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Abstract:
As SoC design complexity is escalating to new heights, there is a critical need tofind adequate

approaches and tools for handling SoC co-design aspects. Additionally,modern reconfigurable SoCs
offer advantages over classical SoCs as they integrate adaptivity features to cope with mutable
design requirements and environment needs. This paper presents a novel approach for addressing
system adaptivity and reconfigurability. A generic model of reactive control is presented in a SoC
co-design framework: Gaspard2. Afterwards, control integration at different levels of the framework
is illustrated for both functional specification and FPGA synthesis. The presented works are based
on Model-Driven Engineering and the UML MARTE profile proposed by Object Management
Group, for modeling and analysis of real-time embedded systems. Our contributions thus relate
to presenting a complete design flow to move from high level MARTE models toautomatic code
generation, for implementation of dynamically reconfigurable SoCs.
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1 Introduction

Since the early 2000s, Systems-on-Chip or SoC has emerged
as a new methodology for embedded systems design. In a
SoC, the computing units, e.g., programmable processors,
memories and I/O devices, are all integrated into a single
chip. These SoCs are generally dedicated to applications
like multimedia video codecs, software-defined radio and
radar/sonar detection systems, that require intensive data-
parallel computations. Unlike general parallel applications
that focus on code parallelization, data-parallel applications
concentrate on regular data partitioning, distribution and
their access to data.

1.1 Motivations

As the computational power increases for SoCs in
accordance with Moore’s law (Moore 1965), more
functionalities are expected to be integrated into the system.
As a result, more complex software applications and
hardware architectures are integrated, leading to asystem
complexity issue which is one of the main hurdles faced
by SoC designers. The consequence of this complexity is
that the system design, particularly software design, does
not evolve at the same pace as that of hardware. This has
become a critical issue and has finally led to thedesign
productivity gap.

Adaptivity and reconfigurability are also critical issues
for SoCs which must be able to cope with end user
environment and requirements. For instance, mode-based
control plays an important role in modern embedded
systems by permitting description of Quality-of-Service or
QoS choices: 1) changes in executing functionalities, e.g.,
color or black and white picture modes for modern digital
cameras; 2) changes due to resource constraints of targeted
hardware/platforms, for instance switching from a high
memory consumption mode to a smaller one; or 3) changes
due to other environmental criteria such as communication
quality and energy consumption. A suitable control model
must be generic enough to be applied to both software and
hardware design aspects.

For implementing dynamically reconfigurable SoCs,
Field Programmable Gate Arraysor FPGAs are considered
as an ideal solution, due to their inherent reconfigurable
nature. Designers can initially implement, and afterwards,
reconfigure a complete FPGA based SoC for the required
customized solution. Thus FPGAs offer a migration
path for final Application Specific Integrated Circuitor
ASIC implementation. State of the art FPGAs can also
change their functionality atruntime, known as Partial
Dynamic Reconfigurationor PDR (Lysaght et al. 2006).
This feature allows to modify specific regions of an
FPGA on the fly, with the advantage of time-sharing
the available hardware resources for executing multiple
mutually exclusive tasks. It permits context switching
depending upon application needs, hardware limitations
and QoS requirements. Currently only Xilinx FPGAs fully
integrate partial dynamic reconfiguration. These FPGAs
also support internal self dynamic reconfiguration, in which

an internal controller, e.g., ahardcore/softcore embedded
processor, manages the reconfiguration aspects.

1.2 Elevation of design abstraction levels

An effective solution to SoC co-design problem consists of
raising design abstraction levels. The important challenge
is to find efficient design methodologies that raise design
abstraction levels to reduce overall complexity. These
methods must effectively handle issues like accurate
expression of inherent system parallelism, such as
application loops and hierarchy. They should also be
able to express the control at higher abstraction levels to
integrate adaptivity and reconfigurability features in modern
embedded systems.

Unified design approachis an emerging research topic
for addressing the various issues related to SoC co-design.
High level SoC co-modeling design approaches have been
developed such as Model-Driven Engineering or MDE
(OMG 2007b). MDE enables high level system modeling
of both software and hardware, with the possibility of
integrating heterogeneous components into the system.
Model transformations(S. Sendall and W. Kozaczynski
2003) can then be carried out to generate executable models
from the high level models. MDE is supported by several
standards and tools.

Gaspard2 (INRIA DaRT team 2009, Gamatié et al.
2010) is an MDE-based SoC co-design framework
dedicated to specification of parallel hardware and software.
It is based on the standard UML MARTE profile (OMG
2008); and allows to move from high level MARTE models
to different execution platforms. It exploits the inherent
parallelism included in repetitive constructions of hardware
elements or regular constructions, such as application loops.
The applications targeted by Gaspard2 also focus on a
specific application domain, that of intensive data-parallel
computation applications.

1.3 Our contribution

In this paper, we present a generic control semantics
for the specification of system adaptivity and specially
dynamic reconfigurability in SoCs. The introduced control
semantics are integrated in Gaspard2 and are specified
at a high abstraction level. This control semantics can
be integrated at different SoC design levels, with an
example of the application level. However, for integrating
aspects of dynamic reconfigurability, we propose integration
at a design level that links the basic building blocks
of applications/architectures to theirIntellectual Properties
or IPs. Integration at the IP deployment level focuses
on FPGA synthesis and is specially oriented towards
partial dynamic reconfiguration. Our design flow generates
two key concepts related to a dynamically reconfigurable
FPGA based SoC. Firstly, we generate the code for
a dynamically reconfigurable region, which relates to a
high level application model, translated into a hardware
functionality, e.g., a hardware accelerator and its different
implementations, by means of model transformations.
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Secondly, the control semantics are utilized for the
generation of the source code related to a reconfiguration
controller, that manages the different implementations
related to the hardware accelerator. Thus our design flow is
mainly application-driven in nature.

Finally, a case study related to a dynamically
reconfigurable correlation module application is presented
in the context of an anti-collision radar detection system,to
validate our design methodology.

The rest of this paper is organized as follows. Related
works are detailed in Section 2. An overview of the MDE-
based Gaspard2 framework is provided in Section 3. Section
4 describes the control model in software applications, while
Section 5 presents the control model for IP deployment and
FPGA. Section 6 presents our case study. Control models
used at different levels are compared in Section 7. Finally,
Section 8 gives the conclusion of the paper.

2 Related works

In this section, we detail some works in the domain of
dynamically reconfigurable SoCs. We particularly focus on
fine grain reconfigurable FPGA based SoCs, as compared
to coarse grain reconfigurable architectures, of which
numerous examples exist both in academic research and
industry. Works related to reconfigurable SoCs can be
categorized in several families: some works try to elevate
design abstraction levels, such as providing specifications in
system level languages like SystemC1; for decreasing the
complexity related to creation of dynamically reconfigurable
systems. Others deal with optimizations directly at the
Register Transfer Levelor RTL by introducing new tools and
methodologies.

2.1 Elevation of design abstraction levels

The MoPCoM project (Koudri et al. 2008) aims at modeling
and code generation of dynamically reconfigurable
embedded systems using the UML MARTE profile for
SoC co-design (Vidal et al. 2009). However, the targeted
applications are relatively simple unlike those considered
in the SoC industry. While the authors claim that they are
capable of creating a complete SoC co-design framework,
in reality, the high level application model is converted into
an equivalent hardware design, with each application task
transformed into a hardware accelerator in a target FPGA.
Additionally, while the project permits modeling of the
targeted FPGA architecture at the UML level as inspired
from the works presented in (Quadri, Meftali & Dekeyser
2009a, Quadri, Muller, Meftali & Dekeyser 2009), they are
only capable of generating themicroprocessor hardware
specificationfile for input in Xilinx EDK tool, for manual
manipulation of the partial dynamic reconfiguration flow.
Moreover, IP reuse is not possible with this methodology.

In the OverSoC project (Pillement & Chillet 2009), the
authors also provide a high level modeling methodology
for implementing dynamically reconfigurable architectures.
They integrate an operating system or OS, for providing

and handling the reconfiguration mechanism. The global
platform is conceptually divided intoactive and reactive
components representing the reconfigurable architecture (an
FPGA) and the OS respectively. The OS is executed
on a general purpose processor interfacing with the
FPGA. The active component is further composed of
several sub components that represent the computation
and reconfiguration components. The former relates to
FPGA resources such as CLBs and LUTs, while the latter
corresponds to an FPGA internal hardware reconfiguration
core responsible for the actual switching. Finally, SystemC
is used for simulation and verification of the OS
for managing the reconfigurable aspects. However, final
implementation on FPGAs has not been carried out. It is up
to the OS to determine whether an application task should
be executed on the general purpose processor or the FPGA,
depending upon the required resources.

A more complex OS is presented in (Bergmann et al.
2003), as an embedded uCLinux is used for managing
partial dynamic reconfiguration. A customized device driver
has been created to manage the hardware reconfigurable
core, allowing users to carry out dynamic configuration in
traditional Linux shell programs. However, the bitstreams
are generated manually using the FPGA editor tool, raising
chances of design errors.

(Brito et al. 2007) use a SystemC based design flow for
implementing partial dynamic reconfiguration. The SystemC
kernel is modified for the integration of reconfiguration
operations for activation/disactivation of reconfigurable
modules. Initial simulation is carried out using a SystemC
model, which is then converted into aHardware Description
Languageor HDL RTL model for actual implementation
and comparison. The drawback of this approach is that the
reconfiguration time related to module is predetermined by
the designers. Additionally, the system only provideson-off
functionality for the modules resulting in a simplified design
with respect to partial dynamic reconfiguration.

In (Nezami et al. 2008), HandleC is used to implement
partial dynamic reconfiguration for Software defined Radio,
however, they only provide the design methodology and
no actual implementation is carried out. In (F. Berthelot
and F. Nouvel and D. Houzet 2008), a SynDEx based
design flow is presented to manage SoC reconfigurability
via implementation in FPGAs, with the application and
architecture parts modeled as components.

2.2 Targeting coarse grain architectures

There also exists a large number of research works like
Chameleon (Salefski & Caglar 2001), Rapid (Ebeling et al.
1996) and projects such as Morpheus (Morpheus 2010)
that deal with coarse grain reconfigurable architectures.
However these projects and works normally consider a
lower abstraction level.

SPEEDS! or Speculative and Exploratory Design in
Systems Engineering(SPEEDS! 2009) is also an European
project for embedded systems development based on
SYSML and AUTOSAR. Equally, the EPICURE project
(J.P. Diguet and G. Gogniat and J.-L. Philippe et al
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2006) defines a design methodology in order to bridge the
gap between high abstract specifications and heterogeneous
reconfigurable architectures. The framework is based
on Esterel design technologies and provides verification
and synthesis capabilities. However, one of the existing
drawbacks of this framework is the lack of available support
for a high abstraction level design methodology, in order
to reduce design complexity. Additionally, works such as
Molen (Panainte et al. 2007) propose efficient compilers for
reconfigurable architectures. The proposed Molen compiler
was implemented on a Virtex II FPGA, and takes into
account details such as related to synthesis placement
conflicts as well as reconfiguration latencies.

2.3 High level control methodologies

In (Latella et al. 1999, Scḧafer et al. 2001), the authors
concentrate on control based modeling and verification
of real-time embedded systems in which the control is
specified at a high abstraction level via UML state machines
and collaborations; by using model checking. A similar
approach has been presented in (Faugere et al. 2007).
However, control methodologies vary in nature as they
can be expressed via different forms such as Petri Nets
(Nascimento et al. 2004), or other formalism such as mode
automata (Maraninchi & Ŕemond 2003, Talpin et al. 2006).

Mode automata extend synchronous dataflow languages
with an imperative style, but without many modifications of
language style and structure. They are a simplified version
of Statecharts (Harel 1987) in syntax, which have been well
adopted for the specification of control oriented reactive
systems. Mode automata have a clear and precise semantics,
which makes the inference of system behavior possible, and
are supported by formal verification tools.

2.4 Methodologies of partial dynamic reconfiguration

For implementing partial dynamic reconfiguration in modern
FPGAs, Xilinx initially proposed several design flows,
which were not very effective leading to new alternatives.
(Sedcole et al. 2005) presented an effective modular
approach for 2-dimensional reconfigurable modules.
Similarly, (Becker et al. 2003) implemented 1-dimensional
modular reconfiguration using a horizontal slice based
bus macro to connect the static and partially dynamic
regions. They enhanced their works by placing arbitrary
2-dimensional rectangular shaped modules using routing
primitives (Schuck et al. 2008).

In 2006, Xilinx introduced theEarly Access Partial
Reconfiguration Design Flow(Xilinx 2006) that integrated
concepts introduced earlier in works such as (Sedcole et al.
2005) and (Becker et al. 2003). Researches such as (Bayar
& Yurdakul 2008) and (Paulsson et al. 2007) focus on
implementing softcore internal configuration cores on Xilinx
FPGAs such as Spartan-3, that do not have the hardware
internal reconfiguration cores, for effective implementation
of PDR. Finally in (Koch et al. 2006), this reconfigurable
core is connected with Network-on-Chip based FPGAs.

In comparison to the above related works, our
proposition takes into account the following domains: SoC
co-design, data intensive parallel computation applications,
control/data flow, MDE, the UML MARTE profile, SoC
adaptivity and PDR for fine grain reconfigurable FPGAs;
which is the novelty of our design framework.

3 Gaspard2: a SoC co-design framework

Gaspard2 (INRIA DaRT team 2009, Gamatié et al. 2010)
is an MDE oriented and MARTE compliant SoC design
framework as shown in Figure 1, providing anIntegrated
Development Environmentor IDE dedicated to the visual
co-design of embedded systems. The framework enables
fast design and code generation with the help of UML
graphical tools and technologies, such as Papyrus2 and
Eclipse Modeling Framework3.

The Gaspard2 framework is based on arepetitive
model of computationor MoC that relies on the Array-
OL specification language (Boulet 2007, 2008). The MoC
describes thepotential parallelism present in a system;
and describes repetitive data intensive multidimensional
computations; with the help of repetitive data dependencies.
The manipulated data are in the form of multidimensional
arrays, which have at most one possibleinfinite dimension.
The arrays can be specified with a certain type specification,
such as an arrayshape. The spatial and temporal dimensions
are treated in the same manner, in the form of arrays.
Particularly, time is expanded as one dimension of arrays.
Additionally, access to data is carried out in the form of sub-
arrays calledpatterns. In turn, in Gaspard2, data are also
manipulated in the form of multidimensional arrays.

Figure 1: A global view of the Gaspard2 framework

3.1 Basic repetitive modeling concepts

Gaspard2 has also contributed to the conception of the UML
MARTE profile. One of the key MARTE packages, the
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Repetitive Structure Modelingor RSM package is inspired
from Gaspard2 and its model of computation. Additionally,
some other packages such as theAllocation package and
Hardware Resource Modelingpackage have also benefited
from existing Gaspard2 concepts.

RSM enables the possibility to specify the shape of
a repetition, by a multidimensionality, and also permits
to represent a collection of potential links such as a
multidimensional array. This repetition can be specified
for an instance or a port of a component. The advantage
is double fold: For hardware modeling, RSM presents a
clear mechanism for expressing the links in a topology, as
well as increasing the expression power of the mechanism
for describing these complex topologies (Quadri et al.
2008). Complex regular, repetitive structures such as cubes
and grids can be modeled easily via RSM, in a compact
manner. Similarly for application aspects, RSM helps to
determine different types of parallelism such as task and
data parallelism.

Figure 2: RepresentingData Parallelismin Gaspard2 with
the MARTE profile: The repetitiveMatrixMultiplication
component is composed of a repeated task: thedP instance
of a dotProduct component. This repeated task represents
the computing task, which takes one row and column from
two input matrices; and produces one element in the final
produced matrix. This task is elementary in nature and is
thus represented differently from other tasks; and can be
henceforth deployed, as discussed in Section 5.1

A repetitive component such as shown in Figure 2
expresses the data parallelism in an application: in the
form of sets of input and outputpatterns consumed and
produced by the repetitions of the interiorpart. On the
other hand, ahierarchical component such as illustrated
in Figure 12 contains severalparts; and defines a complex
functionality in a modular manner. This concept thus
provides a structural aspect of the application: specifically,
task parallelism can be described using such a component.

The shape of a pattern is described according to a
tiler connector which describes the tiling of produced
and consumed arrays. Thereshape connector allows to
represent complex link topologies in which the elements of
a multidimensional array are redistributed in another array.

An interRepetition dependency is used to specify
an acyclic dependency among the repetitions of the
same component, compared to a tiler, that describes the
dependency between the repeated component and its owner

component. Particularly, this dependency specification
leads to the sequential execution of repetitions of the
repeated part. AdefaultLink connector provides a default
value for the part repetitions that are linked with an
interRepetition dependency, with the condition that the
source of the dependency is absent. These last two RSM
concepts have been illustrated in Figure 15 discussed later
on in the paper, and are essential for control modeling.

3.2 Model transformations

Models in MDE are not only used for communication and
comprehension but using model transformations (S. Sendall
and W. Kozaczynski 2003), produce concrete results such
as executable source code. With the help of metamodel(s)
that define the concepts of their respective models, and to
which these models conform to; models can be recognized
by machines. As a result, they can be processed, i.e., a
model is taken as input/source and then some models/targets
are generated. This process is called a model transformation.

For the purpose of automatic code generation from high
level models, Gaspard2 adopts MDE model transformations
towards different execution platforms, such as targeted
towards synchronous domain for validation and analysis
purposes (Gamatié, Rutten, Yu, Boulet & Dekeyser 2008, Yu
et al. 2008, Yu 2008); or FPGA synthesis (Le Beux 2007,
Quadri, Meftali & Dekeyser 2009a), as shown in Figure 1.
Model transformation chains permit moving from high
abstraction levels to low enriched levels. Usually, the initial
high level models contain only domain-specific concepts,
while technological concepts are introduced seamlessly
in the intermediate levels, by means of intermediate
metamodels and respective models.

There exists a large number of transformation languages
and tools such as ATLAS Transformation Language (INRIA
Atlas Project n.d.), Kermeta (INRIA Triskell Project
n.d.) among others; that support theMeta-Object Facility
Query/View/Transformationor MOF QVT standard (OMG
2005) for model query and transformations. However, few
of the QVT transformation tools are capable to execute large
complex transformations such as present in the Gaspard2
framework. Also none of these engines is fully compliant
with the QVT standard. Nevertheless, some new tools
such as QVTO (OMG 2007a) have recently emerged that
implement the QVT Operational language, and are effective
for handling the complex Gaspard2 model transformations.

For model transformations, Gaspard2 adapts QVTO as
the de-facto tool for model transformations. It should be
made evident that current model transformations are only
uni-directional in nature. Similarly, Gaspard2 has adopted
Acceleo4, a code generation tool that is compliant with the
MOF2Text standard5.

Finally, Figure 3 shows the global overview of the
model transformation chain related to implementing partial
dynamic reconfiguration, as discussed in this paper. Initially
a Gaspard2 application is modeled and deployed, along with
the associated control aspects in the Gaspard2 environment
with the Papyrus modeling tool; conforming to an extended
version of the UML MARTE profile. This modeling is
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independent from any implementation details until the
deployment phase.

Afterwards twomodel-to-model transformations, namely
the UML2MARTE and MARTE2RTLtransformations help
to create an intermediate model, corresponding to its own
metamodel, with concepts nearly equivalent to theRegister
Transfer level or RTL. This model is considered as a
low abstraction level with details nearly corresponding to
electronic RTL. The model provides details related to the
hardware accelerators and the control features which can be
used for eventual code generation. Finally using amodel-to-
text transformation, we generate the code related to different
implementations of a hardware accelerator and the state
machine for the reconfiguration controller. These aspects are
detailed later on in the paper. As the model transformation
rules are not trivial in nature and are about the size of
several thousand lines of code, it is not possible here to give
a generalized summary of the transformation rules present
in our design flow.

Figure 3: An abstract overview of the model transformation
chain. Several intermediate metamodels help to bridge the
gap between high level modeled UML diagrams and the final
RTL code generation

3.3 Reactive control modeling

This section provides the initial hypothesis related to
the generic control semantics for expressing system
reconfigurability. Several basic control concepts, such
as Mode Switch Component and State Graphs are
presented first. Then a basic composition of these concepts,
which helps in eventual building of the mode automata, is
discussed. This modeling derives from mode conception in
mode automata. The notion of exclusion among modes helps
to separate different computations. As a result, programs are
well structured and fault risk is reduced.

3.3.1 Modes and Mode switch component

A mode is a distinct method of operation that produces
different results depending upon the user inputs. AMode
Switch Component in Gaspard2 contains at least one
mode; and offers a switch functionality that chooses
execution of one mode, among several alternative present
modes (Labbani et al. 2005). The mode switch component
in Figure 4 illustrates such a component having awindow
with multiple tabs and interfaces. For instance, it has a mode
value input portm, as well as several data input and output
ports, i.e.,id and od respectively. The switch between the
different modes is carried out according to themode value
received throughm.

The modes,M1, ..., Mn, in the mode switch component
are identified by the mode values:m1, ..., mn. Each mode
can be hierarchical, repetitive or elementary in nature; and
transforms the input dataid into the output dataod. All
modes have the same interface (i.e.id and od ports). All
the input and outputs share the same time dimension,
ensuring correct one-on-one correspondence between the
inputs/outputs. The activation of a mode relies on the
reception of mode valuemk by the mode switch component
through m. For any received mode valuemk, the mode
runs exclusively. It should be noted that only mode value
ports, i.e.,m; are compulsory for creation of a mode switch
component, as illustrated in Figure 4. Other type of ports,
such as input/output ports are not always necessary and are
thus represented with dashed lines.

3.3.2 State graphs

A state graph in Gaspard2 is similar to Statecharts (Harel
1987), which are used to model the system behavior using
a state-based approach. We term these state graphs as
Gaspard state graphs. A state graph can be expressed as a
graphical representation of transition functions, as discussed
in (Gamatíe, Rutten & Yu 2008). A state graph is composed
of a set of vertices calledstates. A state connects with other
states through directed edges which are calledtransitions.
Transitions can be conditioned by someeventsor Boolean
expressions. A special labelall , on a transition outgoing
from states, indicates any other events that do not satisfy the
conditions on other outgoing transitions froms. Each state is
associated with some mode value specifications that provide
mode values for the state. Formal definitions of Gaspard
state graphs have been presented in (Yu 2008). State graphs,
can also be either parallely composed, or composed in a
hierarchy; as illustrated in (Yu 2008).

The main difference between our state graphs and
Harel’s Statecharts is that the former are transition functions
in which neither initial or final states are defined. This is
not the case in Statecharts or more generally in automata.
The way transitions are fired in our state graphs and
the information related to current state of the state graph
is determined by usinginterRepetition dependencies.
Details related to this aspect can be found in Section 3.4.

A state graph in Gaspard2 is associated with aGaspard
State Graph Component, as shown in Figure 4. Thus
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a state graph determines the internal behavior of a
Gaspard state graph component. A Gaspard state graph
component determines the mode value definition by means
of its associated state graph. The mode values allow
to activate different exclusive computations or modes in
the related mode switch components. Thus, Gaspard state
graph components are ideal complements of mode switch
components, with mode values being the relation between
the two concepts. A Gaspard state graph component can be
viewed as a controller component, while the mode switch
component switches between the modes according to the
present controller.

Similarly to the mode switch component, a Gaspard state
graph component has its interfaces. These interfaces include
event inputs from the environment, source state inputs,
target state outputs and mode outputs. Event inputs are used
to trigger transitions present in the associated Gaspard state
graph. The source state inputs determine the states from
which the transitions take place, while target state outputs
determine the destination states of the fired transitions. The
mode outputs are associated with a mode switch component
in order to select the correct mode for execution.

3.3.3 Combining modes and state graphs

Once mode switch components and Gaspard state graph
components are introduced, aMacro Component can be
used to compose them together. An abstract representation
of the macro component in Figure 4 illustrates one possible
composition; and represents a complete Gaspard2 control
structure. In the macro, the Gaspard state graph component
produces mode values and sends them to the mode switch
component. The latter switches the modes accordingly.
Some data dependencies between these components are
not always necessary, for example, the data dependency
between Id and id, and these dependencies are drawn
with dashed lines in Figure 4. The illustrated figure is
used as a basic composition, however, other compositions
are also possible, for instance, one Gaspard state graph
component can control several mode switch components
(Quadri, Meftali & Dekeyser 2009b). In order to simplify
the illustration, eventse1, e2 and e3 are only shown as a
single eventIe.

M2 M3

odid

Macro Component

M1

m

Mode2

Gaspard State Graph Component

ie

is

Mode Switch Component

om

os
Is

Ie

Id Od

Om

OsS2

e1 & e2
S1

S3

e1 
e2e1 & e3e3 e1 

all

allall

Figure 4: An example of a macro structure

3.4 MARTE concepts for constructing mode automata

We now present the utilization of some MARTE concepts
which aid in the modeling of mode automata. The basic
concepts of Gaspard2 control have already been presented
earlier in Section 3.3, but its complete semantics have not
been detailed. For this purpose, we propose to integrate
mode automata semantics with the control aspects. This
choice is made to remove design ambiguity, enable desired
properties, to enhance design correctness and verifiability. In
addition to previously mentioned control concepts, we make
use of three additional MARTE concepts, as present earlier
in Section 3.1; namely:interRepetition dependency,
tiler and defaultLink connectors, which are essential
for building mode automata.

Figure 5: Abstract representation of a generic Gaspard2
mode automata (illustration on the top). The illustration on
the bottom of the figure is a simplified explanation of the one
on the top

Hence, it is possible to establish mode automata from
Gaspard2 control model, which requires two subsequent
steps. First, the internal structure of a genericGaspard
Mode Automata is presented by theMacro component
illustrated in Figure 4. The Gaspard state graph component
in the macro acts as a state-based controller and the
mode switch component achieves the mode switch function.
Secondly, interRepetition dependency specifications
should be specified for the macro component and it should
be placed in a repetitive component context.

The reasons are as follows: a macro component
represents only one single transition function (one map)
from a source state to a target state, where as an automata
has continuous transitions which form an execution trace.
In order to execute continuous transitions as present in a
typical automata, the macro should be repeated to have
multiple transitions. This functionality is determined bythe
interRepetition dependency.

A vector associated to aninterRepetition
dependency expresses the dependencies between the
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repetitions inside the repetition context, i.e., theGaspard
Mode Automata component. Thus aninterRepetition
dependency serializes the repetitions and data can be
conveyed between these repetitions. AninterRepetition
dependency sends the target state of one repetition as
the source state to the next repetition. This permits the
construction of mode automata which can be then executed.
Figure 5 illustrates an example of this construction.

If a dependent repetition is not defined in the repetition
space, a default value is selected. ThedefaultLink
provides default value for repetitions whose dependency for
the input is absent. Additionally, this concept helps to give
the initial state value for the first repetition of the macro
component. While in a graphical modeling approach, the
initial state of a state machine/Statechart can be determined
by an initial pseudostate, a Gaspard state graph does not
contains an initial state, as explained earlier.

Thus this mechanism bridges the gap between a
graphical representation and the actual semantics. It thus
creates an equivalency between a state graph without no
initial state and an automaton with an initial defined state.
Finally, the tiler connectors help in interconnecting a
repetitive component to the multiple repetitions of its
interior repeated task.

An infinite dimension is present on the input and output
state, events ports of the Gaspard mode automata component
to account for continuous control/data flows. Similarly the
non obligatory mode output ports, input and output data
ports also have an infinite dimension in addition to other
possible dimensions. Since the macro component represents
one single transition, its respective ports have shape values
equal to{}, accounting for one value in the dataflow at an
instant of timet.

Similarly, the internal sub components of the macro
component also share the same shape values. Finally, the
shape value of{*} on the macro component represents
its multiple, possible infinite, dimensions. The macro
component is repeated in a sequential temporal dimension
by means of theinterRepetition dependency. Thus
as compared to traditional Statecharts, no final state is
necessary. If the repetition of the macro component is not
set to an infinite value, the macro will stop repeating when
it reaches the end of its repetition space, causing termination
of the mode automata.

It should be noted that parallel and hierarchical mode
automata can also be built using our approach. In the
parallel automata, several automata can be executed in
parallel, for example, automata can be related to the
application aspects while another can be linked to the
architecture. Thus both application and architecture switches
can be carried out simultaneously, provided that no conflicts
arise by the simultaneous switching. Additionally, in case
of control at a SoC design level such as application
modeling, the switching between the states or modes can
be instantaneous in nature, and is regarded as a change in
the functionality. However when this semantics is applied to
an execution platform, a stabilization phase may be required
for switching between two states.

While this intermediate phase can be modeled using high
level modeling semantics, this step has not been undertaken
in our approach, in order to present a generic semantics
applicable to all SoC design levels. Finally, we refer the
reader to (Gamatié, Rutten & Yu 2008) for the detailed
formal semantics related to Gaspard mode automata.

4 Adaptivity at application level

The previous section described an abstract control model
for integrating dynamic aspects in a given system. Similarly,
these control mechanisms can be integrated in different
levels in a SoC co-design framework, with the advantage
of introducing dynamic aspects in the targeted SoCs. A
detailed analysis related to control integration at different
SoC design levels in the particular case of the Gaspard2
framework has been presented in (Quadri, Meftali &
Dekeyser 2009b). In the context of this article, we present
the integration at the application and deployment modeling
levels in Gaspard2.

4.1 Control example at application level

Figure 6: An example of color style filter in a smart phone
modeled with the Gaspard2 mode automata

The control model enables the specification of system
adaptivity at the application level (Yu 2008). Integrationof
control model and the construction of a mode automata at
application level is very similar to the generic Gaspard mode
automata shown in Figure 5. Figure 6 represents the mode
automata at the application level by illustrating an example
of color effect processing moduleColorEffectTask used
in typical smart phones. This module is used to manage
the color effects of a video clip and provides two possible
options: color or monochrome/black&white modes, which
are implemented byColorFilter andMonochromeFilter
respectively. These two filters are elementary tasks at the
application modeling level, which should be deployed to
their respective IPs. The changes between these two filters
are achieved byColorEffectSwitch upon receiving mode
values through its mode portcolorMode. The mode values
are determined byEffectController, whose behavior is
demonstrated by its associated state graph.

The ColorEffectFilters can be treated as a macro
component; and is composed ofEffectController and
ColorEffectSwitch components.ColorEffectFilters
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executes the processing of one frame of the video
clip, which should be repeated. In the example,
ColorEffectTask provides the repetition context for
ColorEffectFilters. An interRepetition dependency
is also defined, which connects the different repetitions of
the ColorEffectFilters component. It has an associated
vector with a value of{-1}. Simply put, the source state of
one ColorEffectFilters repetition relies on the target
state of the previousColorEffectFilters repetition. The
data computations inside a mode are set in the mode switch
componentColorEffectSwitch.

Each mode in the switch can produce different
end results with regards to environmental or platform
requirements. Each mode can have a different demand
of memory, CPU load, etc. Thus environmental
changes/platform requirements are captured as events; and
taken as inputs for the control.

For the application level, the Gaspard2 control model
has been implemented with UML state machines and
collaborations in (Yu 2008). A model transformation chain
from high level MARTE models to synchronous languages
can bridge the gap between these models and targeted
synchronous language code. By considering the code
generated from an application model, validation techniques
such as model checking can also be applied. The same code
can also be used for controller synthesis to enforce relevant
properties with respect to functional and non-functional
requirements. All these aspects have been addressed in
a case study for the design of a Gaspard2 data-parallel
multimedia application (Yu 2008).

5 Adaptivity at IP deployment level

As explained before in the paper, we present an application
driven approach for the design and development of
dynamically reconfigurable SoCs. For this, we have focused
on two main aspects related to a reconfigurable SoC.

For dynamic reconfiguration in modern SoCs, an
embedded controller is essential for managing a dynamically
reconfigurable region. This component is usually associated
with some control semantics such as state machines, Petri
nets etc. The controller normally has two functionalities:
one responsible for communicating with the FPGAInternal
Configuration Access Porthardware reconfigurable core or
ICAP (Blodget et al. 2003) that handles the actual FPGA
switching; and a state machine part for switching between
the available configurations. The first functionality is written
manually due to some low level technological details which
cannot be expressed via a high level modeling approach.

The control at the deployment level is utilized to
generate the second functionality automatically via model
transformations. Finally the two parts can be used to
implement partial dynamic reconfiguration in an FPGA that
can be divided into several static/reconfigurable regions.
A reconfigurable region can have several implementations,
with each having the same interface, and can be
viewed as a mode switch component with different
modes. In our design flow, this dynamic region is

generated from the high abstraction levels, i.e., a
complex Gaspard2 application specified using the MARTE
profile. Using the control aspects in the subsequently
explained Gaspard2 deployment level, it is possible to
create different configurations of the modeled application.
Afterwards, using model transformations, the application
can be transformed into a hardware functionality, i.e.,
a dynamically reconfigurable hardware accelerator, with
the modeled application configurations serving as different
implementations related to the hardware accelerator.

We now present integration of the control model at the
deployment level. We first explain the deployment level in
Gaspard and our extensions followed by the control model.

5.1 Deployment level inGaspard2 framework

Gaspard2 defines a notion of aDeploymentspecification
level (Atitallah et al. 2007) in order to generate compilable
code from a SoC model. This level is related to the
specification of elementary components: basic building
blocks of all other components, having atomic functions.
Although the notion of deployment is present in UML,
the SoC design has special needs, not completely fulfilled
by this notion. In order to generate an entire system from
high level specifications, all implementation details of every
elementary component have to be determined. Low level
behavioral or structural details are much better described
by using usual programming languages instead of graphical
UML models.

Hence, Gaspard2 extends the MARTE profile
to allow deploying of elementary components. The
deployment level associates every elementary component
to an implementation code hence facilitating IP reuse.
Each elementary component ideally can have several
implementations. The reason is that in SoC design, a
functionality can be implemented in different ways.
For example, an application functionality can either be
optimized for a processor, thus written in assembler or
C/C++, or implemented as a hardware accelerator using
traditional HDLs like VHDL/Verilog or with SystemC.
Hence the deployment level differentiates between the
hardware and software functionalities; and permits moving
from platform-independent high level models to platform
dependent models for eventual implementation. Deployment
provides IP information to model transformations to form a
compilation chain, in order to transform the high abstraction
level models for different domains: formal verification,
simulation, high performance computing or synthesis.
Hence deployment can be seen a potential extension of
the MARTE profile enabling a complete flow from model
conception to automatic code generation. We now present a
brief overview of the deployment concepts.

A VirtualIP expresses the functionality of an
elementary component, independently from the compilation
target. For an elementary componentK, it associatesK with
all its possible IPs. The desired IP is then selected by
the SoC designer by linking it toK via an implements
dependency. Finally, the concept ofCodeFile, is used to
specify, for a given IP, the file corresponding to the source
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code and its required compilation options. This last concept
is not illustrated in the paper due to space limitations. The
CodeFile thus identifies the physical path of the source
code. As compared to the deployment specified in (Atitallah
et al. 2007), the current deployment level has been modified
to respect the semantics of traditional UML deployment.

Figure 7: Deployment of an elementarydotProduct
component in Gaspard2

5.2 Configurations at the deployment level

As stated before, an elementary component can be
associated with only one IP among the different available
choices. Thus the result of the application/architecture or
the mapping of the two forming the overall system is
a static one. This collective composition is termed as a
Configuration. The current model transformations for RTL
level only allow to generate one hardware accelerator from
the modeled application, hence one configuration, for final
FPGA execution.

Integrating control in deployment allows to create
several configurations related to the modeled application
for the final realization in an FPGA. Each configuration
is viewed as a collection of different IPs, with each IP
associated with its respective elementary component. The
end result being that one application model is transformed
by means of model transformations and intermediate
metamodels into a dynamically reconfigurable hardware
accelerator, having different implementations equivalent to
the modeled application configurations.

A Configuration has the following attributes. The
name attribute helps to clarify the configuration name
given by a SoC designer. TheConfigurationID attribute
permits to assign unique values to eachConfiguration,
which in turn are used by the control aspects presented
earlier. Theses values are used by a Gaspard state graph to
produce the mode values associated with its corresponding
Gaspard state graph component. These mode values are
then sent to a mode switch component which matches the
values with the names of its related collaborations, which
are illustrated later on. If there is a match, the mode
switch component switches to the required configuration.
The InitialConfiguration attribute sets a Boolean value to a
configuration to indicate if it is the initial configuration to
be loaded onto the target FPGA. This attribute also helps to
determine the initial state of the Gaspard state graph.

An elementary component can also be associated
with the same IP in different configurations. This
point is very relevant to the semantics of partial
bitstreams, e.g., FPGA configuration files for partial
dynamic reconfiguration, supportingglitchless dynamic
reconfiguration: if a configuration bit holds the same value
before and after reconfiguration, the resource controlled by
that bit does not experience any discontinuity in operation.
If the same IP for an elementary component is present
in several configurations, that IP is not changed during
reconfiguration. It is thus possible to link several IPs witha
corresponding elementary component; and each link relates
to a unique configuration. We apply a condition that for any
n number of configurations with each havingm elementary
components, each elementary component of a configuration
must haveat leastone IP. This allows successful creation of
a complete configuration for eventual final FPGA synthesis.

Figure 8: Abstract overview of configurations in deployment

Figure 8 represents an abstract overview of the
configuration mechanism introduced at the deployment
level. We consider a hypothetical Gaspard2 application
having three elementary componentsEC X, EC Y andEC Z,
having available implementationsIPX1, IPX2, IPY1, IPY2
and IPZ1 respectively. For the sake of clarity, this abstract
representation omits several modeling concepts such as
VirtualIP andImplements. However, this representation
is very close to UML modeling as presented earlier in the
paper. A change in associated implementation of any of
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these elementary components may produces a different end
result related to the overall functionality, and differentQoS
criteria such as effectively consumed FPGA resources.

Here two configurations Configuration C1 and
Configuration C2are illustrated in the figure.Configuration
C1 is selected as the initial configuration and has associated
IPs: IPX1, IPY1 and IPZ1. Similarly Configuration C2
also has its associated IPs. This figure illustrates all the
possibilities: an IP can be globally or partially shared
between different configurations: such asIPX1; or may not
be included at all in a configuration, e.g., case ofIPX2.

Once the different implementations are created by means
of model transformations, each implementation is treated
as a source for a partial bitstream. A bitstream contains
packets of FPGA configuration control information as well
as the configuration data. Each partial bitstream signifies
a unique implementation, related to the reconfigurable
hardware accelerator which is connected to an embedded
controller. While this extension allows to create different
configurations, the state machine part of the controller
is created manually. For automatic generation of this
functionality, the deployment extensions are not sufficient.
We then use the existing control concepts presented in
section 3.3 to solve these issues.

5.3 Integrating control at the deployment level

We now explain control integration at the deployment level
in the context of the Gaspard2 SoC co-design framework.
Control at this level provides advantages over other levels
due to its independent nature. Details related to these
advantages can be found in (Quadri, Meftali & Dekeyser
2009b).

Figure 9: Integrating control at deployment level

Figure 9 shows the integration of control at the
deployment level in Gaspard2. As compared to control
models at other levels, e.g., such as application level,
which only incorporate structural design aspects, this control
model deals with behavioral aspects. The deployment
level automata, termed asDeployed Mode Automata deals
with atomic elementary components and their related
implementations. These implementations are present at the
lowest hierarchical level in the modeling; in order to address

global system level implementations. As compared to other
control models, a mode in a mode switch component
represents a global system implementation of the modeled
application, and is a collection of different implementations
associated with their respective elementary components.
Here, dataflow associated to the generic Gaspard mode
automata is not explicitly expressed and input/output data
ports are suppressed at all hierarchical levels in the control
model at deployment level.

Also we need to address the issue related to the incoming
events arriving in a deployed mode automata. In a control
model at application or architecture, the events arrive either
from the external environment, or the events are produced at
any time instant in the application or architecture itself due
to the actions of some elementary components. However in
the deployment level, the incoming events are not related to
the high level modeling but are basically used to represent
low level user inputs depending upon the chosen execution
platform. For example at the RTL level, these user events
can arrive in the form of user or environment input from
a camera attached to an FPGA, or inputs received via
an universal asynchronous receiver/transmitter or UART
terminal. A designer modeling the system at a high level is
not concerned with these low level implementation details.
However, in order to make this control model as flexible
as possible, and to respect the semantics of the abstract
control model, event ports have been added to control-
deployment proposal. During the model transformations and
eventual code generation, these event ports are replaced and
translated into actual event values which are used during
FPGA implementation phase.

Similarly, for mode automaton at an application or
architecture level, its initial state is usually determined by
a component that has input event ports and an output state
port. Initially some events are generated and taken as input
by that component in order to produce the initial state. After
that, the component remains inactive due to the absence of
the events arriving on its input ports. This initial state is
then sent to the mode automata and serves to determine
the initial state of the Gaspard state graph. However, for
the deployed mode automata, structural aspects are absent
and only information related to elementary components
is present. Thus the initial state related to the deployed
Gaspard state graph cannot be determined explicitly. This
limitation has been removed by introducing new concepts
at the deployment level, which help to determine the
initial state of the deployed mode automata. However, the
proposal retains the usage of an initial state port and the
defaultLink concept, as they help to conform to the
abstract control model; and are used in subsequent model
transformations for eventual code generation.

Finally, the current control at deployment is only
related to creating a state machine for a reconfigurable
controller. In cases of FPGAs supporting several embedded
hardcore/softcore processors; it is possible to select any
one to act as a controller. However, this requires additional
allocation types semantics to be linked to the deployment.
Currently the code generated from our design flow is
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explicitly linked to a generic controller, and it is up to the
user to determine the nature and position of the controller.

6 Case study

In order to validate our design flow, we now present
a case study of an anti-collision radar detection system.
Vehicle based anti-collision radar detection systems are
becoming increasingly popular in automotive industry as
well as in research. Furthermore, these devices provide
additional safety to provide collisions and fatal accidents;
and could become mandatory aboard vehicles in the next
years. The principle of the system is to avoid collision
between the equipped vehicle and the one in front, or
other kind of obstacles such as pedestrians, animals. The
algorithms which form the basis of these complex systems
require large amounts of regular repetitive computations.
This computational necessity requires the execution of
these algorithms in parallel hardware architectures, suchas
hardware accelerators. We first provide a general overview
of these systems, followed by the modeling of their key
components and eventual code generation. Finally the paper
provides implementation details for integrating aspects of
dynamic reconfiguration in these systems.

Figure 10: Block diagram of the anti-collision radar detection
system

The anti-collision radar detection system is illustrated
in Figure 10. The radar consists of two antennas; and
emits a signal modulated with aPseudo Random Binary
Sequence(PRBS), resulting in formation of a reference code
(Quadri, Elhillali, Meftali & Dekeyser 2009). The PRBS has
interesting correlation as well intercorrelation characteristics
(Douadi et al. 2008). When the transmitted wave encounters
an obstacle, it is reflected and creates an echo which
is captured by means of the second antenna. The echo
is converted into a signal containing information related
to the distance of the detected obstacle. Unfortunately,
this information cannot be directly interpreted due to the
presence of time delays and noise in the incoming signal.
The PRBS present in the incoming signal is recognized by
means of aDelay estimation correlation moduleor DECM
present in the embedded system; and determines the time
of flight. Thus, distance to the object and its speed can be
calculated easily.

Also, it is not mandatory to exploit all the precision of
the returned signal, since the information contained in the
least significant bits is embedded with noise. In (Douadi
et al. 2008), the authors recommend to use only 4 bits of

the incoming signal, because the information contained in
the 5th and the following bits are not significant.

For the radar system, the DECM can be implemented
on an FPGA, as these reconfigurable SoCs allow to
execute the detection algorithm that retains the necessary
information present in the incoming signal. This information
corresponds to the PRBS utilized in the emission of the
signal. The role of the detection algorithm is to highlight
the similarities between the reference code and the received
signal: when the received signal corresponds with the
reference code, the presence of an obstacle is detected. The
inverse case means that the received signal contains littleor
no information related to the reference code and therefore,
objects are not effectively detected.

Figure 11: MATLAB result of the correlation

Figure 11 shows the result of a simulated correlation
measurement in MATLAB. The outcome of a correlation
between the reference code of a 127 length PRBS and the
received simulated response (integrated with time delays
and noise) yields a peak as indicated in the figure. A peak
indicates the successful detection of an obstacle, and its
position corresponds to the delay that we have introduced
in the simulation. As the radar emits and receives a signal
continuously in a temporal dimension, the correlation step
is also repeated continuously, resulting in a peak at different
intervals of time, indicating object detection at different
time intervals. In the Figure, we illustrate the results of two
correlations. To perform the necessary obstacle detection
with the radar, the correlation peaks need to be localized,
between the emitted code and its returned echo. The object
which is detected by the correlation has a distanced from
the radar, which is given by:

d = cα/2 (1)

Wherec is the speed of the propagated signal (equal to
3.108, corresponding to the speed of light); andα is the
respective time delay.

In this section, we have presented the structure of the
anti-collision radar detection system. The DECM module
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is the key element of this radar detection system, and the
correlation computation is very time consuming especially
for longer PRBSs. Our case study is mainly concerned
with this functionality; details related to the modeling
of the DECM module have been presented in (Quadri,
Elhillali, Meftali & Dekeyser 2009, Quadri, Muller, Meftali
& Dekeyser 2009), hence in the context of this paper,
we only provide the top hierarchical level of our modeled
application.

6.1 Delay estimation correlation module

Correlation algorithms are among the type of digital
processing largely employed in DSP (digital signal
processing) based systems. They offer a large applicability
range such as linear phase and stability. A correlation
algorithm normally takes some input data values and
computes an output which is then multiplied by a set
of coefficients. Afterwards the result of this multiplication
is added together to produce the final output. While a
software implementation can be utilized for implementing
this functionality, the correlation functionality will be
sequentially executed. Where as a hardware implementation
allows the correlation functions to be executed in a parallel
manner and thus increases the processing speed. However
this implementation is not flexible for minute changes,
hence a reconfigurable DECM module is an ideal solution
as it offers the flexibility of a software implementation
while retaining the capability to construct customized high
performance computing circuits.

Figure 12 represents the top level of our modeled DECM
module. The component instancetrm of the component
TimeRepeatedMultiplicationAddition determines the
global multiplications while instancetrat of component
TimeRepeatedAdditionTree determines the overall
sum. The TimeRepeatedMultiplicationAddition

component itself carries out a partial sum between
received elements of the reference code and the received
signal at each clock cycle, which are then sent to the
TimeRepeatedAdditionTree component to execute the
overall addition operation. The instancetrdg of component
TimeRepeatedDataGen produces the data values for
the generated incoming signal while the instancetrcg
of component TimeRepeatedCoeffGen produces the
reference code.

We have identified four key elementary components
CoeffGen, DataGen, MultiplicationAddition

and Addition in our modeled application as
shown in Figure 12. They are present in
different levels of hierarchy in the components
TimeRepeatedCoeffGen, TimeRepeatedDataGen,
TimeRepeatedMultiplicationAddition and
TimeRepeatedAdditionTree respectively at the top
level of the application in Figure 12. Any change in the
implementations of any of the elementary component
directly affects the final result as well as other QoS criteria:
such as reconfiguration time; consumed FPGA resources
and the computation power. Deployment of these elementary
components such as that ofMultiplicationAddition

can effect the overall QoS results. While it is theoretically
possible to have a large number of configurations, only two
have been considered for our case study. In this paper, we
propose to associate two different implementations related
to theMultiplicationAddition component, one written
in a DSP like fashion, while other written using an If-
then-else construct. While changing of an IP related to an
elementary component might seem insignificant, it causes
a global influence resulting in different QoS end results
related to the DECM module.

Afterwards, the deployment phase is carried out as
illustrated as abstractly represented in Figure 13 and all the
elementary components are deployed. Then the modeling of
the mode automata related to the DECM is initiated; with
the mode automata serving to switch between the different
DECM configurations.

Figures 14 and 15 illustrate the various concepts
related to the construction of the mode automata.
This modeling approach corresponds to the abstract
control concepts introduced earlier in the paper, thus
redundant explanatory information is unnecessary. Here the
DECM State Graph contains two statesstate DECM DSP
and state DECM Ifelse corresponding to the respective
configurations modeled previously. This state graph is
related to theDECM State Graph Component that serves
as a control component. Its counterpart, the controlled
mode switch component orDECM MSC, contains several
collaborations. Each collaboration is signifying the internal
behavior of the mode switch components on the basis
of their interior parts and the incoming mode value on
mode switch component’s port. The combination of the
control and controlled component forms the basis of a
macro component that represents a single transition in
the mode automata. For continuous transitions, the macro
is placed in a repetitive context task: theDECM Mode
Automata component along with its respectivetilers,
interRepetition anddefaultLink dependencies.

As mentioned previously, one of goals of our design flow
is the creation of a dynamically reconfigurable hardware
accelerator with several configurations, that can be swapped
dynamically in a run time reconfigurable SoC. The UML
model is transformed by the various model transformations
present in our design methodology, they generate the various
implementations related to the hardware functionality. The
control model is equivalently converted into a state machine
for eventual utilization by the reconfiguration controllerof
the SoC in question. Figure 16 represents the Gaspard2
framework in the Eclipse environment as well as the
different models present in our design flow. TheUML model
corresponds to the modeled control integrated deployed
functionality and is directly generated from the UML
diagram with integrated MARTE profile. The model-to-
model transformations mentioned earlier permit to create
several intermediate models, such as the RTL model
corresponding to its own metamodel. Finally, the last step of
our design flow consists of the generation of the source code
related to the hardware accelerator and the configuration
controller, by means of a model-to-text transformation.
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Figure 12: The top level view of the DECM

Figure 13: Deployment of the elementary components of the DECM
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We now present some of the simulation results related
specifically to the generated hardware functionality.

6.2 Simulation of the modeled functionality

The verification of the modeled application and its eventual
equivalent hardware execution is first carried out by means
of simulation using the industry standard ModelSim6

simulation tool. Once the code for the various configurations
has been generated from the model transformations, we
move on to the simulation phase. The simulation helps to
verify the correctness of the generated functionality, before
moving on to the eventual FPGA synthesis. Figures 17 and
18 show the simulation results of the DSP configuration.
Here in the simulation, we observe several intermediate
integer values ranging between -100 to 200, between time
intervals of 20 ns. These values are equivalent to the
noise illustrated in the MATLAB simulation results. The
simulation is set to run for about 8000 ns which is
sufficient to observe the execution time of the application
functionality. In the simulation, besides the intermediate
noise values, we observe two significant integer values of
more than 900 at two distinct time instants.

Figure 14: Mode automata concepts for the DECM: part one

These two values are equivalent to two peaks in the
simulation, which correspond to the MATLAB simulation
result illustrated in Figure 11. As the simulation results
are a perfect match to the earlier MATLAB simulation
results, the generated configuration is considered valid.
The simulation results verify the functionality related to
the different implementations of the high level modeled
application functionality.

Currently in our design flow, we primarily make use
of simulation to verify the correctness of the generated

DECM Mode Automata

«shaped»

mc: Macro Component [{*}]

o_state: Statevalues [{}]

i_state: Statevalues [{}]

dsp_event: Boolean [{*}]
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defaultin: Statevalues [{}]
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«defaultLink»
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Figure 15: Mode automata concepts for the DECM: part two

code. However, it may be possible that the generated code
does not produce expected results or the generated syntax
was incorrect. As a solution, model based techniques such
as traceability can be of extreme significance. Traceability
helps to determine errors in the high level models and the
corresponding model transformations. Currently this aspect
is being studied in our research team for eventual integration
in the Gaspard2 framework, and could be a future extension
of our design flow (Aranega et al. 2009).

Figure 16: The transformation flow related to our design flow

Figure 17: First peak of the DSP configuration

Figure 18: Second peak of the DSP configuration
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6.3 Implementing a partial dynamically
reconfigurable DECM

In the previous sections, we have presented the initial details
related to the application selected for this paper, along
with its modeling at the MARTE profile level. Afterwards
via the design flow presented during the course of this
paper, the integrated model transformations generate the
source code from the high abstraction level input models.
Once the source code has been generated, we move onto
implementing a partial dynamically reconfigurable SoC
(Quadri, Muller, Meftali & Dekeyser 2009). This section
deals with the implementation details and provides the
validation of our design methodology.

We first investigated the architecture related to
implementing partial dynamic reconfiguration in Xilinx
FPGAs. In Figure 19 we present the global structure of our
reconfigurable architecture that was implemented on the
Xilinx Virtex-II Pro XC2VP30 FPGA on a XUP Board7.
This particular type of structure is popular in the domain
related to dynamic reconfigurable FPGAs, and various
variants have been built from this classical structure, such
as presented in (Claus et al. 2007, Tumeo et al. 2007).
The choice of selecting the classical structure was 1) to
compare our system with other existing partial dynamic
reconfiguration based systems in literature, and 2) to
provide the basic template for a model driven dynamically
reconfigurable system that can be optimized by the domain
experts, in order to generate their customized versions.

Figure 19: Block Diagram of the architecture of our
reconfigurable system

In our selected system structure, we make use of the
embedded hardcore PowerPCs present in the Xilinx Virtex-
II Pro series FPGAs. One of the PowerPCs is selected as
the reconfigurable controller and the state machine code
generated from the high level control model in our design
flow is executed on this processor. The partial dynamic
reconfiguration system can be mainly divided into two main
parts. The static region and the dynamically reconfigurable
one. The static region mainly consists of a processor sub
module that contains the reconfiguration controller and other
necessary peripherals for dynamic reconfiguration.

The processor submodule is connected to a dynamically
reconfigurable hardware accelerator via bus macros. These
bus macros are communication modules that help in
the communication between the static/dynamic regions.
The hardware accelerator is equivalent to the hardware
functionality generated from the high level modeled
application in our design flow, and serves as the partially
reconfigurable region in the overall system. The various
implementations/partially reconfigurable modules related
to the partially reconfigurable region are consistent with
the modeled configurations at the deployment phase. The
bus macros which are connected to the outputs of the
hardware accelerator have a special enable/disable signal
that permits the controller to disable the bus macros during
a configuration switch to another state. Once a successful
switch is carried out, the bus macros are enabled again. Thus
during the switch, no output is generated from the partially
reconfigurable region, causing the system to always remain
in a safe state.

Finally the processor submodule system is connected
to an event observer. The event observer receives the
event values and relays them to the RS232 UART
(universal asynchronous receiver/transmitter) controller of
the processor submodule. Users can send input events,
from the host PC, related to the configuration switches to
the partial dynamic reconfiguration system, by means of a
hyperTerminal. A program running on the hyperTerminal
gives the user the choice of switching between the available
configurations. Each configuration switch is related to a
specific input character, that is mapped to a specific event
in the executing controller program. When this value is
received by the partial dynamic reconfiguration system, the
associated state transition is carried out.

Once the code has been generated from our model driven
design flow, we move on to the initial design partition phase
of our partial dynamic reconfiguration system according
to the Xilinx EAPR flow (Xilinx 2006). The processor
submodule for the partial dynamic reconfiguration system
is initially created by means of the Xilinx Platform studio.
The source code for the controller is selected to be executed
on the PowerPC 4050, with a clock frequency of 100
MHz. The second PowerPC while present in the figure,
is not connected to any clock signals and is therefore
deactivated. A Processor Local Bus Block-RAM or PLB
BRAM interface controller permits interfacing between the
PLB and a Block-RAM of size 128 KB. This size is
sufficient to store the data and instructions of the executable
processor code, and on-chip-memory is not required. Using
FPGA BRAMs to store the data/instructions allows the
processor code and initialized variables to be written directly
into the memory, when the FPGA is configured initially.

The processor subsystem is then inserted into a top level
VHDL file that contains the component instantiations and
port mappings related to the processor subsystem and the
dynamically reconfigurable DECM module. This DECM
module is connected to the static processor subsystem by
means of bus macros which are also present in the top
hierarchical level. Afterwards, synthesis is carried out to
generate the appropriate files for eventual implementationof
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Partial dynamic reconfiguration using the PlanAhead design
tool (Xilinx 2006).

We now present the partial synthesis results of some
of the modeled application components in our case study
carried out with the Xilinx ISE on the XUP board. Figure 20
shows the global view of the synthesis of the modeled
DECM application.

Once the synthesis has been carried out, we move onto
generation of the partial bitstreams related to the different
modeled configurations as well as the static bitstream.
Figure 21 only shows the partial bitstream related to the
DSP configuration, while Figure 22 shows the full initial
bootup bitstream that is a merge of the static bitstream and
the DSP partial bitstream.

Figure 20: Synthesis result of the top level of the DECM

Figure 21: Partial bitstream related to the DSP configuration

Table 1 shows the results related to the two
configurations. The first configuration consumes slightly

more FPGA resources as compared to the second
one. Additionally, the reconfiguration time for the first
configuration is higher as compared to the second one. This
is due to the fact that the ICAP core needs to modify several
additional frames for the first configuration, as compared to
the latter. While the reconfiguration time is extremely high
for both configurations, this is due to the low bandwidth:
115200 bps; of the RS232 controller and the large size
of the partial bitstreams. Using an external RAM memory
can greatly increase the reconfiguration times, similarly
various other optimizations can be carried out with respect
to this implementation, such as introducing a DMA in the
reconfigurable system, a customized ICAP controller or
usage of a PLB ICAP core.

Figure 22: Full bitstream related to the partial dynamic
reconfiguration system

DSP Configuration If-then-else Configuration

Slices 1272/13696 (9.287%) 1186/13696 (8.659%)

Slice FlipFlops 2084/27392 (7.608%) 1944/27392 (7.096%)

LUTs 1584/27392 (5.782%) 1836/27392 (6.702%)

Time (secs) 1.45 1.41

Table 1 Results related to the two configurations for the hardware
accelerator. The percentage is in overview of the total
FPGA resources.

7 Control models and FPGA synthesis

Many different approaches exist for expressing control
semantics, such as Petri Nets (Nascimento et al. 2004);
if-then-else, switch and goto-based semantics. However
mode automata were selected as they clearly separate
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control/data flow. They also adapt a state based approach
facilitating seamless integration in our framework; and can
be expressed at the MARTE specification levels. The same
control semantics are then used throughout our framework
to provide a single homogeneous approach.

With regard to partial dynamic reconfiguration, different
implementations of a reconfigurable region must have the
same external interface for integration with the static region
at run-time. Mode automata control semantics can express
the different implementations collectively via the concept
of a mode switch, which can be expressed graphically at
high abstraction levels using the concept of a mode switch
component. Similarly a state graph component expresses the
controller responsible for the context switch between the
different implementations.

Both control models expressed in this paper can be used
for FPGA synthesis. The first model introduces dynamic
aspects in the application, which may modify the structure
of an application, as different modes in a mode switch
component can have different natures. For example, one
mode could be elementary in nature while another can be
hierarchically composed. The application can be associated
and correspondingly deployed in different ways. The whole
application could be allocated and deployed onto a single
processor or a hardware accelerator; or split into parts. The
first case while allowing reconfiguration, is not dynamically
reconfigurable in nature.

In the second case, the parts can be correspondingly
allocated and deployed: the state graph component onto
a processor, and the mode switch components onto the
reconfigurable regions. The disadvantage of this approach
is that multiple allocations are required between the
application and the targeted architecture. This control model
can also be applied onto the architecture level of our
framework. A processor can have a reconfiguration manager
observing QoS criteria. If the processor heats up during
execution, the manager can change the frequency of the
processor. An internal controller could carry out aspects of
dynamic reconfiguration. In addition, an external controller
can be used to globally change the architecture.

The deployment level control model renders the
application or architecture reusable. The designer can
change partial functionality of the application by changing
some IPs related to corresponding elementary components.
This model is thus more interesting as one application
functionality can be reused without changing its structure,
and its overall implementation can be changed only
depending upon QoS criteria and hardware resources
limitations. Currently the deployment level is explicitly
linked with a specific reconfigurable controller in the
targeted FPGA. In case of multiple processors: one
managing the configuration and the other executing some
application functionality, this information must be elevated
to the allocation level to correctly link the related entities.
It is also possible to combine the two control models for
simultaneous integration in our framework.

Additionally, some of the low level RTL details can be
integrated into high level models by means of aDesign
Space Explorationstrategy. For example, reconfiguration

time related to a specific configuration can be determined
after an initial synthesis and then can be added to models
by means of UML attributes. This will allow designers to
take QoS criteria into consideration when changing between
the different configurations. Additionally, details related to
the targeted architecture can also be modeled at the high
abstraction levels. An initial contribution related to this
aspect has been detailed in (Quadri, Meftali & Dekeyser
2009a); and could be a future extension of our design flow.

8 Conclusion

This paper presented a high level design flow for targeting
reconfigurable SoCs in the context of a model-driven co-
design framework, Gaspard2, which is compliant with
the MARTE standard. We have selected two key points
of these reconfigurable systems to be modeled at high
abstraction levels. We have mainly taken into account the
dynamically reconfigurable region and the semantics related
to the reconfigurable controller; managing for switching
between the different implementations related to the region.
The control semantics is based on mode automata and is
integrated at different levels of SoC co-design. In the context
of partial dynamic reconfiguration, they have been integrated
at the deployment level in our Gaspard2 framework.
Afterwards, a case study consisting of a component in an
anti-collision radar detection system has been illustrated
for validating the proposed design methodology. Our high-
level modeling approach enables implementation and FPGA
synthesis of various system configurations rapidly in a
flexible manner. It therefore helps to explore different design
choices about the system, which is usually a delicate task.
Finally, we provide a comparison between the control
semantics at different design levels, specifically for FPGA
synthesis and dynamic reconfiguration.
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