
HAL Id: inria-00525007
https://inria.hal.science/inria-00525007

Submitted on 10 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MARTE based modeling approach for Partial Dynamic
Reconfigurable FPGAs

Imran Rafiq Quadri, Samy Meftali, Jean-Luc Dekeyser

To cite this version:
Imran Rafiq Quadri, Samy Meftali, Jean-Luc Dekeyser. MARTE based modeling approach for Par-
tial Dynamic Reconfigurable FPGAs. Sixth IEEE Workshop on Embedded Systems for Real-time
Multimedia (ESTIMedia 2008), Oct 2008, Atlanta, United States. �inria-00525007�

https://inria.hal.science/inria-00525007
https://hal.archives-ouvertes.fr


MARTE based modeling approach for Partial
Dynamic Reconfigurable FPGAs

Imran Rafiq Quadri, Samy Meftali and Jean-Luc Dekeyser,
INRIA LILLE NORD EUROPE - LIFL - University of Lille - CNRS, Lille, France

{Imran.Quadri, Samy.Meftali, Jean-Luc.Dekeyser}@lifl.fr

Abstract— As System-on-Chip (SoC) architectures become piv-
otal for designing embedded systems, the SoC design complexity
continues to increase exponentially necessitating the need to find
new design methodologies. In this paper we present a novel
SoC co-design methodology based on Model Driven Engineering
using the MARTE (Modeling and Analysis of Real-time and
Embedded Systems) standard. This methodology is utilized to
model fine grain reconfigurable architectures such as FPGAs
and extends the standard to integrate new features such as
Partial Dynamic Reconfiguration supported by modern FPGAs.
The goal is to carry out modeling at a high abstraction level
expressed in UML (Unified Modeling Language) and following
transformations of these models, automatically generate the code
necessary for FPGA implementation.

I. I NTRODUCTION

Modern System-on-chips (SoCs) have become an integral
part of designing embedded systems for targeting intensive
parallel computation applications. Continuous advances in
SoC technology permit to increase the number of hardware
resources on a single chip while in parallel the targeted
application domains: such as multimedia video codes, software
defined radio, radar/sonar detection systems are becoming
more sophisticated leading to a significant gap between design
productivity and verification of these complex systems. An im-
portant challenge is to find efficient design methodologies that
address the issues such as related to expressing parallelism.

Model Driven Engineering [1] (MDE) can be viewed as a
High Level Design Flowand effectively resolves the various
issues linked with SoC co-design. In a high level synthesis
(HLS) flow, the underlying implementation details are usu-
ally hidden from the user resulting in advantages such as
decrease in time to market and fabrication costs. However,
usually the specifications are written in C/C++ or other text
based languages and concepts such as related to parallelism
and hierarchy are not clearly evident making the necessary
modifications and extensions quite difficult. In contrast, in
MDE, the system is modeled at a high level allowing several
abstraction levels for different designers each focusing on a
particular domain space. The UML (Unified Modeling Lan-
guage) graphical language increases system comprehensibility
and permits relations between concepts defined at different
levels. Users provide high abstraction level descriptionsof
their systems and can identify the internal concepts such as
task/data parallelism and hierarchy easily. The graphicalnature
of these specifications allows for their reuse, modification,
maintenance and extension.

Modern FPGAs support the emerging feature of Partial
Dynamic Reconfiguration [2] (PDR) allowing specific portions
of FPGA to be reconfigured on the fly, hence time-sharing
the available hardware resources. Moreover, PDR allows task
swapping depending upon the application needs and Quality-
Of-Service (QoS) requirements.

MARTE [3] (Modeling and Analysis of Real-Time and
Embedded Systems) is an industry standard of the Object
Management Group (OMG) for model-driven development of
embedded systems and for SoC co-design. It provides the ca-
pability to model software, hardware and their relations, along
with extensions for performance and scheduling analysis. This
standard while rich in concepts unfortunately lacks certain
aspects for FPGA modeling.

GASPARD [4] is a MARTE compliant SoC co-design
environment dedicated specially towards parallel hardware
and software co-design allowing to move from high level
MARTE specifications to an executable platform. It exploits
the parallelism included in repetitive constructions of hardware
elements or regular constructions such as application loops.

The contribution of this paper is to present part of a
complete design flow with an extended version of the MARTE
standard for general modeling of FPGAs. Our concepts allow
us to introduce PDR in MARTE for modeling all types of
FPGAs supporting this feature. Finally, using the MDE model
transformations, this methodology can be used to bridge the
gap between high abstraction levels and implementation details
to automatically generate the necessary code required for the
generation of bitstream(s) for FPGA implementation.

The rest of this paper is organized as follows. Section 2
provides an overview of MDE and model transformations.
Section 3 describes GASPARD and MARTE. Section 4 gives a
summary of related works followed by PDR concepts. Section
6 defines our methodology for modeling PDR supported
FPGAs. This paper finishes with a case study in section 7
followed by a conclusion.

II. M ODEL DRIVEN ENGINEERING

MDE revolves around three focal concepts.Models, Meta-
modelsand Transformations. A model is composed of con-
cepts and relations and is an abstraction of reality. Concepts
are “things” and relations are the “links” between these things
in a real world scenario. A model can be observed from
different point of views (views in MDE). A metamodel is
a collective sum of concepts and relations for defining a



model and defines the model syntax as a language defines its
grammar. Each model is then said toconformto its metamodel.

A model transformation is a compilation process that trans-
forms asourcemodel into atarget model allowing to move
from a higher abstract model to a lower detailed model.
The source and target models conform to their respective
metamodels. A model transformation is based on a set of
rules that identify concepts in a source metamodel in order
to create enriched concepts in the target metamodel. This
separation allows to extend and maintain the compilation
process. Each rule can be independently modified and new
rules extend the compilation process. The transformations
carry out refinements moving from high abstraction levels to
low levels for code generation. At each intermediate level,
implementation details are added to the compilation process.
The advantage of this approach is that it allows to define
several model transformations from the same abstraction level
but targeted to different lower levels, offering opportunities to
generate several implementations from a specification.

III. GASPARD ENVIRONMENT AND MARTE

GASPARD [4] is a MDE based SoC co-design graphical
environment and is a subset of the industry approved MARTE
standard. MARTE allows a clearseparation of concernsbe-
tween the hardware and the software components which is
of pivotal significance in SoC conception. Our environment
uses the MARTE allocation mechanism (Alloc package) that
permits to link the independent hardware and software models
(for e.g. mapping of a task or data onto a processor or a
memory respectively). GASPARD also relies heavily upon the
Repetitive Structure Modeling (RSM)annex which is based on
a MoC (Model of Computation) inspired from ArrayOL [5]
that describes the potential parallelism in a system (parallel
computations in the application software part and parallel
structure of its hardware architecture in a compact manner).
GASPARD currently targetscontrol and data flow oriented
intensive signal processing (ISP) applications(such as multi-
media video codecs, radar/sonar detection applications, high
performance applications). The applications targeted in GAS-
PARD are widely encountered in SoC design and respect the
semantics of ArrayOL [5].

GASPARD also benefits from the notion of aDeployment
model level [6] that links every elementary component (the
basic building block of all components) to an existing code
facilitating Intellectual Property (IP) reuse. This levelprovides
IP information for model transformations forming a compi-
lation chain to transform the high abstraction level models
(application, architecture and allocation) for differentdomains
(currently GASPARD targets formal verification, simulation,
high performance computing and synthesis). This last concept
is currently not present in MARTE and is a potential extension
to allow a flow from high level modeling to automatic code
generation. We are currently in the process of integrating a
control aspect [7] with this level which will allow to link
an elementary component with several IPs (several possible
implementations) and afterwards via model transformations
convert this control aspect into the state machine code to

be implemented in the reconfigurable controller in the FPGA
automatizing part of the reconfiguration management.

IV. RELATED WORKS

ROSES [8] is a Multiprocessor SoC (MPSoC) specification
and design environment but with a disadvantage as it does
not conform to MDE concepts and as compared to GAS-
PARD, starts from a low level description equivalent to our
deployment level. In contrast, [9] uses the MDE approach for
the design of a Software Defined Radio (SDR), but does not
utilize the MARTE standard as proposed by OMG. While
works such as [10] are focused on generating VHDL from
UML state machines, they fail to integrate the MDE concepts
for HW/SW co-design and are not capable to manage ISP
applications. MILAN [11] is another MDE based project for
SoC co-design but is not MARTE compliant. Only [12] comes
close to our intended methodology by using the MDE concepts
for creation of hardware accelerators. However the MARTE
layer is absent and the reconfiguration is carried out in a static
manner and there is no notion of PDR. While there are lots
of related tools, works and projects; we have only detailed
some and have not given an exhaustive summary. Also we
have not included here the works specifically related to PDR
which we have previously detailed in [13]. To the best of
our knowledge, only our methodology takes into account the
four domain spaces: SoC co-design, MDE, MARTE and PDR
which is the novelty of our design flow.

V. BASIC PDR RELATED CONCEPTS

Currently only Xilinx FPGAs support PDR. Xilinx initially
proposed two methodologies followed by theEarly Access
Partial Reconfiguration (EAPR)[14] flow. Bus macrosare used
to ensure the proper routing between the static and dynamic
parts before and after reconfiguration. TheInternal Reconfig-
uration Access Port (ICAP)[15] is present in nearly all Xilinx
FPGAs and permits to read/write the FPGA configuration
memory at run-time. In combination with the ICAP and the
characteristics ofglitchless dynamic reconfigurationsupported
by Xilinx FPGAs, aReconfiguration controller(PowerPC or
Microblaze) can be placed inside the FPGA to build a self
controlling dynamically reconfigurable system.

VI. M ODELING OF PARTIAL DYNAMIC RECONFIGURABLE

FPGAS

We first present the design flow to model and implement
PDR supported FPGAs (Figure.1) which is an extension of the
works presented in [12] (addition of MARTE layer, control
at deployment level and the aspects of PDR). In this paper
we only present the first model level of this flow (modeling
of application, architecture and the allocation). Using model
transformations, we will extend our work to link each modeled
component with IP(s) at the Deployment model level (level
2). Afterwards, the RTL model level will provide detailed
modeling information for the concepts modeled at level 1
and 2 such as the reconfiguration controller and reconfigurable
hardware accelerator. Each of these model levels correspond
to their respective metamodels. Finally, from the RTL level



we will be able to automatically generate the code for the
FSM part of the Reconfiguration controller (to be implemented
in a processor) and the reconfigurable portion (level 4). This
will allow the creation of bitstreams for FPGA implementation
using commercial tools and the usual synthesis design flows.
An important restriction of our flow is that we have to adhere
to the Xilinx technologies as currently only Xilinx FPGAs
supports the PDR feature. While many extensions and PDR
methodologies exist, we have chosen to respect the Xilinx
EAPR flow as it is openly available and flexible enough to
be modified for other PDR methodologies.

Application, Architecture and Allocation Model

at High Abstraction Level

RTL Model

(Reconfigurable Hardware Accelerator, 

Controller etc.)

Model Transformation

Transformation for code

1

2

3

Deployment Model 

Model Transformation

4 Code Generation + Placement

Fig. 1. The complete design flow

A. Basic MARTE Hardware concepts

In MARTE, The basic hardware concepts are presented in
the Hardware Resource Model (HRM). HRM can be viewed
in different manners, either a functional view (HwLogical sub
package), a physical view (HwPhysical sub package) or a
merge of the two. These two subpackages derive from a root
package calledHwGeneral that revolves around the concept
of a HwResourcewhich defines a generic MARTE hardware
entity that can be composed of other HwResource(s). This
concept is then further enriched according to the functional or
physical specifications. The functional view defines hardware
resources as eithercomputing, storage, communication, timing
or device resources. The physical view represents hardware
resources as physical components with details about their
shape, size and power consumption among other attributes.
Currently GASPARD supports only the logical view but we
have integrated both the physical and merged views in the
framework for modeling PDR featured architectures. The
HRM also exploits the Non-Functional Properties (NFP) pack-
age of MARTE. This package introduces an accurate value
specification language for supporting complex expressionsfor
specifying non-functional properties as well as quantitative
annotations with measurement units.

B. MARTE modifications for PDR concepts

We first examined the HRM package of MARTE and
found it to be lacking in certain aspects. TheHwComputing
subpackage in the HRM functional view defines a set of active
processing resources central for an execution platform. AHw-
ComputingResourcesymbolizes an active processing resource
that can be specialized as either a processor (HwProcessor), an
ASIC (HwASIC) or a PLD (HwPLD). An FPGA is represented
by the HwPLD stereotype, it can contain a RAM memory
(HwRAM) (as well as other HwResources) and is characterized

by a technology (SRAM, Antifuse etc.). The cell organization
of the FPGA is characterized by the number of rows and
columns, but also by the type of architecture (Symmetrical
array, row based etc.). These concepts are sufficient enoughfor
an abstract FPGA description. However the concepts related
to representing a processor are not sufficient for a complex
SoC design in which a processor can either be implemented
as a softcore IP or integrated as a hardcore IP. We thus add the
attributeimtype (ImplementationType) that is flexible enough
to define a processor implementation as eitherHardcore or
Softcore and adaptable with future evolution using theOther
and Undefined types. Figure.2 shows only the simplified
modeling description of the modified HwComputing sub-
package related to a processor implementation.

Fig. 2. Modified version of the HwProcessor concept

The second modification relates to the physical (HwLay-
out) package that revolves around theHwComponentconcept
which is an abstraction of any real hardware entity based on its
physical attributes. HwComponent can be specialized as either
HwChip (e.g. a processor),HwChannel(e.g a bus),HwPort
(e.g. an interface),HwCard (e.g. a motherboard) or aHwUnit
(a hardware resource that does not fall into the preceding
four categories). In order to specify the nature of the area
for a PDR featured architecture (either static or dynamically
reconfigurable), we have introduced the attributeareatype
(Areatype) which can be eitherStatic, DynamicReconf or
typed asOther to adapt to future evolution. Although this
concept can be implemented as a functional property, we have
chosen to implement it in the physical view. Figure.3 shows the
simplified overview of our modified HwComponent concept.

Fig. 3. Modified version of the HwComponent concept

These are the 2 general concepts that we have introduced
at the specification level of the MARTE standard and could
generally benefit other frameworks and methodologies and can
be extended. We now present the specific concepts related to
FPGA and PDR in our methodology.

We then present a example of a classical PDR supported
Xilinx FPGA. We have taken the Virtex-II Pro on a XUP
Board (as shown in figure.4) as a reference as it is a popular
choice for implementing PDR. The architecture consists of a
Reconfiguration Controller (a PowerPC in this case) connected



to a 64-bit PLB bus and communicates with the slower slave
peripherals (connected to the 32-bit OPB bus) via a PLB to
OPB Bridge. The peripherals connected to the OPB bus are
detailed as follows. A SystemACE controller for accessing the
partial bitstreams placed in an external onboard Compact Flash
(CF) card. A SDRAM controller for a DDR SDRAM present
onboard that permits the partial bitstreams to be preloaded
from the CF during initialization. An ICAP is present in
the form of an OPB peripheral (OPBHwICAP) permitting
partial reconfiguration using the read-modify-write mechanism
[15]. This static portion is connected to a Reconfigurable
Hardware Accelerator (RHA) via bus macros. Also it was
an implementation choice to connect the RHA with the OPB
bus. The concepts such as PowerPC, PLB and OPB buses,
PLB to OPB Bridge, CF and SDRAM memories can be
easily explained using the current MARTE HRM concepts.
However the peripherals, bus macros, ICAP and RHA require
an extended and more detailed conception.

PowerPC

(Reconfiguration

Controller)

PLB

To

OPB Bridge SystemACE

Controller

SDRAM

Controller

OPB

HwICAP

Partial

Reconfigurable

Region

(containing

a Hardware

Accelerator)

PLB

Bus

OPB

Bus

External

Compact

Flash Memory

SDRAM

Static AreaBus Macro(s)

Fig. 4. Block Diagram of the architecture of our reconfigurable system

The HwCommunicationsubpackage in the HRM functional
view defines the basic concepts for hardware communication.
HwMedia is the central concept defining a communication
resource capable of data transfer with a theoretical bandwidth.
It can be controlled by aHwArbiter and connected to other
HwMedia(s) by means of aHwBridge. A HwEndpointdefines
a connection point of a HwResource and can be defined as
an interface (e.g. pin or port).HwBus illustrates a specific
wired channel with particular functional attributes. These
concepts are sufficient and abstract enough to define all kindof
communication resources. Some of the other common HRM
concepts that we utilize areHwComputingResource(to de-
scribe a general computing resource) from theHwComputing
package,HwRAMandHwROM from theHwMemorypackage
(for RAM and ROM concepts),HwStorageManagerfrom
the HwStorageManagerpackage (for a memory controller),
HwClock from theHwTimingpackage (to specify a clock and
HwIO from theHwIO package (for an I/O resource).

Xilinx provides the notion of an Intellectual Property Inter-
face (IPIF) which is a hardware bus wrapper specially designed
to ease IP core interfacing with the IBM Coreconnect bus. As
all peripherals in our architecture consist of the IPIF wrapper
and an IP core, this is a vital modeling concept. The IPIF
has two basic attributes: amode which can be eitherMaster,
Slaveor Master/Slave, andtype that determines the protocol
of IPIF adapted for a particular bus. It can be eitherPLB, OPB
or extensible usingOther or Undefined types. We avoided
adding detailed information related to the protocols offered
by IPIF to simplify its definition at the high abstraction level.

The IPIF itself is typedHwEndpoint to denote that it is a
hardware wrapper providing an interface to the IP core. We
thus add the notion of a hardware wrapper using MARTE.
Figure.5 shows the modeling of the IPIF.

Fig. 5. Modeling of the IPIF hardware wrapper

Fig. 6. Modeling of a Bus macro

The second modeling concept is that of Bus Macros (BMs).
Although the EAPR flow now allows signals in the base
design to pass through the reconfigurable regions without the
use of bus macros, they are still essential in order to ensure
the correct routing between the static and dynamic regions.
They are CLB based in nature and provide a unidirectional
8-bit data transfer. Figure.6 shows the modeling of a Bus
Macro (Busmacro) having four attributes. Thesigdir attribute
determines the direction of communication which can be
Left2Right or Right2Left (for Virtex-II and Virtex-II Pro
devices), as well asTop2Bottom, Bottom2Top or Other
for Virtex-IV and other future PDR supported devices. The
width attribute determines the CLB width of the bus macro
(2CLBs or 4CLBs width making it either a narrow or wide
bus macro or use ofOther for a user specified width).
The Synchronous attribute determines if the bus macro is
synchronous or not. We have assigned a default value of
true to this attribute (as recommended by Xilinx). The final
attributedevice determines the targeted FPGA device family
(either Virtex-II Pro , Virtex-II , Virtex-4 or a newer device
such as Virtex-5 using theOther type). The Bus Macro is
typedHwEndpointin order to illustrate that it is an interface.

We then carry out modeling of the OPBHWICAP periph-
eral. It consists of an IPIF (ic2opb) connected to the HWICAP
core (hwicap) (typed asHwComputingResource) and is itself
defined as aHwComputingResource. The HWICAP core is
itself composed of three components: an ICAP controller
(icapctrl ) and ICAP Primitive (icap) both typed asHw-
ComputingResource(s) and a BlockRAM (bram) defined as
HwRAM for stocking a configuration frame of FPGA memory.
The BlockRAM contains a port having a multiplicity of 2 in-
dicating that it is repeated two times. TheReshapeconnectors
(as defined in the MARTE RSM package) are used in order to
link the sub components of the HWICAP. The Reshape allows
to represent complex link topologies in a simplified manner.
Here, the Reshape connectors permits to specify accurately



which port (either the port of the ICAPController or the
single port of the HWICAP itself) is connected to which
repetition of the BlockRAM port as shown in figure.7. Also,
the sub components of HWICAP have specific attributes (e.g.
BlockRAM has 16Kbits memory) related to implementation
details. We refer the reader to [15] for a detailed description
of the HWICAP core.

Fig. 7. Modeling of the OPB HWICAP Peripheral

Fig. 8. A Reconfigurable Hardware Accelerator

Figure.8 illustrates the modeling of the Reconfigurable
Hardware Accelerator (RHA). The PRR (Partial reconfigurable
region) consists of a RHA (HwAcc) typed asHwPLD having
ports AccessOutand AccessInand an IPIF (Acc2opb). The
PRR itself is of theHwResourcetype. The RHA is typed as
HwPLD as it is reconfigurable, as compared to a typical hard-
ware accelerator which can be seen as aHwASICdepending
upon the designer’s point of view.

Figure.9 finally illustrates our reconfigurable architecture (a
XC2VP30 Virtex-II Pro chip) utilizing our proposed concepts
in a merged functional/physical view. Each of the hardware
components has two type definitions (the first represent-
ing the functional and the second representing the physical
one). The XC2VP30 chip consists of a PowerPC PPC405
(ppc 0) connected via a PLB bus (plb) to the slave periph-
erals: the OPBHWICAP (opbhwicap), the OPBSysAceCtrl
(opbsysac ctr ), the OPBSDRAMCtrl (opbsdram ctr ) and
the PRR (prr ) via the OPB bus (opb). The PLB2OPBBridge
(plb2opb) connects the two buses, while Busmacro(s) (bm1
andbm0 having types Left2Right and Right2Left respectively)
connect the OPB bus to the PRR. Each of the busmacros
are instantiated twice as indicated by the multiplicity of 2
on both bm0 and bm1 respectively. Also the OPB bus has
a slavea port with a multiplicity of 3 which allows the bus
to connect to the peripherals (opbsysac ctr, opbsdramctr and
opbhwicap), we have used Reshape connectors to determine

which peripheral is connected to which repetition of the slave
port. Similarly we have used Reshape connectors to determine
the accurate connections between the bus macros and the ports
of OPB and PRR. Although we could have used a single slave
port on OPB with an appropriate multiplicity to include the
topology of bus macros, this is avoided in order to reduce
the design complexity. Finally, the XC2VP30 contains two
HwEndPoint(s) interfaces,toCompactFlash and toSDRAM
to connectopbsysac ctr and opbsdram ctr to the compact
flash and the SDRAM memories respectively. The Attributes
introduced by us and those by default in MARTE allow the
designer to specify general attributes of each component at
the highest abstraction level (e.g. ppc0 having a frequency
of 300 MHz). While the MARTE modifications and the PDR
modeling may seem trivial, however this is done explicitly
in order to elevate the abstraction levels and decrease the
implementation details at these higher levels.

Fig. 9. Modeling of our PDR Architecture

VII. C ASE STUDY

Fig. 10. Model of an Image Filter task

A case study of a complete SoC model is presented here
to illustrate our methodology. We present here only a simple
image filter application, however other multimedia applica-
tions such as H.263 encoder [6] can be implemented using
GASPARD and our design flow. The modeled application
MainApplication is an academic grayscale 4x4 pixel image
filter application (producing 8-bit images). It consists ofthree



tasks (application components) : An image sensor PictureGen
(pg), the image filter task Flux (tasks) (shown in figure.10) and
an output PictureRead (pr ). The Flux component is comprised
of a Filter component (filter ) (repeating infinitely as shown
by the multiplicity of *). The Filter component itself contains
an elementary application component ElementaryTask (Task)
being repeated four times (having a multiplicity of 2 by
2). The Tiler connectors are used to describe the tiling of
produced and consumed arrays by a pattern mechanism [5].
The Flux component can be implemented in different manners
depending upon IP characteristics and the controller modeled
at deployment can create the corresponding FSM code.

Fig. 11. Allocation Level 1

Fig. 12. Allocation Level 2

Figures.11 and 12 represent the allocation of the applica-
tion on to the architecture. In Figure.11 the model of the
whole application is shown allocated to the XC2VP30 chip
(XUPchip) on an XUPBoard via theAllocate type alloca-
tion. Currently GASPARD only supports spacial distribution
(static scheduling at compilation time due to the nature of
targeted applications), however due to the nature of PDR and

related applications; we integrate thetimeScheduling(dynamic
scheduling) nature of allocation as defined in MARTE. Fig-
ure.12 presents a detailed view of the allocation illustrating
the mapping of the application onto the PRR portion. Due
to space limitations we have not presented the last level of
allocation in which the image filter task is finally placed on
a hardware acceleratorHwAcc. The XUPBoard also contains
a Clock (clk) and the CompactFlash (cf) and DDR SDRAM
memories (ddr ). The concepts introduced in our approach can
be modified and extended to manipulate other types of PDR
supported architectures such as introduced in [16],[17] and
[18] validating our modeling approach.

VIII. C ONCLUSIONS

The paper describes a new design methodology to model
PDR featured FPGAs using the MDE approach and the
MARTE standard. The existing MARTE standard has been
modified to add concepts for general FPGA modeling and
specifically for PDR integration. This methodology can alsobe
adapted to serve other Xilinx based fine grain reconfigurable
architectures. In future works, we will detail the model trans-
formations and the low level models for automatic generation
of the FSM code of the reconfiguration controller and the re-
configurable hardware accelerator for FPGA implementation.

REFERENCES

[1] Planet MDE,Portal of the Model Driven Engineering Community, 2007,
http://www.planetmde.org.

[2] P. Lysaght et al, “Enhanced Architectures, Design Methodologies and
CAD Tools for Dynamic Reconfiguration of Xilinx FPGAs,” inFPL’06,
2006.

[3] Object Management Group,OMG MARTE Standard, 2007,
http://www.omgmarte.org.

[4] The DaRT team, “GASPARD Design Environment,” 2008, https://
gforge.inria.fr/projects/gaspard2.

[5] P. Boulet, “Array-OL Revisited, Multidimensional Intensive Signal Pro-
cessing Specification,” 2007.

[6] R.B. Atitallah et al, “Multilevel MPSoC simulation usingan MDE
approach,” inSoCC 2007, 2007.

[7] H. Yu et al, “Safe Design of High-Performance Embedded Systems
in an MDE framework,”NASA/Springer ISSE Journal, 2009. [Online].
Available: http://dx.doi.org/10.1007/s11334-008-0059-y

[8] W. Cesario et al, “Component-Based Design Approach for Multicore
SoCs,”DAC’02, vol. 00, p. 789, 2002.

[9] G. Gailliard et al, “Transaction level modelling of SCA compliant soft-
ware defined radio waveforms and platforms PIM/PSM,” inDATE’07,
2007.

[10] R. Damasevicius et al, “Application of UML for hardware design based
on design process model,” inASP-DAC’04, 2004, pp. 244–249.

[11] S. Mohanty et al, “Rapid DSE of heterogeneous embedded systems using
symbolic search and multi-granular simulation,” inLCTES/Scopes 2002,
2002.

[12] S. Le Beux et al, “A Model Driven Engineering Design Flowto generate
VHDL,” in International ModEasy’07 Workshop, 2007.

[13] I.R. Quadri and S. Meftali and J-L. Dekeyser, “An MDE Approach for
Implementing Partial Dynamic Reconfiguration in FPGAs,” inIP’07,
2007.

[14] Xilinx, “Early Access Partial Reconfigurable Flow,” 2006, http://www.
xilinx.com/support/prealounge/protected/index.htm.

[15] B. Blodget et al, “A lightweight approach for embedded reconfiguration
of FPGAs,” in DATE’03, 2003.

[16] A. Tumeo et al, “A Self-Reconfigurable Implementation of the JPEG
Encoder,”ASAP 2007, pp. 24–29, 2007.

[17] K. Paulsson et al, “Implementation of a Virtual Internal Configuration
Access Port (JCAP) for Enabling Partial Self-Reconfiguration on Xilinx
Spartan III FPGAs,”FPL 2007, pp. 351–356, 2007.

[18] C. Claus et al, “A new framework to accelerate Virtex-II Pro dynamic
partial self-reconfiguration,”IPDPS 2007, pp. 1–7, 2007.


