N
N

N

HAL

open science

Sequences Classification by Least General
Generalisations

Frédéric Tantini, Alain Terlutte, Fabien Torre

» To cite this version:

Frédéric Tantini, Alain Terlutte, Fabien Torre. Sequences Classification by Least General Generalisa-
tions. 10th International Colloquium on Grammatical Inference, Sep 2010, Valencia, Spain. pp.189-

202, 10.1007/978-3-642-15488-1_16 . inria-00524707

HAL 1d: inria-00524707
https://inria.hal.science/inria-00524707
Submitted on 8 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00524707
https://hal.archives-ouvertes.fr

Sequences Classification
by Least General Generalisations

Frédéric Tantini
Parole, CNRS/LORIA Nancy
Alain Terlutte, Fabien Torre
Mostrare (INRIA Lille Nord Europe et CNRS LIFL)

Université Lille Nord de France

September 15, 2010

Abstract

In this paper, we present a general framework for supervised classifica-
tion. This framework provides methods like boosting and only needs the
definition of a generalisation operator called LGG. For sequence classifica-
tion tasks, LGG is a learner that only uses positive examples. We show that
grammatical inference has already defined such learners for automata classes
like reversible automata or k-TSS automata. Then we propose a generali-
sation algorithm for the class of balls of words. Finally, we show through
experiments that our method efficiently resolves sequence classification tasks.

Keywords: sequence classification, least general automata, balls of words.

1 Introduction

We investigate in this paper the problem of sequence classification with two main
ideas.

First, we want to benefit from supervised classification advances like ensemble
methods (bagging, boosting, etc.). For this, we use a general framework for super-
vised classification based on the notion of least general generalisation (LGG). This
framework, called VOLATA, provides various ensemble methods whenever we are
able to define this LGG operator.

Second, we claim that results from the grammatical inference domain, like
language identification with positive instances only, can be used in order to classify
sequences. We consider learnability results: proofs of learnability from positive
examples could offer learning algorithms close to an LGG operator. Applying this
approach, we study O-reversible automata [1], k-TSS automata [2] and balls of
words |3].

The paper is organised as follow. In Section 2, we describe a LGG-based machine
learning framework and give its main generic algorithms. This generic method is
instantiated for some automata families in Section 3, and for balls of words in
Section 4. In Section 5, we run these algorithms on well-known sequence classifi-
cation problems and also on a real handwritten digit recognition problem. Finally,
Section 6, we assess our results and propose some future research works.

2 Supervised learning with least general generali-
sations

In this section, we describe our framework which is based on the following points:
e choose example language (£) and hypothesis language (H) such that £ C H;

e define a subsumption relation > between hypotheses of H that allows to
check if a hypothesis subsumes an example, and also to decide if a hypothesis
is more general than another one;

e given H and >, prove the existence of a unique least general hypothesis for
every set of examples and define an algorithm LGG to compute this hypoth-
esis.

The last point uses the notion of least general generalisation defined as follow.
Definition. least general generalisation

Given a set of examples E C £, a hypothesis h € H is a least general generalisation
of F iff:

e Vec F:h*>e
e there exists no hypothesis 4’ such that Ve € E : h' = e and h = h'.

Assuming a unique and computable least general generalisation, the VOLATA

system is designed through three levels.

1. The first one defines the LGG operator and depends on H and >. The next

levels are generics, they depend neither on language representation nor on
generality ordering.

. The second one uses classes to control the generalisation. A possible algo-

rithm here is CG (for correct generalisation) that aims at producing a correct
hypothesis (Algorithm 1): the first example is used as a seed, then we try to
generalise other positive examples using the LGG operator; each generalisa-
tion must be validated against negative examples; an example that produces
an incorrect generalisation is rejected and we continue to add positive exam-
ples from the previous correct hypothesis.

Algorithm 1 G (correct generalisation)

Require: E = [py,...,p,] C & an ordered set of n examples with the same class,

N C £ a set of counter-examples.

Ensure: h € ‘H generalisation of some examples in £ and correct wrt V.

1
2
3
4
5:
6
7
8

g =n
: fori=2tondo

g = LGG(g,p;) /™ generalisation with p; *
if (Wee N :¢ % e)then /Fif ¢ is correct */
g=4¢ /* ¢ is now the current generalisation *

end if

: end for
: return h(z) = class(E) if g = x, else 0 (abstention)

Let us note that the result of CG depends on the presentation order of positive
examples. This characteristic will be an advantage in ensemble methods since
it enhances diversity of produced hypotheses.

. The last level provides generic full learners: DLG for a fast learning, GLOBO

to obtain a comprehensive theory and ensemble methods like GLOBOOST,
BAGGING and ADABOOST-MG that ensure better predictions. In this paper,
we focus on GLOBOOST that is the simplest ensemble method: it randomly
produces T correct hypotheses; at each step, a class is randomly chosen, sets
of positive and negative examples are built, randomly shuffled and then the

algorithm CcG is called on these sets; finally, a new example is classified by
the T hypotheses in a vote. GLOBOOST is described in Algorithm 2.

Algorithm 2 GLOBOOST
Require: labelled examples (z;,y;) and T' the number of steps.
Ensure: H the final classifier.
1: fort=1to T do
2: target = class randomly chosen
P = [z;]y; = target]
N = [aly: # targel]
randomly shuffle P
hy = cca(P,N) /* Call to the correct generalisation algorithm */
7: end for
8: return H(z) = sign <ZtT:1 ht(x))

The two presented algorithms, GLOBOOST and CG, are generics, they have to
be instantiated by a generalisation operator LGG, itself depending on H and >.
In the rest of this paper, examples are words and hypotheses are either automata
or balls of words. For these families, the subsumption test between an hypothesis
and an example is naturally the word membership of the denoted language. What
remains is the definition of the LGG operator. In grammatical inference, this means
finding for each family an algorithm that learns with positive examples only, and
provides the smallest language that contains the training set. In the two following
sections, we investigate this question for k-TSS automata, O-reversible automata
and balls of words.

3 Generalisation of words to automata

We consider in this section that hypotheses are automata. The subsumption test
is obviously whether or not the automaton accepts the example. We have now
to define the LGG operator for each class of language we want to use, that is, an
algorithm from positive examples only ensuring the smallest language that includes
the given examples.

3.1 The k-TSS languages

The class of k-testable in the strict sense (k-TSS) languages is a well known sub-
class of regular languages [2|. It is characterised by the set of sequences of length
k that do not appear in the word of the language. These languages are very simple
and their expressivity is relatively poor.

However, there exists an algorithm learning from positive examples only. It
is known to compute the smallest language including the sample, then the least
general generalisation. We propose an incremental version, LGG-TSSI (Algorithm
3), for which the key point is that each state is represented by the last (k — 1)
letters read to reach this state.

Algorithm 3 LGG-TSSI
Require: h = (Q, >, qo, F') a k-TSS automaton, e an example, a given integer k.
Ensure: 1/ a k-TSS automaton, least general generalisation of h, subsuming e.

I g=qo

2: for i =1 to |e| do

3: v = q.e; /* concatenation of the word of ¢ with the ith letter of e *
4: if (Jv| = k) then

5: V=V |y

6: end if

T nqg =uv

8: add ng to Q /* ng may be already present in () */
9: add (¢, e;,nq) to §

10: q=nq

11: end for

12: add ¢ to F

13: return A’ = (Q, %, 6, q, F)

3.2 The O-reversible languages

The class of k-reversible languages is often said to be more interesting than the
previous one, partly because it is more expressive: (k — 1)-TSS languages are
all k-reversible ones. Note that, given a fixed k, some finite languages are not
k-reversible.

In this paper, we will focus on k£ = 0, that is O-reversible languages. A least
general generalisation computation in the class of O-reversible languages is given in
[1]. We propose an incremental version: LGG-ZR (Algorithm 4). In this algorithm,
the new word is added to the current automaton in the PTA way, that induces
the creation of a new branch recognising only this word. Then, merges are made
in order to get a unique final state, deterministic transitions and a deterministic
mirror-automaton.

Algorithm 4 LGG-ZR

Require: h = (Q, X, qo, F') a O-reversible automaton, e an example.
Ensure: 1’ a O-reversible automaton, least general generalisation of h subsuming

1:

e.
i=159=q
* following existing states */

2: while §(q, ¢;) is defined do

10:

11:
12:
13:
14:
15:
16:

q=906(g,e;);i=1+1
end while
/* creating new branch for remaining letters */
while i < |e| do
create state ¢/, add ¢’ to Q
add (q,e;, q') to d
1=14+1
end while
add ¢ to F
/* merging */
merge all states in F'
repeat
if 3A, B € @ and 3l € ¥ such that §(A,1) = 0(B,1), merge A and B
if 3A, B, FE € @ and 3] € ¥ such that 6(E,l) = {A, B}, merge A and B
until no fusion
return b’ = (Q, %, 9, qo, F)

4 Generalisation of words to balls of strings

4.1 Definitions

We now consider hypotheses as balls of strings. A ball is defined by a centre-string
o and a radius r, and is noted B,(0). A ball of strings B, (o) is the set of all words
at distance less or equals to r from o, that is, B,.(0) = {w € ¥*|d(o,w) < r}. The
subsumption test > between a hypothesis h = B,(0) and an example e is then
true if the word is in the ball, that is, h = e < d(e,0) <.

The distance we use is the edit distance, or Levenshtein distance [4], for which
each edit operation (among insertion, deletion, substitution) has a unit cost. It is
the minimal number of symbol operations needed to rewrite one word into another
one. More formally, let w and w’ be two words in ¥*, we rewrite w into w’ in one
step if one of the following condition is true:

1. deletion : w = vav and w' = wv with u,v € ¥* and a € 3;
2. insertion : w = uv and w’ = wav with u,v € ¥* and a € X;

3. substitution : w = uav and w’ = ubv with u,v € ¥*, a,b € X, a # b.

We note w - w' if w can be rewritten into w’ by means of k operations.
Definition. Edit Distance
The edit distance between two words w and w’, noted d(w,w’), is the smallest k

such that w < w'.

The edit distance d(w,w’) can be computed in O (Jw| - |w'|) time by dynamic
programming [5]. Basically, we compute a |w| x |w’| matrix M, where M/[i|[j] is
the edit distance between the prefixes w;_; and w’l.__j. Moreover, this allows us to
deduce the required edit operations to go from one word into the other.

4.2 Learning generalised balls

Non-unicity of least general generalisation.
Unlike the generalisation to automata, we can note that with balls of strings,

least general generalisation are not unique anymore.

Example.
Let £ = [a,b,ab], h = Bi(a) and b’ = B;(b). Both hypotheses subsume the
examples (h = E and b/ = E) but b’ % h and h # 1!

This property is obvious in R?; in Figure 1, three points are subsumed by
several disk-hypotheses that are not comparable to each other.

Thus, we are definitely not in the ideal case of Section 2 where least general
generalisation is unique.

Figure 1: Endless number of disks containing 3 points and non comparable to each
other.

One could claim that there is nonetheless a smallest ball containing all the
examples as we can see in Figure 1. But there is no reason that the smallest ball
should be the least general generalisation. Indeed, it is not contained in the other
ones, thus the two concepts are different. Furthermore, there is a computational
barrier if we made this choice: finding the centre string of a set is NP-hard [6].

Monotonic generalisation operator.
To tackle theses problems, we propose the incremental Algorithm 5 (called G-
BALLS) as the generalisation operator for balls of strings.

Algorithm 5 Generic algorithm G-BALLS of the generalised ball
Require: h = B,(0) a ball, e an example.
Ensure: g € H a least general generalisation of h subsuming e (g = h and g > e).

k = max(z +r,y)
return By (u)

1: p=o0-e /* ashortest path *

2: Let u be a string on the pathp /* p =05 u 5 e, v+ y = d(o,e) *
3: x =d(o,u)

4: y = d(u,e)

5:

6:

This algorithm requires a method to choose the new centre u on the path p,
but whatever this choice is, we keep the monotonic property, that is the new ball
subsumes the new example and the previous hypothesis:

o du,e) =y<k = e€ Br(u) = g > ¢

e YVw € B.(0), dlo,w) < r and with the triangular inequality d(u,w) <
d(u,0) + d(o,w), we deduce d(u,w) < z+r <k, so w € Bi(u) and then
g = h.

The algorithm mainly relies on the computation of the path between the centre
and the new example, so it is, as the edit distance, polynomial in the length of the
words. Unfortunately, the downside of the monotony and the complexity gain is
that the new hypothesis is not always a least general generalisation anymore, but
the balls of strings combinatorial complexity keeps us from a better construction.
For instance: Example.

let E = [a,b]. The first hypothesis is the first example, that is h = By(a). Then,

as the path between the centre and the new example is ¢ : a EN b, there are two
ways of choosing u. Either G-BALLS(h,b) = By(a), or G-BALLS(h,b) = B;(b). But
the ball of radius 1 centred on the empty word Bj(\) contains F and is more
specific than both hypothesis: B;(\) C Bi(a) and By(A) C Bi(b).

However, let us note that the result of G-BALLS depends on the presentation
order of examples and this is a suitable property for our ensemble methods.

CG properties.
At last, the CG is no more monotonic.
Example.
Let us suppose that the strategy for the choice of the new centre is to always take
the new centre at distance 1 from the old one (z = 1). If the examples are A, b, a,
and the counter-example is bb, the produced hypotheses are, in order:

e By(\), the first hypothesis;
e By(b), which is rejected since it contains bb;
e Bj(a), which is accepted.

And yet, Bj(a) contains b, while the addition of b was rejected in the previous
step.

The only consequence of this non-monotony is ADABOOST-like implementa-
tions less efficient since covering of hypotheses should be systematically computed.

Summary for G-BALLS and comparison with LGG operators.

LGG | G-BALLS

unique LGG
sensibility to order
monotony of G-BALLS
monotony of CG

NENPYEN
XIS X

To summarise the properties of generalisation to balls of strings, we can then
say that: G-BALLS does not produce the least general generalisation but is mono-
tonic; ¢G depends on the presentation order of the examples and produces correct
hypotheses but is not monotonic.

The only point remaining now is to choose a minimal rewriting path p, and a
centre u on it.

4.3 Strategies to compute the centre of the new ball

In Algorithm 5, p is a rewriting path from o to e. Yet, there are many ways to go
from a word to an other. In order to always compute the same path p = 0 = e,
we use the matrix M used for the edit distance. Starting from the last entry, we
go back according to the origin of the resulting computation, in such (arbitrary)
ways:

e if M[i][j] can come from a deletion or another operation, we choose the
deletion;

e if M[i][j] can come from an insertion or a substitution, we choose the inser-
tion;

e once all edit operations are found, we execute them from left to right.

We denote such a path as an edit path. By setting these choices, the algorithm CcG
is then deterministic and depends on the order of the examples.

For instance, let w = ABACD and w' = EAFCGD. In Table 1 we show
the computation of the edit distances d(ABACD, EAFCGD) and d(EAFCGD,
ABACD). Gray entries indicate the trace of the edit operation selection for the
edit path computation, as previously defined. If we apply the operation from left

| [A[B]A[C]D]

O Q| | | =

wikol k@]l

Table 1: Edit path computation matrices of ABACD = EAFCGD (left) and
EAFCGD 5 ABACD (right)

10

to right, we obtain the following edit path:
e - ABACD — FABACD — FAFACD — FAFC-D —- FAFCGD
o FAFCGD — A-AFCGD — ABAFCGD — ABACGD — ABACD

Finally, several strategies are conceivable to choose the new centre u along the
edit path. This choice relies on the problem we are dealing with, or heuristics if
we want to give importance to the seed, or favour long examples, etc.

e simple: x+r =y (if k is even, otherwise, x +r = y+ 1). Naive version, that
we would use in Euclidian space. It “minimises” the new ball radius.

e seed: weighted by the number of examples in the ball. The seed is privileged.

e longCentre: weigthed by the old centre length <x = d(o,€) x (d(zl(;’)’?‘oﬂ).

The longer the centre, the closer we come to it.

e shortCentre: weigthed by the old centre length <:c = d(o,€) X (d(o ‘:)L‘O‘D.

The longer the centre, the farther we move away from it.

e random: the new centre is on the path, randomly chosen (z € [0;d(o, €)]).

We have obviously considered balls centred on the first example. In this case,
neither LGG nor CG are needed to learn the radius: taking the distance to the
nearest counterexample is enough. We are not driven by examples anymore and
we lose in diversity: each example leads to one unique ball. These suspicions are
confirmed with poor results in experiments with this strategy.

5 Experimentations

Among the methods that are suitable for including our generalisation algorithm,
we will keep GLOBOOST, previously described in Algorithm 2 and implemented in
the VOLATA! system.

We have set the following protocol: 10-fold cross validation, with 10 runs of
GLOBOOST on each fold. A given result is then the average of 100 runs.

'http://www.grappa.univ-1ille3.fr/ torre/Recherche/Softwares/volata/

11

5.1 UCI Repository datasets

In this section, we will use the sequential datasets from the UCI Repository [7],
namely: tic-tac-toe, badges, promoters, us-first-name and splice. With
these few problems, we tackle alphabets of size 3 to about 30. In the described
protocol, the data is split in 90% for learning an 10% for testing. Our goal is to
compare GLOBOOST instantiated with least general generalisation computations
to classical grammatical inference methods (such as RPNI [8]). Results are given
Table 2 (with 1000, 10000 and 100000 balls, 1000 automata, all produced by
GLOBOOST, for each considered problem).

Missing values are due to a lack of time with our available implementations.

On each problem, one of our method is the best one. Ensemble method gives
better performances in prediction. GB-B is generally the best choice, then comes
GB-TSSI. GB-ZR is not very good: it can be explained by the fact that the 0-
reversible class is rich and leads to nearly learn by heart on some data. A unique
O-reversible can then subsume all positive data without accepting counterexamples.
We will now concentrate on balls of strings as hypotheses.

5.2 Handwritten digit classification

We consider now the Nist special database 3. This database consists in 128 x 128
bitmap images of handwritten letters and digits. We will focus on a subset of
digits, written by 100 different writers. Each class (from 0 to 9) has about 1000
instances, giving a 10 568 digits corpus.

As we are working on words, each image is transformed in an octal string, with
the algorithm described in [9]: from the upper left pixel, we follow the border of
the digit until going back to the first one. Each direction gives a different letter of
the string (see Figure 2).

Primitives

Figure 2: Handwritten digit example. The corresponding string is “2"=22222
24324444466656565432222222466666666660000212121210076666546600210

We aim at comparing our approach to the one of [10], thanks to the use of
SEDIL [11] and a weighted edit matrix. The matrix is learnt on the same data as

12

Table 2: Precision of the methods on UCI Repository databases. GB-M denotes
GLOBOOST instancied by M, with M a k-TSS automata computation(TssI), a
O-reversible computation (ZR), or a ball of strings computation (B). In this case,
the choice of the new centre strategy is given in subscript.

(references) tic-tac-toe | badges | promoters | first-name | splice
Majority 65.34 % | 71.43 % | 50.00 % 81.62 % 50.26 %
RPNI 91.13 % | 62.24 % - 81.42 % -
TRAXBAR 90.81 % 57.48 % 56.60 % 81.37 % | 58.33 %
RED-BLUE 93.89 % | 61.09 % | 63.02 % | 82.83 % | 54.65 %
(GLOBOOST x1000) tic-tac-toe | badges | promoters | first-name | splice
GB-TSSI 9147 % | 72.69 % | 61.13 % | 89.50 % | 78.07 %
GB-ZR 98.36 % | 7143 % 50.00 % 83.07 % -
(GLOBOOST x1000) tic-tac-toe | badges | promoters | first-name | splice
GB-BSEED 92.77 % | 81.72 % | 86.13 % 87.45 % | 93.63 %
GB-By oNGOENTRE 91.04 % | 81.12% | 8653 % | $6.84% | 93.48 %
BBy or CENTRE 7489 % | 8043 % | 87.55% | 86.95% | 92.70 %
GB-BRANDOM 92.62 % 80.41 % 87.63 % 87.10 % 93.76 %
(GLOBOOST %10 000) tic-tac-toe | badges | promoters | first-name | splice
GB-BsiMPLE 94.54 % 81.38 % | 88.90 % 88.59 % 95.16 %
GB-BSEED 94.14 % 82.04 % 86.30 % 88.93 % 95.29 %
GB-By on G CENTRE 94.60 % | 82.21 % | 86.75 % | 89.47 % | 95.54 %
GB-Baporr CENTRE T446 % | 81.12% | 88.63% | 89.37T% |95.83 %
GB-BRANDOM 94.69 % 81.39 % 88.43 % 88.80 % 95.63 %
(GLOBOOST x100000) tic-tac-toe | badges | promoters | first-name splice
GB-BsiMPLE 94.43 % 81.21 % | 89.79 % 88.72 % | 96.05 %
GB-BSEED 94.26 % 81.39 % 86.58 % 89.11 % 95.64 %
GB-B o\ GCENTRE 95.03 % | 81.98 % | 87.58 % | 89.93 % | 95.68 %
GB-BayyorTCENTRE 7445 % | SL13% | 89.20% | 89.88 % |96.02 %
GB-BRANDOM 94.90 % 81.36 % 89.08 % 89.06 % 95.42 %

13

Marc SEBBAN with a stochastic transducer on 8 000 (input, output) pairs of strings
(the input is the string from the learning set, the output the 1-nearest-neighbour).
The final class is given according to the 1-nearest-neighbour computed with the
weighted distance matrix learnt. We have kept the same protocol (10-fold cross
validation), with 10% of the data for the learning set, 90% for the test set (the
matrix of SEDIL has been learnt on the same test examples, thus inducing a bias
in its favour). Results are given Table 3.

Table 3: Precision on the Nist special database 3, for 1000, 10000 and 100 000
produced balls by GLOBOOST (SEDIL performance: 95.86 %)

%1000 x 10000 | x100000
GB-BgIMPLE 92.59 % 95.14 % 95.57 %
GB-BSgED 93.74 % | 95.77 % | 96.16 %
GB-BLongCrnrre | 9364 % | 95.89 % | 96.22 %
GB-BapoprCenrre | 9292 % | 95.73 % | 96.17%
GB-BrANDOM 93.81 % | 95.93 % | 96.27 %

5.3 Experimental observations and discussion

Apart from the SHORTCENTRE counterperformance on the TIC-TAC-TOE problem,
we can consider that our strategies to compute the new centre are very close. Note
also that, with few exceptions, predicting qualities increase with the number of
produced balls. Finally, combining balls is more competitive in prediction terms
than the other tested methods, especially on genomic data (promoters and splice
problems) and on handwritten recognition, where we overcome SEDIL in spite of
our protocol.

Being able to produce 100 000 hypotheses is characteristic of balls of strings.
It is inconceivable for O-reversible or k-TSS automata. On the one hand, runs
of these algorithms are too long to give such a large amount of hypotheses this
quickly; with SEDIL, it is the classification that requires a quadratic number of
distance computations. On the other hand, the produced automata are quickly
the same. In other words, balls are diverse and fast to compute. Note that wide
diversity is usually considered as an important point for ensemble method [12].

Another observation is that for each experiment, examples are on the border
of the learnt ball and its centre is never an example of the concept. Even if we can
explain this by our hypotheses construction and the intrinsic properties of balls,
this is nevertheless noteworthy. Indeed, when used to learn from noisy data (as
in [13]), the centre is usually a non-noisy data, and the radius is seen as a noise

14

tolerance level. Here, the centre of the final hypothesis is rather considered as a
median string of the positive examples.

Example.
On the tic-tac-toe data set, which encodes possible board configurations at the
end of the game, positives examples being “win for x”: we learn the ball with
radius 5 and centre bbbb. It covers no negative examples but 120 positive ones,
all of them at distance 5 from the centre: xxxoobbbb, xobxbbxbo, xbboxbobx,
obxbbxobx, boxoxbxbb, bbxobxobx, etc.

Example.
On the us-first-name data set, which contains american first name, classes be-
ing female versus male first name: we learn the ball with radius 7 and centre
LRLRTSVKCA. It covers 346 female first names but no male first names. Here again,
covered examples are on the border of the ball.

These hollow balls are also part of the proof of the balls VC-dimension [14].

Theorem. [14]
The VC-dimension of balls, with a 2-letter alphabet, is infinite.

Proof. We take n words, all of length n, defined as follows: the ith word is made
with only as, except for the ith letter which is a b. Let us suppose now that these
words are labelled: k positives, (n — k) negatives. We can build a ball covering
only positive examples as follows: the centre is the word of length n that has bs
at the same places than the positive examples, as everywhere else, and the radius
is (k — 1). By construction, positive examples can be reached from the centre by
(k — 1) substitutions, and negative examples are at distance strictly greater. [

In this proof, we can note that the ball contains more words than the sample
set (thus there is a generalisation) and that words are on the border of the ball
(indicating that the learnt ball remains relatively specific to the sample).

6 Conclusion

Our goal in this paper is the classification of sequences, by deciding whether a
word belongs in some language or not. In other words, we try to guess a target
language, by minimising the generalisation error. We have chosen to integrate
classical grammatical inference techniques in a general framework resulting from
supervised classification: our hypotheses are automata or balls of strings, that we
combine using GLOBOOST algorithm.

We have shown through experiments that our approach is generally better
than classical methods and require usually less examples: we learn a combination
of automata that are individually simpler than a unique corresponding automaton.
Leveraging grammatical inference learners induces good sequence classifiers.

15

Although least general generalisation is supposed to be unique, our method can
cope with multiple ones such as balls of strings. We have then considered to follow
one of the generalisations. The ball with the smallest radius is certainly attractive,
but its computation is exponential. Finally, we have chosen a more general ball,
still close to the examples.

Experimental results tend to show that our approach is valid: balls of strings
combinations are better than automata combinations on classical problems of se-
quences classification, and than the reference method on the handwritten recog-
nition problem. Moreover, learning balls of strings is fast since operations are
on words; on the contrary, operations on automata are more complex (merging,
determinisation, etc.).

Finally, we have been able to deal with multiple least general generalisation
in the VOLATA framework, dedicated to unique least general generalisation. This
allows us to explore the integration of many more hypotheses classes. Among
other perspectives, we think that our methods can be improved by using weighted
edit distance, learning one distance for each specific problem. At last, we are
encouraged by the good results in genomic data to experiment in this field.

Acknowledgments. We would like to thank Jean-Christophe JANODET for
providing us the result about the VC dimension of balls and Marc SEBBAN for the
discussions on handwritten recognition and SEDIL.

This work was partially supported by Ministry of Higher Education and Re-
search, Nord-Pas de Calais Regional Council and FEDER through the Contrat de
Projets Etat Region (CPER) 2007-2013.

References

[1] Angluin, D.: Inference of reversible languages. Journal of the ACM 29(3)
(1982) 741-765

[2] Garcia, P., Vidal, E.: Inference of k-testable languages in the strict sense
and application to syntactic pattern recognition. IEEE Trans. Pattern Anal.
Mach. Intell. 12(9) (1990) 920-925

[3] de la Higuera, C., Janodet, J.C., Tantini, F.: Learning languages from
bounded resources: The case of the dfa and the balls of strings. In Clark,
A., Coste, F., Miclet, L., eds.: Proceedings of the 9th International Confer-
ence in Grammatical Inference. Volume 5278 of Lecture Notes in Artificial
Intelligence., Springer (2008) 43-56

[4] Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions,
and reversals. Doklady Akademii Nauk SSSR 163(4) (1965) 845-848

16

[5] Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. Journal
of the ACM 21 (1974) 168-178

[6] de la Higuera, C., Casacuberta, F.: Topology of strings: median string is
NP-complete. Theoretical Computer Science 230 (2000) 39-48

[7] Asuncion, A., Newman, D.: UCI machine learning repository (2007)

[8] Oncina, J., Garcia, P.: Identifying regular languages in polynomial time. In:
Advances in Structural and Syntactic Pattern Recognition, World Scientific
Publishing (1992) 99-108

[9] Mico, L., Oncina, J.: Comparison of fast nearest neighbour classifiers for
handwritten character recognition. Pattern Recognition Letter 19(3-4) (1998)
351-356

[10] Oncina, J., Sebban, M.: Learning stochastic edit distance: Application in
handwritten character recognition. Pattern Recognition 39(9) (2006) 1575—
1587

[11] Boyer, L., Esposito, Y., Habrard, A., Oncina, J., Sebban, J.: Sedil: Software
for Edit Distance Learning. In Daelemans, W., Goethals, B., Morik, K., eds.:
Proceedings of the 19th European Conference on Machine Learning, Springer
(2008) 672677

[12] Kuncheva, L.I., Whitaker, C.J.: Measures of diversity in classifier ensembles
and their relationship with the ensemble accuracy. Machine Learning 51(2)
(2003) 181-207

[13] Tantini, F., de la Higuera, C., Janodet, J.C.: Identification in the limit of
systematic-noisy languages. In: Proceedings of the 9th International Confer-
ence in Grammatical Inference. (2006) 19-31

[14] Janodet, J.C.: The vapnik-chervonenkis dimension of balls of strings is infinite
(2010) Personal Communication.

17

