression e satisfies the pair (θ, t), denoted e : [[θ, t]] if

∀E h k h′ v η . E ⊢ (h, k), e ⇓ (h′, k), v -- P1
∧ dom(E) ⊆ dom(θ) -- P2
∧ admissible (η, k) -- P3
∧ consistent (θ, η, E, h) -- P4
→ consistent (t, η, v, h′) -- P5



c,ΣT ⊢ θ ; B
LIT

x,ΣT ⊢ θ ; θ(x)
VAR1

e1, ΣT ⊢ θ ; t1 e2, ΣT ⊢ θ ⊎ [x1 7→ t1] ; t2

let x1 = e1 in e2, ΣT ⊢ θ ; t2
LET

ΓT (C) = ti
n
→ ρ → t wellT (ti

n
, ρ, t) e2, ΣT ⊢ θ ⊎ [x1 7→ µ(t)] ; t2 argP(µ(ti)

n
, µ(ρ), ai

n, r, θ)

let x1 = C ai
n @ r in e2, ΣT ⊢ θ ; t2

LETC

∀i. (ΓT (Ci) = tij
ni → ρ → t wellT (tij

ni , ρ, t))

∀i. ei, ΣT ⊢ θ ⊎ [xij → µ(tij)
ni
] ; t′ θ(x) = µ(t)

case x of Ci xij
ni → ei

n
, ΣT ⊢ θ ; t′

CASE

∀i. (ΓT (Ci) = tij
ni → ρ → t wellT (tij

ni , ρ, t))

∀i. ei, ΣT ⊢ θ ⊎ [xij → µ(tij)
ni
] ; t′ θ(x) = µ(t)

case! x of Ci xij
ni → ei

n
, ΣT ⊢ θ ; t′

CASE !

Σ(g) = ti
n
→ ρj

m→ tg ρgself 6∈ regions (tg) argP (µ(ti)
n
, µ(ρj)

m
, ai

n, rj
m, θ) t = µ(tg)

g ai
n@ rj

m, ΣT ⊢ θ ; t
APP

f xi
n@ rj

m = ef
θf = [xi 7→ ti

n
, rj 7→ ρj

m, self 7→ ρself ] ef , ΣT ∪ {f 7→ ti
n
→ ρj

m → tf} ⊢ θf ; tf

ef , ΣT ⊢ θf ; tf
REC

Fig. 6. Proof rules for region deallocation

Theorem 3 (consistency). If e : [[θ, t]], E ⊢ (h, k), e ⇓ (h′, k), v, P2(E, θ),
P3(η, k), P4(θ, η, E, h) hold, then P3(ηi, ki), P4(θi, ηi, Ei, hi), P5(ti, ηi, vi, h

′

i)
hold for all judgements Ei ⊢ (hi, ki), ei ⇓ (h′

i, ki), vi belonging to that derivation.

But P2, P3 and P4 trivially hold for the empty heap h0, dom(E0) = dom(θ0)
= {self }, θ0(self ) = ρmain

self , k0 = 0, and η0(ρ
main
self ) = E0(self ) = 0, which are the

ones corresponding to the initial expression, so P3, P4 and P5 hold across the
whole program derivation. In Fig. 6 we show the proof rules related to regions.

Theorem 4 (soundness). If e,ΣT ⊢ θ ; t then e,ΣT : [[θ, t]].

To prove it, there is a separate Isabelle/HOL theorem for each syntactic form. As
we have said, region allocation/deallocation takes place at function call/return.
The premise ρgself 6∈ regions (tg) in the APP rule, together with properties P3
and P5 guarantee that the data structure returned by the function has no cells
in the deallocated region corresponding to η(ρgself ). So, deallocating this region
cannot cause dangling pointers.

For each expression e, the compiler generates a pair (θ, t) (and a µ when
needed). According to e’s syntax, the certificate applies the corresponding proof
rule by previously discharging its premises, then deriving e ⊢ θ ; t. For example,
in an application expression, we assume that the most general type of the called
function g is kept in the global environment ΣT . The certificate receives the
(θ, t, µ) for this particular application, gets g’s signature from ΣT , checks t =
µ(tg) and the rest of premises of the APP proof rule, and then applies it.

5 Certificate generation

Given the above sets of already proved theorems, certificate generation for a given
program is a rather straightforward task. It consists of traversing the program’s
abstract syntax tree and producing the following information:



Expression L Γ

e1
def
= unshuffle x50 @ r2 r1 self {x50} [x50 : d, x34 : r]

e2
def
= x45 {x45} [x45 : s, x34 : r]

e3
def
= case x40 of (x45, x46) → e2 {x40} [x40 : s, x34 : r]

e4
def
= x48 {x48} [x48 : s, x34 : r]

e5
def
= case x40 of (x47, x48) → e4 {x40} [x40 : s, x34 : r]

e6
def
= x39 {x39} [x39 : s, x34 : r]

e7
def
= let x39 = (x38, x15) @ r3 in e6 {x15, x38} [x15 : s, x38 : s, x34 : r]

e8
def
= let x38 = x49 : x16 @ r1 in e7 {x15, x16, x49} [x15 : s, x16 : s, x49 : s, x34 : r]

e9
def
= let x16 = e5 in e4 {x15, x40, x49} [x15 : s, x40 : s, x49 : s, x34 : r]

e10
def
= let x15 = e3 in e2 {x40, x49} [x40 : s, x49 : s, x34 : r]

e11
def
= let x40 = e1 in e10 {x49, x50} [x49 : s, x50 : d, x34 : r]

e12
def
= x37 {x37} [x37 : s, x34 : r]

e13
def
= let x37 = (x36, x35) @ r3 in e12 {x35, x36} [x35 : s, x36 : s, x34 : r]

e14
def
= let x35 = [ ] @ r2 in e13 {x36} [x36 : s, x34 : r]

e15
def
= let x36 = [ ] @ r1 in e14 { } [x34 : r]

e16
def
= case! x34 of {x49 : x50 → e11; [ ] → e15} {x34} [x34 : d]

Fig. 7. Isabelle/HOL definitions of Core-Safe expressions, free variables, and mark
environments for unshuffle

– A definition in Isabelle/HOL of the abstract syntax tree.
– A set of Isabelle/HOL definitions for the static objects inferred by the anal-

yses: sets of free variables, mark environments, typing environments, type
instantiation mappings, etc.

– A set of Isabelle/HOL proof scripts proving a lemma for each expression,
consisting of first checking the premises of the proof-rule associated to the
syntactic form of the expression, and then applying the proof rule.

This strategy results in small certificates and short checking times as the total
amount of work is linear with program size. The heaviest part of the proof —the
database of proved proof rules— has been done in advance and is reused by each
certified program.

In Fig. 7 we show the Isabelle/HOL definitions for the elementary Core-

Safe expressions of the unshuffle function defined in Sec. 2, together with the
components L and Γ of the static assertions proving the absence of dangling
pointers for cell deallocation. They are arranged bottom-up, from simple to
compound expressions, because this is the order required by Isabelle/HOL for
applying the proof rules. In Fig. 8 we show (this time top-down for a better
understanding) the components θ, t, and µ of the static assertions for region
deallocation for the expressions e14, e15, and e16 of Fig. 7. We show also the
most general types of some constructors given by the global environment ΓT .

The Core-Safe text for unshuffle consists of about 50 lines, while the certifi-
cate for it is about 1000 lines long, 300 of which are devoted to definitions. This
expansion factor of 20 is approximately the same for all the examples we have
certified so far, so confirming that certificate size grows linearly with program



θ16
def
= [x34 : [a]@ρ4, r1 : ρ1, r2 : ρ2, r3 : ρ3, self : ρself ] t16

def
= ([a]@ρ1, [a]@ρ2)@ρ3

θ15
def
= θ16 t15

def
= ([a]@ρ1, [a]@ρ2)@ρ3

θ14
def
= θ15 + [x36 : [a]@ρ1] t14

def
= ([a]@ρ1, [a]@ρ2)@ρ3

µ16
def
= {a 7→ a, ρ1 7→ ρ4} ΓT ([ ]) = ρ1 → [a]@ρ1

µ15
def
= {a 7→ a, ρ1 7→ ρ1} ΓT (:) = a → [a]@ρ1 → ρ1 → [a]@ρ1

µ14
def
= {a 7→ a, ρ1 7→ ρ2}

Fig. 8. Isabelle/HOL definitions of typing mappings, and types for unshuffle

size. There is room for optimisation by defining an Isabelle/HOL tactic for each
proof rule. This reduces both the size and the checking time of the certificate.
We have implemented this idea in the region deallocation part.

The Isabelle/HOL proof scripts for the cell deallocation proof-rules reach
8 000 lines, while the ones devoted to region deallocation tally up to 4 000 lines
more. Together they represent about 1.5 person-year effort. All the theories are
available at http://dalila.sip.ucm.es/safe/certifdangling. There is also an on-
line version of the Safe compiler at http://dalila.sip.ucm.es/~safe where users
may remotely submit source files and browse all the generated intermediate files,
including certificates. An extended version of this paper with proof schemes
available can be found at http://dalila.sip.ucm.es/safe.

6 Related work and conclusion

Introducing pointers in a Hoare-style assertion logic and using a proof assistant
for proving pointer programs goes back to the late seventies [9], where the Stan-
ford Pascal Program Verifier was used. A more recent reference is [5], using the
Jape proof editor. A formalisation of Bornat’s ideas in Isabelle/HOL was done
by Mehta and Nipkow in [10], where they add a complete soundness proof.

A type system allowing safe heap destruction was studied in [1] and [2]. In
[11] we made a detailed comparison with those works showing that our system
accepts as safe some programs that their system rejects. Another difference is
that we have developed a type inference algorithm [12] which they lack.

Connecting the results of a static analysis with the generation of certificates
was done from the beginning of the PCC paradigm (see for instance [15]). A
more recent work is [3].

Our work is more closely related to [4], where a resource consumption prop-
erty obtained by a special type system developed in [8] is transformed into a
certificate. The compiler is able to infer a linear upper bound on heap consump-
tion and to certify this property by emitting an Isabelle/HOL script proving it.
Our static assertions have been inspired by their derived assertions, used also
there to connect static with dynamic properties. However, their heap is simpler
to deal with than ours since it essentially consists of a free list of cells, and the
only data type available is the list. We must also deal with regions and with any
user-defined data type. This results in our complex notion of consistency.



Apart from the proofs themselves, our contribution has been defining the
appropriate functions, predicates and relations such as closure, recReach, closed,
consistent,. . . relating the static and the runtime information in such a way that
the proof-rules could be proved correct.
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