
HAL Id: inria-00524630
https://hal.inria.fr/inria-00524630

Submitted on 8 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Model Checking Techniques for Randomized
Distributed Systems

Christel Baier

To cite this version:
Christel Baier. On Model Checking Techniques for Randomized Distributed Systems. Mery, Do-
minique and Merz, Stephan. Integrated Formal Methods - IFM 2010, Oct 2010, Nancy, France.
Springer Berlin / Heidelberg, 6396, pp.1-11, 2010, Lecture Notes in Computer Science. <inria-
00524630>

https://hal.inria.fr/inria-00524630
https://hal.archives-ouvertes.fr


On Model Checking Techniques for

Randomized Distributed Systems

Christel Baier

Technische Universität Dresden, Faculty of Computer Science, Germany

Abstract. The automata-based model checking approach for random-
ized distributed systems relies on an operational interleaving semantics
of the system by means of a Markov decision process and a formalization
of the desired event E by an ω-regular linear-time property, e.g., an LTL
formula. The task is then to compute the greatest lower bound for the
probability for E that can be guaranteed even in worst-case scenarios.
Such bounds can be computed by a combination of polynomially time-
bounded graph algorithm with methods for solving linear programs. In
the classical approach, the “worst-case” is determined when ranging over
all schedulers that decide which action to perform next. In particular, all
possible interleavings and resolutions of other nondeterministic choices in
the system model are taken into account. The worst-case analysis relying
on this general notion of schedulers is often too pessimistic and leads to
extreme probability values that can be achieved only by schedulers that
are unrealistic for parallel systems. This motivates the switch to more
realistic classes of schedulers that respect the fact that the individual pro-
cesses only have partial information about the global system states. Such
classes of partial-information schedulers yield more realistic worst-case
probabilities, but computationally they are much harder. A wide range
of verification problems turns out to be undecidable when the goal is to
check that certain probability bounds hold under all partial-information
schedulers.

Probabilistic phenomenon appear rather natural in many areas of computer
science. Randomized algorithms, performance evaluation, security protocols, con-
trol theory, stochastic planning, operations research, system biology or resilient
systems are just a few examples. Although a wide range of different stochas-
tic models are used in these areas, it is often possible to deal with Markovian
models. These rely on the memoryless property stating that the future system
behavior only depends on the current state, but not on the past. If the state
space is finite, then Markovian models can be viewed as a variant of classical
finite automata augmented with distributions which makes them best suited for
the application of model checking techniques.

In this extended abstract, we summarize the main steps of the automata-
based model checking approach for the quantitative analysis of Markov decision
processes in worst-case scenarios, and point out the difficulties that arise when
taking the local views of the processes into account.



Markov decision processes (MDPs) can be understood as a probabilistic
extension of labeled transition systems. Nondeterminism can be represented in
an MDP by the choice between different actions. The actions of an MDP can
have a probabilistic effect, possibly depending on the state in which they are
executed.

The coexistence of nondeterminism and probabilism in an MDP allows for
representing concurrent (possibly randomized) activities of different processes
by interleaving, i.e., the choice which process performs the next step. Besides
interleaving, the nondeterminism in an MDP can also be useful for abstraction
purposes, for underspecification to be resolved in future refinement steps, or for
modeling the interface with an unknown environment. Formally, an MDP is a
tuple M = (S, Act, P, s0, . . .) where

– S is a finite nonempty set of states,
– Act is a finite nonempty set of actions,
– P : S × Act × S → [0, 1] is a function, called transition probability function,

such that for all states s ∈ S and actions α ∈ Act, the function s �→ P(s, α, ·)
is either the null-function or a probabilistic distribution, i.e.,

∑

s′∈S

P(s, α, s′) ∈ {0, 1} for all states s ∈ S and actions α ∈ Act,

– s0 ∈ S is the initial state.

Alternatively, one can deal with a distribution over initial states. Further com-
ponents can be added, such as reward or cost functions or atomic propositions.
MDPs with a rewards for the states and actions can be useful to model so-
journ times in states or other quantitative measures such as energy consumption.
Atomic propositions can serve as state predicates and are often used to formalize
properties in some temporal or modal logic.

If s ∈ S then Act(s) denotes the set of actions that are enabled in state s,
i.e.,

Act(s) def=
{
α ∈ Act : P(s, α, s′) > 0 for some s′ ∈ S

}
.

For technical reasons, it is often useful to assume that there are no terminal
states, i.e., for each state s ∈ S the set Act(s) in nonempty.

The intuitive operational behavior of an MDP M as above is the following.
The computation starts in the initial state s0. If after n steps the current state
is sn then first an enabled action αn+1 ∈ Act(sn) is chosen nondeterministically.
The effect of action αn+1 in state sn is given by the distribution P(sn, αn+1, ·).
Thus, the next state sn+1 belongs to the support of P(sn, αn+1, ·) and is chosen
probabilistically. The resulting sequence of states π = s0 s1 s2 . . . ∈ Sω is called
a path of M.

Markov decision processes are widely used as an operational model for par-
allel systems where some components behave probabilistically, e.g., if they rely
on a randomized algorithms or communicate via an unreliable fifo channel that
looses or corrupts messages with some small (fixed) probability.
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Example 1 (MDP for a randomized mutual exclusion protocol). Figure 1 shows
an MDP modeling a simple mutual exclusion protocol for two processes P1, P2

that compete to access a certain shared ressource. Process Pi is represented by
three local states ni, wi, ci. Local state ni stands for the non-critical phase of
process Pi, wi represents the location where process Pi is waiting and ci denotes
the critical section. The local states ni and ci can be left by performing a request
or release action, respectively. If Pi is waiting, i.e., its current local state is wi,
and the other process Pj is not its critical section then Pi can enter the local state
ci (action enteri). If both P1 and P2 are waiting then the competition is resolved
by a randomized arbiter who tosses a fair coin to decide whether P1 will enter
its critical section (if the outcome is head) or P2 gets the grant (if the outcome is
tail). All other actions requesti, releasei, and enteri have a deterministic effect in
the sense that, in all states s where they are enabled, the associated distribution
is a Dirac distribution, i.e., assigns probability 1 to the unique successor state.
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Fig. 1. MDP for mutual exclusion with randomized arbiter

Schedulers. Reasoning about the probabilities for path events (i.e., conditions
that might or might not hold for a path) in an MDP requires the concept of
schedulers, also often called policies or adversaries. A scheduler refers to any,
possibly history-dependent, strategy for resolving the nondeterministic choices.
Formally, a scheduler for an MDP M = (S, Act, P, s0, . . .) can be defined as a
function

D : S+ → Act such that D(s0 s1 . . . sn) ∈ Act(sn).

The input s0 s1 . . . sn of D stands for the “history”, i.e., the sequence of states
that have been visited in the past. The last state sn represents the current
state sn. (The values of D are only relevant for finite D-paths, i.e., sequences
s0 s1 . . . sn such that P(si, D(s0, . . . , sn), si+1) > 0 for 0 ≤ i < n.)

In the literature, more general types of schedulers have been defined, e.g.,
randomized schedulers that assign distributions of actions to finite paths rather
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than single actions. Furthermore, the input of a scheduler can also include the
actions that have been taken in the past. Vice versa, one can also restrict the
class of schedulers to those that are realizable by a finite-state machine. For
reasoning about probabilities for ω-regular path events in worst-case scenarios,
these differences in the definition of schedulers are irrelevant, as long as they
rely on complete information about the states of M.

Given a scheduler D, the operational behavior of M under D can be unfolded
into a tree-like infinite Markov chain. This allows to apply standard techniques
for Markov chains to define a σ-algebra over infinite paths and the probability of
path events, i.e., measurable sets of infinite paths. Details can be found in any
textbook on Markov decision processes, see e.g. [27].

Quantitative worst-case analysis. The typical task of the quantitative anal-
ysis of an MDP is to determine the probabilities for a certain path event E in a
worst-case scenario, i.e., the maximal or minimal probabilities for E when rang-
ing over all schedulers. Thus, the purpose of a quantitative analysis is to provide
lower or upper probability bounds that are guaranteed for all interleavings of
concurrent activities, all refinements of nondeterministic choices that have been
obtained from abstraction techniques, and no matter how the environment be-
haves, provided that the environment has been modeled nondeterministically.
When Markov decision processes are augmented with cost functions, then the
quantitative analysis can also establish lower or upper bounds on expected val-
ues (e.g., costs for reaching a certain goal set or long-run averages) that can be
guaranteed for all schedulers. The notion qualitative analysis refers to the task
where one has to check whether a given event E holds almost surely, i.e., with
probability 1 for all schedulers, or whether E holds with zero probability, no
matter which scheduler is used.

For an example, let us regard the mutual exclusion protocol modeled by the
MDP shown in Figure 1 again.

– The safety property Esafe stating that the two processes are never simul-
taneously in their critical section needs no probabilistic features and can
be establsihed by standard (non-probabilistic) model checking techniques,
as the mutual exclusion property holds along all paths. Note that the state
〈c1, c2〉 is not reachable.

– The liveness property Elive stating that each waiting process will eventually
enter its critical section does not hold along all paths. E.g., in any infinite
path that runs forever through the cycle 〈n1, w2〉 〈w1, w2〉 〈c1, w2〉 〈n1, w2〉
the second process is waiting forever. However, such paths have probabil-
ity measure 0 under all schedulers. Hence, event Elive holds almost surely
(i.e., with probability 1) under each scheduler. This yields that the minimal
probability for Elive is 1.

– Suppose now that process P2 is waiting in the current state, i.e., we treat
state 〈n1, w2〉 as initial state.
For each scheduler, the probability that P2 will enter its critical section
within the next n rounds is at least 1 − 1

2n . Here, by a “round” we mean
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any simple cycle containing the state 〈w1, w2〉 where the randomized arbiter
tosses a coin. The worst case scenario for process P2 is a scheduler that always
schedules action request1 in state 〈n1, w2〉. Under this scheduler, process P1

is the winner of the first n coin tossing experiment with probability 1
2n . It

sould be noticed that under other schedulers, process P2 can have better
chances to enter its critical section within the next n rounds. For example,
if action enter2 is scheduled in state 〈n1, w2〉 then process P2 will enter its
critical section in the first round.
The expected number of rounds that P2 has to wait after having requested
its critical section is less or equal

∞∑

n=1
n · 1

2n = 2

for each scheduler. Value 2 is obtained under the scheduler which always
schedules the action request1 in state 〈n1, w2〉. Hence, the MDP in Figure
1 enjoys the property that the minimal expected number of rounds that P2

has to wait before entering its critical section is 2.

path event E
randomized

distributed system

deterministic
ω-automata A

Markov decision
process M

probabilistic model checker
quantitative analysis of M×A

(graph algorithms + methods for linear programs)

maximal or minimal probability for E

Fig. 2. Schema for the quantitative analysis

Probabilistic model checking. Probabilistic model checking techniques for
finite-state Markov decision processes have been designed for verifying qualita-
tive and quantitative properties specified in probabilistic computation tree logic
[8, 15, 7] or computing extremal probabilities for ω-regular path events [32, 33, 13,
5]. The schema of the standard model checking approach for computing extremal
(i.e., minimal or maximal) probabilities for ω-regular path events in MDPs is
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shown in Figure 2. The main idea relies on an analysis of the product that results
from the given MDP M with a deterministic ω-automaton A representing the
path event. (See, e.g., [31, 19] for an overview of automata over infinite struc-
tures.) As A is deterministic, the product M×A can be understood as an MDP
that behaves operationally as M and additionally mimicks A’s behavior when
scanning a path of M. The extremal probabilities for the given path event E in
M agree with the extremal probabilities for the acceptance condition of A in the
product-MDP M. The latter can be computed by means of a graph analysis and
linear programming techniques for calculating minimal or maximal reachability
probabilities. The details of this procedure can be found in the above mentioned
literature.

Several efficient probabilistic model checking tools for MDPs are available
that have been used in many application areas. The most prominent one that
uses a symbolic approach with BDD-variants is PRISM [20].

Anomalies when ranging over all schedulers. The approach sketched above
computes “worst-case” probabilities for path events when ranging over all sched-
ulers. In particular, all possible interleavings and resolutions of other nondeter-
ministic choices in the system model are taken into account. However, the com-
puted worst-case probabilities are often too pessimistic since there are unrealistic
schedulers that might yield extremal probabilities.

As in the non-probabilistic case, fairness assumption might be necessary to
rule out schedulers that treat some processes in an unfair way. E.g., for the
MDP in Figure 1, the scheduler that never takes an action of process P2 and
only schedules the actions request1, enter1 and release1 can be viewed to be un-
realistic since the request-operation of process P2 is always enabled. The schema
sketched in Figure 2 can be refined to compute the minimal and maximal prob-
abilities of ω-regular path events when ranging over fair schedulers only [7, 6].
The major difference is that the graph-based analysis has to be revised.

But there are still other curious phenomena when ranging over all (possibly
fair) schedulers in MDPs that can contort the extremal probabilities.

Example 2. The MDP in Figure 3 arises through the parallel composition of two
processes P1 and P2 with local integer variables x and y, respectively, that have
initial value 0.
Process P1 consists of a nondeterministic choice between actions β and γ, rep-
resenting the deterministic assignments x := 1 (action β) and x := 2 (action γ).
Process P2 probabilistically assigns value 1 or 2 to y, depending on the outcome
of a coin tossing experiment (action α). To ensure that no state is terminal, self-
loops can be added to all states that have no outgoing transition in Figure 3.
These self-loops might represent an internal step performed by a third process.

The maximal probability that a state where x = y ∈ {1, 2} will be reached
is 1, since we might first schedule α and then, depending on the outcome of
α, we can choose β or γ to ensure that finally x = y ∈ {1, 2}. This scheduler,
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action effect

α toss a fair coin;
if head then y := 1

else y := 2
β x := 1
γ x := 2
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Fig. 3. MDP for P1‖P2 where P1 = β + γ and P2 = α

however, is not realizable if there is no central control and process P1 cannot
access the current value of P2’s local variable y. Indeed, intuitively we might
expect the answer 1

2 (rather than 1) as the maximal probability for reaching a
state where x = y ∈ {1, 2} is 1

2 when ranging over all strategies to resolve the
nondeterministic choice between β and γ in process P1.

Partially-observable Markov decision processes. The above observation
motivates to study the worst-case behavior of MDPs for restricted classes of
schedulers that take the local view of the processes that run in parallel into
account. In the literature, several classes of schedulers have been considered that
are more adequate for reasoning about distributed systems [12, 18, 1]. Partially-
observable MDPs, briefly called POMDPs, can be seen as a simple variant that
can serve to model the view of one process.

POMDPs are formally defined as MDPs that are augmented by an equiv-
alence relation ∼ on the state space which identifies those states that cannot
be distinguished by an observer. A scheduler D : S+ → Act for an POMDP
is called observation-based iff D’s decisions only depend on the observables of
the history, i.e., if π1 = s0 s1 . . . sn and π2 = t0 t1 . . . tn are finite paths of the
same length such that [si] = [ti] for 0 ≤ i ≤ n then D(π1) = D(π2). Here,
[s] = {s′ ∈ S : s ∼ s′} denotes the ∼-equivalence class of state s.

POMDPs are used in many application areas, see e.g. [9], and many algo-
rithms have been proposed for the analysis of the behavior up a fixed number
of steps (“finite-horizon”) [23, 25, 21, 24]. However, many difficulties arise for
path events of the standard safety-liveness spectrum where no restrictions are
imposed on the number of relevant steps. The design of algorithms for a quan-
titative analysis that determines worst-case probabilities for, e.g., a reachability
condition, under all observation-based schedulers is impossible. This is due to
the close link between POMDPs with an reachability objective, say ♦F where F
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is a set of states and ♦ denotes the eventually operator of LTL, and probabilistic
finite automata (PFA) [28, 26]. Note that in the extreme case of an POMDP
M where ∼ identifies all states, the observation-based schedulers can be viewed
as functions D : N → Act, and hence, as infinite words in Actω. But then the
question whether there exists an observation-based scheduler D for M such that
the probability for ♦F under D is larger than a given a threshold λ ∈]0, 1[ is
equivalent to the non-emptiness problem for the PFA that results from M by
treating F as the set of final states and λ as threshold for the accepted language;
and the latter is known to be undecidable [26, 22].

There is even no approximation algorithm for maximal reachability probabil-
ities in POMDPs and the verification problem for almost all interesting quanti-
tative properties for POMDPs and related models are undecidable [22, 18]. Even
worse, undecidability results can be established for certain instances of the model
checking problem for POMDPs and qualitative properties, such as the question
whether there exists an observation-based scheduler such that a repeated reacha-
bility condition �♦F (“visit infinitely often some state in F”) holds with positive
probability. This problem is a generalization of the non-emptiness problem for
probabilistic Büchi automata (PBA) with the probable semantics [3] which is
known to be undecidable [2].

However, some qualitative model checking problems for POMDPs are decid-
able. Examples for decidable verification problems for POMDPs are the question
whether there exists an observation-based scheduler such that an invariance �F
(“always F”) holds with positive probability [16], or whether the maximal prob-
ability under all observation-based schedulers for a reachability condition ♦F
(“eventually F”) or a repeated reachability condition �♦F (“infinitely often
F”) is 1 [2], see also [10, 11]. The algorithms for such qualitative model checking
problems for POMDPs rely on variants of the powerset construction that has
been introduced for incomplete-information games [29].

Besides the observation that ranging over the full class of schedulers can yield
too pessimistic worst-case probabilities, also several other techniques suffer from
the power of general schedulers.

In the context of partial order reduction for MDPs, it has been noticed in [4,
14] that the criteria that are known to be sound for non-probabilistic systems
are not sufficient to preserve extremal probabilities for ω-regular path events. In
this setting, the problem is that the commutativity of independent probabilistic
actions is a local property that does not carry over to a global setting. Consider
again the MDP in Example 2. Action α is independent from both β and γ, as α
accesses just variable y, while β and γ operate on x, without any reference to y.
Indeed if we consider the parallel execution of α and β (or α and γ) in isolation,
then the order of α and β (or α and γ) is irrelevant for the probabilities of the
final outcome. But the commutativity of α and β resp. α and γ does not carry
over to the nondeterministic choice between β and γ (process P1).
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– The scheduler which first chooses α and then β if x=0 ∧ y = 1 and γ if
x=0 ∧ y = 2 yields probability 1 for a final outcome where x = y ∈ {1, 2}
hold.

– For the schedulers that first choose one of the actions β or γ and then perform
α, an outcome where x = y ∈ {1, 2} hold is obtained with probability 1

2 .

This observation causes some care for the design of partial order reduction tech-
niques for MDPs and either requires an extra condition [4, 14] or to restrict the
class of schedulers for the worst-case analysis [17].

Another problem that arises from the power of the full class of schedulers is
the lack of compositionality of trace distribution equivalence in MDP-like models
[30]. This problem can be avoided by introducing some appropriate concept
of distributed scheduling [12]. But as the series of undecidability results for
POMDPs shows, the price one has to pay when switching from the full class
of schedulers to more realistic ones is the loss of model checking algorithms for
the quantitative analysis against infinite-horizon path events, and partly also
verification algorithms for qualitative properties.

Nevertheless, further restrictions on the scheduler types might be possible to
overcome the limitations due to undecidability results.
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Büchi automata. In Proc. of the 11th International Conference on Foundations
of Software Science and Computation Structures (FOSSACS ’08), volume 4962 of
Lecture Notes in Computer Science, pages 287–301. Springer, 2008.
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