
HAL Id: inria-00525438
https://inria.hal.science/inria-00525438

Submitted on 25 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

QoS Contract-Aware Reconfiguration of Component
Architectures Using E-Graphs

Gabriel Tamura, Rubby Casallas, Anthony Cleve, Laurence Duchien

To cite this version:
Gabriel Tamura, Rubby Casallas, Anthony Cleve, Laurence Duchien. QoS Contract-Aware Reconfig-
uration of Component Architectures Using E-Graphs. 7th International Workshop on Formal Aspects
of Component Software, International Institute for Software Technology, United Nations University,
Universidade do Minho, Oct 2010, Guimaraes, Portugal. pp.34-52. �inria-00525438�

https://inria.hal.science/inria-00525438
https://hal.archives-ouvertes.fr


QoS Contract-Aware Recon�guration of

Component Architectures Using E-Graphs

Gabriel Tamura1,2, Rubby Casallas1, Anthony Cleve2, and Laurence Duchien2

1 University of Los Andes, TICSw Group, Cra. 1 N◦ 18A-10, Bogotá, Colombia
2 INRIA Lille-Nord Europe, LIFL CNRS UMR 8022, University of Lille 1, France
gabriel.tamura@inria.fr,rcasalla@uniandes.edu.co,anthony.cleve@inria.fr,

laurence.duchien@inria.fr

Abstract. In this paper we focus on the formalization of component-
based architecture self-recon�guration as an action associated to quality-
of-service (QoS) contracts violation. With this, we aim to develop on the
vision of the component-based software engineering (CBSE) as a gener-
ator of software artifacts responsible for QoS contracts. This formaliza-
tion, together with a de�nition of a QoS contract, forms the basis of the
framework we propose to enable a system to preserve its QoS contracts.
Our approach is built on a theory of extended graph (e-graph) rewriting
as a formalism to represent QoS contracts, component-based architec-
tural structures and architecture recon�guration. We use a rule-based
strategy for the extensible part of our framework. The recon�guration
rules are expressed as e-graph rewriting rules whose left and right hand
sides can be used to encode design patterns for addressing QoS proper-
ties. These rules, given by a QoS property domain expert, are checked
as safe, i.e., terminating and con�uent, before its application by graph
pattern-matching over the runtime representation of the system.

1 Introduction

In the last ten years, Component-based Software Engineering (CBSE) has evolved
based on a fundamental vision of the components as a contract or obligations-
responsible software artifacts [1]. On this vision, CBSE has been used as a fun-
damental approach for engineering software systems in a wide variety of forms.
These forms include the building of systems from contract-compliant compo-
nents to abstracting re�ection mechanisms at the component-level (i.e., compos-
ite, component, port, connection) to support self-adaptive systems. Even though
a lot of research has been conducted on how to make components guarantee con-
tracts on individual functionality, making component-based systems to be QoS
contracts-aware is another important part of the same research question: this
kind of contracts constitute the base to di�erentiate and negotiate the quality
of the service or provided functionality at the user level.

Nonetheless, providing a component-based software system with recon�gu-
ration capabilities to preserve its QoS contracts presents several di�culties: (i)
the expression of the QoS contract itself, given that it must specify the di�erent

in
ria

-0
05

25
43

8,
 v

er
si

on
 1

 - 
11

 O
ct

 2
01

0
Author manuscript, published in "7th International Workshop on Formal Aspects of Component Software (2010)"

http://hal.inria.fr/inria-00525438/fr/
http://hal.archives-ouvertes.fr


contextual conditions on the contracted QoS property, and the corresponding
guaranteeing actions to be performed in case of the QoS contract disruption
[13,15]; (ii) in contraposition to functional contracts, which can be checked stat-
ically, QoS contracts are a�ected by global and extra-functional behaviour that
must be evaluated at runtime. This evaluation requires also dynamic monitoring
schemes, di�erent to the static ones usually found in current systems [7]; (iii)
several recon�guration strategies can be used to address each desirable condition
on a QoS property. These strategies are provided by di�erent disciplines (e.g.,
those related to performance, reliability, availability and security), and consti-
tute a rich knowledge base to be exploited. Nonetheless, due to their diversity of
presentation in syntax and semantics, it is di�cult to manage them uniformly,
thus existing approaches use them as �xed subsets [2]; (iv) the recon�guration
process is required to guarantee both, the preservation of the system integrity as
a component-based software system, and the correct and safe application of the
recon�guration strategy. This requirement is specially challenging if the strate-
gies are parametrized, for instance, by using rules, still being a research issue in
self-recon�guring approaches [12].

On the treatment of software contracts several works have been proposed.
Notably among them, the design by contract speci�cation of the Ei�el program-
ming language [16] and theWeb Service Level Agreement (WSLA) initiative [15].
The design by contract theory, one of the most inspiring in the object-oriented
programming paradigm, makes routines self-monitoring at compile-time by us-
ing assertions as integral parts of the source code to be checked at runtime. The
violation of an assertion, such as a class invariant, is automatically managed by
standard mechanisms like the rescue clause. The programmer must handle it
appropriately to restore a consistent state. This idea was later generalized by
Beugnard et al. to four types of software contracts, including those based on
QoS, though not fully developed [3]. On the other side, WSLA speci�es QoS
contracts independent from the source code, thus involving conditions based on
the actual context of execution. The WSLA includes a guaranteeing action in
response to disrupted SLAs, but the semantics of this action is limited to op-
erations such as event noti�cation [15]. However, despite these and other many
advances, the development of a well-founded theory to manage QoS contracts in
component-based systems is still a challenging question.

Our goal in this paper is to formally model the architecture recon�guration of
a component-based (CB) system as an action performed by itself. These actions
are performed in response to the disruption of QoS contracts, in the spirit of
the Ei�el's rescue clause in object-oriented programming. By doing this, we aim
to develop on the vision of the CBSE as a sound base to produce software sys-
tems enabled to automatically and safely recon�gure themselves by recon�guring
their abstract (re�ection) architectures at runtime. For such structural recon�g-
urations, a system architect may reuse design patterns from other disciplines
with the purpose of restoring QoS contracts, thus preserving them.

Our approach is built on the theory of extended graph (e-graph) rewrit-
ing proposed in [10], as a formalism to represent QoS contracts, component-

in
ria

-0
05

25
43

8,
 v

er
si

on
 1

 - 
11

 O
ct

 2
01

0



based architectural structures and architecture recon�guration. For the self-
recon�guration, we use a parametrized, rule-based strategy. That is, the recon-
�guration possibilities are expressed as e-graph rewriting rules whose left and
right hand sides can be used to encode variations of design patterns for address-
ing QoS properties. These rules are applied by graph pattern-matching over the
system runtime e-graph representation when it is noti�ed with events related to
the violation of the corresponding properties.

The contribution of this paper is twofold. We provide (i) formal de�nitions
for QoS contracts, CB system re�ection and recon�guration rules, in a uni�ed
framework (i.e., syntax and semantics). This allows the veri�cation of CB struc-
tural rules of formation to be checked; and (ii) a well-founded basis for a system
to manage its own recon�gurations to address the disruption of its associated
QoS contracts. Once parametrized with a speci�c set of rules, the system can
be checked as terminating (the process of rule application is guaranteed to end)
and con�uent (the rule application order is irrelevant and always produce the
same result).

This paper is organized as follows. Section 2 presents our motivation and
proposal scope. Section 3 introduces a reliable video-conference system as an
example scenario to illustrate our proposal. Section 4 presents our formaliza-
tion for QoS contracts-ware system recon�guration by using e-graphs. Section 5
analyze the properties of our recon�guration system as a result of its formaliza-
tion. Section 6 compares our approach with similar proposals. Finally, Section 7
concludes the paper and anticipates future work.

2 Motivation and Scope

As de�ned by Oreizy et al., self-adaptive software evaluates its own behaviour
at runtime and modi�es itself whenever it can determine that it is not satisfying
its requirements [17,20]. In their proposal, they de�ned the system adaptation
as a cycle of four phases: (i) monitoring of context changes; (ii) analysis of these
changes to decide the adaptation; (iii) planning responsive modi�cations over the
running system; and (iv) deploying the modi�cations. In our proposal, we focus
on the planning phase considering self-recon�guration at the component level,
triggered by sensible changes in context that a�ect the ful�llment of contractual
QoS properties. Other component-based proposals such as COSMOS [9] and
MUSIC [18] can be used for more general functionalities of context monitoring
and analysis phases, meanwhile those like Fractal [4] and OSGi [21] for the
component management at the deployment and execution phases.

Our motivation in this paper is to de�ne a safe, rule-based framework to ad-
dress QoS contracts violation in CB systems through the recon�guration of the
components-architecture, meaning: (i) (rule-based recon�guration) the addition
or removal of software components and connectors at runtime, as speci�ed by
parametrized rules given by a QoS property domain expert or a software QoS ar-
chitect; (ii) (safe-1 ) these rules can be checked to be terminating and con�uent,
i.e., their application can be guaranteed to �nish the production of the recon�g-

in
ria

-0
05

25
43

8,
 v

er
si

on
 1

 - 
11

 O
ct

 2
01

0



uration actions in a deterministically way. This veri�cation is done despite the
rules given being whether or not pertinent for the QoS property preservation,
but correct in their de�nition; (iii) (safe-2 ) the QoS property domain expert is
concerned only with rule speci�cation, not with the speci�c procedure to ap-
ply it; (iv) (safe-3 ) once executed the recon�guration actions into the runtime
system, its CB-structural conformance can be veri�ed.

3 Running Example

We illustrate the requirements for dynamic recon�guration with a simpli�ed ver-
sion of a reliable mobile video-conference system (RVCS). To the user, the service
is provided through a video-conference client subject to a QoS contract on its re-
liability. Thus, software clients are expected to be responsible for maintaining the
service to the user in a �smart� way, as illustrated in Fig. 1. Note that addressing
these requirements statically (e.g., with if-then clauses on context conditions)
would not be satisfactory: as the video-conference requires bi-directionality, this
would introduce synchronization issues between the client's and server's condi-
tions, being their respective contexts not necessarily the same.

Fig. 1. Use case diagram for the requirements of the RVCS example. Connections from
the intranet are considered secure, thus clear communication channels can be used.
From the extranet, con�dential channels are required to be con�gured. In case of no
connection, the call must be put on hold. If the user goes into a low-bandwidth area,
the system must recon�gure itself to drop the bi-directional video signals. The QoS

Reliability Management has the responsibility of recon�guring the system architecture
to address the QoS contract violation in each case (taking into account the system's
actual state) in a transparent way.

In this example, reliability is interpreted following [2], i.e., to ensure the con-
tinued availability of the video-conferencing service hosted by a corporate net-

in
ria

-0
05

25
43

8,
 v

er
si

on
 1

 - 
11

 O
ct

 2
01

0



work. The corporate network requires all clients to access the intranet through
connections guaranteeing con�dentiality. Thus, even though the contract is on
the QoS property of reliability, it involves two sub-properties, con�dentiality and
availability. On these two sub-properties, the contractual interest is on establish-
ing the minimum levels for service acceptability (service level objectives), under
the possible contextual conditions of system execution (cf. Tables 1 and 2).

Table 1. QoS contractual conditions and corresponding service level objectives for the
con�dentiality property (based on access to corporate network).

Contextual Condition Service Level Objective

CC1: Connection from Intranet Clear Channel
CC2: Connection from Extranet Con�dential Channel
CC3: No Network Connection Call on Hold

Initially, assume the mobile user joins a video conference from her o�ce at
the corporate building, e.g., from an intranet WiFi access-point. In this state,
as the contractual condition CC1 in Table 1 requires a clear-channel communi-
cations con�guration, the system is expected to con�gure itself to satisfy that
condition. A second system state is reached when she moves from her o�ce to
outside of the company building thus connecting through any of the available
extranet wireless access-points, such as GSM or UMTS. This context change,
signaled by a new contextual condition, disrupts the con�dentiality contract
that was being ful�lled by the actual system con�guration. In this new state, ac-
cording to condition CC2, a con�dential-channel con�guration on the mobile is
required. The expected system behaviour is then to recon�gure itself in response
to this change, in a transparent way, adopting, for instance, one of the strate-
gies for secure multimedia transport like those de�ned in [23,19], thus restoring
the contract. The corresponding contrary recon�guration would apply whenever
she moves back to an access-point covered by the intranet. If there are several
available network access-points, a cost function should be used to choose the
cheapest. Finally, whenever there is no network connection by any access-point,
the call must be put on hold awaiting for automatic reconnection, just expressing
that this is preferable to the alternative of dropping the service.

For illustration purposes, Table 2 establishes the minimum expected service,
according to the network bandwidth, independent of the network access-point
location.

4 E-Graph Modeling of QoS Contracts-Based System

Recon�guration

Given that QoS properties are dependent on system architecture, we build our
proposal for making CBSE systems to be QoS contracts-responsible on a formal

in
ria

-0
05

25
43

8,
 v

er
si

on
 1

 - 
11

 O
ct

 2
01

0



Table 2. QoS contractual conditions and corresponding service level objectives for the
availability property (based on network bandwidth in kbit/s).

Contextual Condition Service Level Objective

CC4: BandWidth ≤ 12 Call on Hold
CC5: 12 < BandWidth ≤ 128 Voice Call
CC6: 128 < BandWidth Voice and Video Call

modeling for component-based architecture self-recon�guration. This formaliza-
tion is built on the extended theory of graph transformation given in [10].

For a CBSE system to be QoS contracts-responsible in an autonomous way,
it requires (i) to have a structural representation of itself at the component level
(i.e., to be re�ective) [8]; (ii) to have a representation of its QoS contracts: the
service level objectives for each of the contractual QoS properties, under the
di�erent contextual conditions; (iii) to be self-monitoring, that is, to identify
and notify events on the contractual QoS properties violation; and (iv) to apply
the architecture recon�guration to restore the violated QoS property condition,
as speci�ed in the QoS contracts.

In Sect. 4.1 we recall the base de�nitions of e-graphs given in [10]; then, we
use these de�nitions in sections 4.2 and 4.3 as a uni�ed formalism to represent re-
�ection structures for component-based systems and QoS contracts respectively.
Finally, in Sect. 4.4 we present our proposal for architecture recon�guration
based on e-graph rewriting rules, illustrating how these de�ned constructs give
support for re�ective, autonomous and QoS contracts-based self-recon�guring
systems.

4.1 Extended Graphs: Base De�nitions

De�nition 1 (E-Graph). An E-Graph is a tuple (V1, V2, E1, E2, E3, (sourcei,
targeti)i=1,2,3), where

� V1, V2 are sets of graph and data nodes, respectively;
� E1, E2, E3 are sets of edges (graph, node attribution and edge attribution,
respectively);

� source1 : E1 → V1; source2 : E2 → V1; source3 : E3 → E1 are the source
functions for the edges; and

� target1 : E1 → V1; target2 : E2 → V2; target3 : E3 → V2 are the target
functions for the edges, as depicted in Fig. 2.

De�nition 2 (E-Graph morphism). An e-graph morphism f between e-graphs
G and H, f : G→ H, is a tuple (fV1 , fV2 , fE1 , fE2 , fE3) where fVi

: GVi
→ HVi

and fEj
: GEj

→ HEj
for i = 1, 2, j = 1, 2, 3, such that f commutes with all

source and target functions2 (cf. Fig. 3).

2 Note that E-Graphs combined with E-Graph morphisms form the category
EGraphs. See [10] for more details on this topic.

in
ria

-0
05

25
43

8,
 v

er
si

on
 1

 - 
11

 O
ct

 2
01

0



Fig. 2. E-Graph de�nition. An e-graph extends the usual de�nition of a base graph,
(V1, E1, source1, target1), with (i) V2, the set of attribution nodes; (ii) E2 and E3, the
sets of attribution edges; and (iii) the corresponding source and target functions for
E2 and E3, used to associate the attributes for V1 and E1, respectively, to V2.

Fig. 3. E-Graph morphism illustration example f between e-graphs G and H, f : G→
H. E-graph morphisms are used as typing relationships between e-graphs.

4.2 System Re�ection

For a system to self-recon�gure at runtime, it is required to be re�ective. That
is, it must be able to identify and keep track of the individual elements that
are to be involved in recon�guration operations [8]. In our case, the re�ection
structure is de�ned on a component-based structure that comprises the CBSE
component, port, port type and connector elements. Composites are abstracted
as components, as we address structural recon�guration at the system level.

De�nition 3 (Component-Based Structure - CBS). The component-based
structure, CBS, is the tuple (G, DSig), where

� DSig is a data signature over the disjoint union String + PortRole and
PortRole = {Provided,Required}, with the usual CBSE interpretations;

� G is the e-graph (V1, V2, E1, E2, E3, (sourcei, targeti)i=1,2,3) such that V1 =
{SReflection,Component, Port, PortType, Connector}; each of the data
nodes is named after its corresponding sort in DSig, V2 = String+PortRole;
E1 = {component, port, provided, required, type}, E2 = {cname, pname,
ptype, role, c.QoSProvision, p.QoSProvision, ct.QoSProvision}, E3 = {};
and the functions (sourcei, targeti)i=1,2,3 are de�ned as depicted in Fig. 4.

in
ria

-0
05

25
43

8,
 v

er
si

on
 1

 - 
11

 O
ct

 2
01

0



Fig. 4. The Component-Based Structure, CBS, is de�ned as an e-graph where each of
the graph nodes represents each of the CBSE elements. The graph edges correspond
to the relationships among these elements, meanwhile the data edges, to their cor-
responding attributes; QoSProvision is a special attribute for components, ports and
connectors to express that they warrant a particular QoS condition, such as providing a
secure connection to a network. The data nodes represent the types of these attributes.

De�nition 4 (Component-Based System Re�ection). Given S the com-
putational state of a running component-based system, its corresponding re�ec-
tion state, RS, is de�ned as RS = (G, fS , t), where G is the e-graph that rep-
resents S through the one-to-one function fS : S → G, and t is an e-graph
morphism t : G→ CBS.

That is, S represents the state of each of the system components, ports and
connectors as maintained in a component platform such as FRACTAL or OSGi.
The feasibility of fS results from Def. 3 (CBS) and the e-graph morphism t.
RS .Component denotes the set of components in RS , i.e., RS .Component =
{c|c ∈ GV 1 ∧ tV 1(c) = Component} (analogously for the other CBS elements).
The purpose of fS is to map the system architecture into the e-graphs domain,
in which the architecture recon�guration is operated. Once recon�gured, we use
f−1

S to perform the recon�guration back in the actual runtime component-based
system.

Example 1 (Video Conference System). Figures 5 and 6 illustrate, respectively,
the runtime component-based system structure of our video-conference example
and its corresponding system re�ection state, when con�gured to be connected
from the intranet (i.e., with a clear-channel connection).

Fig. 5. Runtime system structure for Ex. 1 with a clear channel connection.

in
ria

-0
05

25
43

8,
 v

er
si

on
 1

 - 
11

 O
ct

 2
01

0



The components of Fig. 5 are represented in Fig. 6 as exactly the video
conference client with its network connection (vccComp and netComp) and the
server (vcsComp). The other elements in represent their ports (vccP1, vccP2
and so on), and these port's actual connections (con1, con2 and so on).

Fig. 6. Runtime system re�ection structure, in e-graph notation, for the runtime system
of Fig. 5 (i.e., when connected from the intranet). The netComp component, providing
a network connection, is responsible for maintaining a clearChannel connection, as
expressed by its c.QoSProvision attribute. Further details omitted for space.

4.3 QoS Contracts

A QoS contract is a speci�cation of the guarantees on QoS properties under
speci�c conditions for a given functionality, as o�ered by a system or service
provider to any of its potential clients [14,3]. In this sense, a QoS contract is
an invariant that a system must preserve, for instance, by restoring it in case
of its violation. The evaluation of the invariant validity must be performed at
runtime, given that it depends on measurements from the actual context of
execution, such as response time, throughput, and security level on network
access location; therefore, the QoS property condition must be monitored and
the system must act upon its violation in order to have the possibility of restoring
it opportunely.

For a system to address its QoS contracts' violation, it must incorporate and
manage these contracts internally. Given our formal modeling of a component-
based system as a realization of system re�ection, we use the same formal frame-
work to de�ne QoS contracts as a manageable part of the system.

De�nition 5 (QoS Contract). Given QoSDSig the usual data signature over
the disjoint union String + Boolean, a QoS contract is a tuple (C, ct), where

� C is an e-graph representing the contract instance;

in
ria

-0
05

25
43

8,
 v

er
si

on
 1

 - 
11

 O
ct

 2
01

0



� ct is an e-graph morphism ct : C → Q, where Q is the e-graph reference def-
inition for QoS contracts, (V1, V2, E1, E2, E3, (sourcei, targeti)i=1,2,3) such
that V1 = {QoSContract, QoSProperty,QoSMonitor, QoSGuarantor,
SLOObligation,QoSRule}; each of the data nodes is named after its corre-
sponding sort in QoSDSig, V2 = String + Boolean; E1 = {property,
obligation,monitor, guarantor, ruleSet}, E2 = {gname, pname,mname,
rname, SLOPredicate, contextCondition, isActive}, E3 = {}; and the func-
tions (sourcei, targeti)i=1,2,3 are de�ned as depicted in Fig. 7.

Fig. 7. E-graph reference de�nition for QoS contracts. Following [22] and [13], we de-
�ne a QoS contract on QoS properties (QoSProperty). For each property, a set of
service level objective obligations (SLOObligation) is speci�ed. An SLO obligation es-
tablishes (i) the possible context conditions (contextCondition) of system execution;
(ii) the SLO to be ful�lled (SLOPredicate) under these conditions; and (iii) a guaran-
teeing recon�guration rule set (QoSRuleSet) to be applied in case of SLO violation.
The QoSGuarantor refers to the system element that should provide the contracted
functionality under the speci�ed SLO obligations. The identi�cation and noti�cation
of context changes and of SLOs violations is a responsibility of the QoSMonitor.

Example 2 (QoS Contract on Con�dentiality). Table 3 illustrates the contract
on the QoS property of con�dentiality for our video-conference system example.
The corresponding e-graph representation is given in Fig. 8.

4.4 Component-Based Architecture Recon�guration Modeling

Having formalized the structural parts of a system in terms of e-graphs, we de�ne
the runtime software architecture recon�guration as an e-graph transformation
system. The de�nition of this recon�guration system is based on a de�nition of
a recon�guration rule.

De�nition 6 (Recon�guration Rule). A recon�guration rule, p, is a tuple
(L, K,R, l, r, lt, kt, rt), where L (left hand side), K (left-right gluing), and R
(right hand side) are e-graphs, and l, r, lt, kt, rt are graph morphisms, abbrevi-

ated, p = (L l←− K
r−→ R), and lt : L→ CBS, kt : K → CBS and rt : R→ CBS.

p is said to recon�gure L into R.

in
ria

-0
05

25
43

8,
 v

er
si

on
 1

 - 
11

 O
ct

 2
01

0



Table 3. QoS contract example on con�dentiality for the video-conference system.

System Obligations

Context Condition Service Level Objective Guaranteeing Rule Set

1: conn_from_intranet clearChannel R.clearChannel
2: conn_from_extranet confidentChannel R.con�dentChannel
3: no_network_conn localCache R.localCache

Responsibilities

- System Guarantor: System.netCompa

- Context Monitor: System.netComp_AccessPointProbeb

a The system component providing the network connection under the required QoS
conditions.

b The designated component to check changes on the system network connection's
access points and corresponding con�dentiality violations.

Fig. 8. QoS Contract, in e-graph notation, for the video-conference example. This
contract speci�es the netComp component (cf. Fig. 6) as the QoSGuarantor, and an
AccessPointProbe on this component as the QoSMonitor for the con�dentiality QoS
property. This monitor is used by the system to continually check the changes in the
context conditions and violations of the actual SLO. In our example, the initial context
condition is a connection fromIntranet, and the corresponding SLO is to maintain a
clearChannel. A context change in connection fromIntranet to fromExtranet triggers
the application of the respective recon�guration rule set, R.con�dentChannel. Then,
the new context condition would be activated (connection fromExtranet). (cf. Tab. 3).

in
ria

-0
05

25
43

8,
 v

er
si

on
 1

 - 
11

 O
ct

 2
01

0



Conceptually, a recon�guration rule speci�es a strategy to address conditions
on QoS properties. Thus, for each guaranteeing rule set speci�ed in the QoS
contract, associated to a context condition on a given QoS property, the user
can encode architectural patterns that address that condition in the left and
right hand sides of the rules. Di�erent left hand sides for a similar right hand
side in a rule set for a given condition are possible, since the system structures
depend on the di�erent context conditions. All left-hand sides of rules in a rule-
set are named after that rule-set name. In the scenario of our example, for
instance, it is possible to change to a connection from the extranet by moving
either from the intranet or from a state with no network connection. Each of
these two conditions requires its own system structure, namely, a clear-channel
or a local-cache structure, respectively.

Example 3 (Recon�guration rule). The QoS contract on con�dentiality for our
video-conference example speci�es a guaranteeing set of recon�guration rules,
R.con�dentChannel, to address the context change when the user moves to the
extranet and the contract is violated. Figure 9 illustrates the rule (in that set)
that applies when the user is moving from the intranet.

Fig. 9. The R.confidentChannel recon�guration rule, in e-graph notation, that ap-
plies when moving from an intranet network connection to an extranet connection.
The left-hand side (LHS) of the rule is used by a pattern-matching algorithm to �nd
a component netComp in the system, such that it supports a clearChannel as SLO
obligation (by the c.QoSProvision attribute). The right-hand side (RHS) speci�es that
(i) the matched components by the LHS must be kept with their corresponding con-
nectors, except those for conn1 and conn2; (ii) the dark elements must be con�gured
and deployed to provide a tunneled (i.e., con�dent) channel for the data; (iii) the new
ports nCon1, nCon2 must be connected to the previously existing ports netP1, netP2,
and conn1, conn2 reconnected to the new ports nNetP3, nNetP4, respectively; and
(iv) the c.QoSProvision attribute of netComp must be updated as provisioning a con-

�dentChannel. For clarity, the left-right gluing K and graph morphisms l, r, lt, kt, rt
are omitted in this �gure; K, l, r would correlate each of the corresponding non-dark
elements in the RHS with their LHS's counterparts.

in
ria

-0
05

25
43

8,
 v

er
si

on
 1

 - 
11

 O
ct

 2
01

0



De�nition 7 (Recon�guration System). A component-based recon�guration
system is a tuple (DSig, CBS, S,C, P ), where DSig is a suitable data type signa-
ture for component-based systems, CBS the component-based structure de�nition
(Def. 3), and S the structure of the system to recon�gure in its initial state, C a
QoS contract, and P a set of recon�guration rules (with S, C and P according
to Def. 4, 5 and 6, respectively) in which:

1. (When to recon�gure) A system recon�guration is triggered whenever the
QoSMonitor speci�ed in the contract C, C.monitor, noti�es of an event that
violates the actual SLO (C.property.obligation.SLOPredicate). This event
signals that a new context condition, related to another C.property.obligation.
contextCondition, is currently in force. Associated to this new context con-
dition, the contract speci�es the corresponding SLO and guaranteeing recon-
�guration rule set P = C.property.obligation.ruleSet.

2. (How, Where and What to recon�gure) The identi�ed rule set P is applied
to the system re�ection structure RS of S. That is, for each recon�guration

rule p = (L l←− K
r−→ R) in P , and morphism m : L→ G (called a match of

the left-hand side of p, L, in G), we identify a direct recon�guration G
p,m⇒ H

as an e-graph transformation of G into H, as speci�ed by the recon�guration
rule p, of L into R, according to Def. 6.

3. A one-step system recon�guration is a sequence of direct transformations
G0 ⇒ G1 ⇒ . . . ⇒ Gn, written G0

∗⇒ Gn, until no more rules in P can be
applied.

4. The system recon�guration �nishes with a new e-graph re�ection system
structure, R′S. The list of actions to recon�gure RS into R′S can then be
applied to the actual runtime system through f−1

S , according to Def. 4.

Example 4 (System recon�guration). Figure 10 illustrates the recon�gured run-
time system structure having applied the recon�guration rule of Example 3 (to
be used when the network connection changes from the intranet to the extranet).

5 QoS Contracts-Based Recon�guration Properties

In this section we analyze the properties of our proposed recon�guration system
as a result of the formalization presented in the previous section.

5.1 Component-Based Structural Compliance

De�nition 8 (Full CB-Structural Compliance). A runtime system re�ec-
tion structure, RS, is full CB-structural compliant if it is a component-based
structure (i.e., if there exists a graph morphism t : RS → CBS), and the fol-
lowing conditions hold 3:

3 Multiplicity constraints, as de�ned as usual in CBSE, are omitted for space.

in
ria

-0
05

25
43

8,
 v

er
si

on
 1

 - 
11

 O
ct

 2
01

0



Fig. 10. Recon�gured system architecture in e-graph notation. This new system struc-
ture ful�lls the SLO (con�dentChannel) for the new context condition (network con-
nection fromExtranet), as speci�ed in the contract illustrated in Fig. 8. The added
components are highlighted (shaded). Further details omitted for clarity.

1. ∀c(c ∈ RS.Connector =⇒ ∃p, q(p, q ∈ RS.Port =⇒ c.provided =
p ∧ c.required = q ∧ c.provided 6= c.required)): the ports referenced by the
provided and required attributes must be di�erent in every connector.

2. ∀p((p ∈ RS.Port ∧ p.role = Required) =⇒
∃c(c ∈ RS.Connector(c.required = p))): all required ports must be con-
nected.

3. ∀c1, c2(c1, c2 ∈ RS.Connector =⇒ ((c1.name = c2.name ∧ c1.provided =
c2.provided ∧ c1.required = c2.required) =⇒ c1 = c2): every connector
must connect di�erent elements.

The veri�ability of full CB-structural compliance obviously results from the
structural de�nitions 3 and 4 of our recon�guration system proposal. Even
though it would be desirable to statically check that recon�guration rules pro-
duce only full CB-structural compliant systems, this would require more con-
straints on the recon�guration rules.

Example 5 (Full CB-structural compliance). The system re�ection structures of
Fig. 6 and Fig. 10 are full CB-structural compliant, as it is straightforward to
verify that the corresponding conditions hold on them.

5.2 Termination and Con�uence of the System Recon�guration

In [10] the Local Church-Rosser, Parallelism and Concurrency theorems, which
hold for graph rewriting, are proved as valid also for typed attributed graph
transformation systems. In this section, we show that the one-step system re-
con�guration (i.e., G0

∗⇒ Gn in Def. 7) of our component-based recon�guration
system is reducible to a typed attributed graph transformation system. There-
fore, those theorems are also valid for our recon�guration system.

Theorem 1 (Reducibility of One-Step System Recon�guration). Let
CBR be a component-based recon�guration system. A one-step component-based

in
ria

-0
05

25
43

8,
 v

er
si

on
 1

 - 
11

 O
ct

 2
01

0



(CB) system recon�guration, CBSR, in CBR, is reducible to a typed attributed
graph transformation system, TAGTS.

Proof. According to Def. 7, a component-based recon�guration system is a tu-
ple (DSig, CBS, S, C, P ). Of these elements, for one-step system recon�guration

(i.e., G0
∗⇒ Gn), the data signature, DSig, the component-based structure de�-

nition, CBS, and the QoS contract, C, are unchanged. Therefore, in a one-step
system recon�guration these elements can be omitted, depending only on the
system re�ection structure, S, and the set of recon�guration rules, P . Given
that

1. a CB system re�ection structure is a tuple (G, fS , t), where G is the e-
graph that represents a system S through the one-to-one function fS : S →
G, and t is an e-graph morphism t : G → CBS. In the one-step system
recon�guration, fS also is unchanged and CBS is a type e-graph for G, G
attributed with the data signature DSig;

2. a typed attributed graph is a tuple (AG, u), where AG is an attributed graph
over a data signature TAGDSig, and u is an attributed graph morphism,
u : AG→ ATG, where ATG is a type graph:

3. a CB recon�guration rule, p, is a tuple (L, K,R, l, r, lt, kt, rt), p = (L l←−
K

r−→ R), and lt : L→ CBS, kt : K → CBS and rt : R→ CBS;
4. the typed attributed graph transformation rules are graph rewriting produc-

tions q = (X x←− Y
y−→ Z), X, Y, Z graphs; and

5. both, the system re�ection structure and the typed attributed graph are
based on the same e-graph de�nition,

a one-step system recon�guration, CBSR, can be reduced to a typed attributed
graph transformation system, TAGTS, by making TAGDSIG = DSig, AG =
G and ATG = CBS. The TAGTS set of transformation rules can be de�ned
as the set of CB recon�guration rules without the lt, kt, rt morphisms, given
that, once de�ned the CB recon�guration rules, these morphisms are no longer
required. ut

As a result, the Local Church-Rosser, Parallelism and Concurrency theorems
can then be used with critical pair checking in a particular set of recon�guration
rules, and determine if the one-step system recon�gurations in our recon�gura-
tion system is terminating and con�uent. This veri�cation ensures the reliability
of the recon�guration process and frees a system architect of being aware of (i)
rule dependencies that may cause deadlocks in the recon�guration; and of (ii) the
rule application order and the speci�c procedure to perform the recon�guration
itself.

5.3 Stabilization and Exception in the Recon�guration Process

Given that the recon�guration rules in our proposal are speci�ed by the user, our
recon�guration system must also consider exceptional cases. These cases corre-
spond to two contract-unful�lled states, namely the unstable and the exception.

in
ria

-0
05

25
43

8,
 v

er
si

on
 1

 - 
11

 O
ct

 2
01

0



The unstable state is reached when a plausible recon�guration rule has been
found and applied in the system re�ection structure, but its e�ect has not been
enough to restore the contract validity. Operationally, in this state the user must
be noti�ed about the ine�cacy of the rules speci�ed in the contract, after apply-
ing the rules a given number of times. On the other side, the state of exception
is reached when the recon�guration system has not been able to �nd a matching
rule to apply in the running system re�ection structure. In this case, the user
must be noti�ed about the context condition under which the system re�ection
structure has no corresponding recon�guration rule, as speci�ed in the contract.

6 Related Work

Software contracts can be seen as a form of property preservation, being this
is a recurrent problem in computer science. This problem has been addressed
by di�erent communities with di�erent approaches, being a fundamental char-
acteristic of mature engineering disciplines [1]. Our work has been inspired by
the general framework approach of some of these proposals, addressing QoS con-
tracts violation through system recon�guration in component-based systems.

At least in abstract, many of these proposals follow the rescue clause idea of
the Ei�el's design by contract theory [16]. For example, even though not on the
CBSE nor addressing QoS contracts, but on the formal-based self-healing prop-
erties preservation side, in [11] Ehrig et al. used algebraic graph transformations
for the static analysis and veri�cation of speci�c properties. Their proposal use
a �xed set of particular transformation rules to be applied in response to sys-
tem failures, thus the self-healing properties are proven with them. Our proposal
di�ers to theirs in that we want to provide a general framework, in the context
of component-based software engineering, to be parametrized with recon�gura-
tion rules given by the user; this means that they can prove speci�c properties,
meanwhile we provide tools to the user for checking general properties. Another
approach, yet non-formal, aiming at preserving system structural properties in
software recon�guration is the proposed by Hn¥tynka and Plá²il in [12]. Their
approach limit the system recon�gurations to those matching three speci�c re-
con�guration patterns in order to avoid the dynamic recon�guration to introduce
system architecture inconsistencies.

On the treatment of contracts, in [6] Chang and Collet focuses on the problem
of combining low-level properties of individual components to obtain system-level
properties as a support for contract negotiation. Their approach identi�es then
compositional patterns for non-functional properties. On another side, Cansado
et al. propose in [5] a formal framework for component-based structural recon�g-
uration and gives a formal de�nition of behavioural contract. Their approach is
based on a labeled transition system as a formalism to unify behavioural adap-
tation and determine if a recon�guration can be performed. Our proposal, even
though also address system-level contracts as the two above mentioned, di�ers to
those in that we are interested in the related problems of system architecture and
the dependencies on the execution context, meanwhile those deal with more low-

in
ria

-0
05

25
43

8,
 v

er
si

on
 1

 - 
11

 O
ct

 2
01

0



level component problems of property composability and interface adaptability,
respectively.

7 Conclusions

The main challenge we face in this paper is how to make component-based
systems QoS-contracts responsible under varying conditions of context system
execution.

In order to face this challenge, we propose a formal approach based on e-
graphs for system re�ection modeling, QoS contract modeling and system archi-
tecture recon�guration. With these de�nitions, we prove that the one-step sys-
tem recon�guration of our component-based recon�guration system is reducible
to a typed attributed graph transformation system. In [10] the Local Church-
Rosser, Parallelism and Concurrency theorems are proved for typed attributed
graph transformation systems. Therefore, the adoption of e-graphs to build our
component-based transformation system represents three important bene�ts, as
it allows us to: (i) take advantage of the properties of termination and con�uence
that these theorems allow to check, as a sound strategy for the development of
rule-based, dynamic, autonomous and self-recon�guring systems; (ii) provide a
rich expressive notation by combining and exploiting graph visual presentations
with graph-based pattern-matching; and (iii) bene�t from the existing catalogs
of design patterns that target di�erent architecture and QoS concerns, as far as
the users encode them as recon�guration rules. In this latter case, our approach
enables users to e�ectively reuse these software design artifacts to enforce par-
ticular QoS attribute conditions. For this, however, a more legible and usable
concrete syntax should be developed, with automated tools to assist the user in
the writing of recon�guration rules in a more familiar notation such as the used
in component-based speci�cations.

Our formal framework can be used thus to develop and implement rule-based
systems in automated and safe ways, being them QoS contracts responsible.
With these systems, a user is enabled to de�ne her own rules while freeing her
of being aware of the rule application order and of the details of the speci�c
procedure to apply them. For this, and as a result of the formal de�nition of the
QoS contract, component-based systems are enabled as self-monitoring. To this
respect, QoS addressing proposals usually detect and manage contract violation
either at a coarse-grained, system resources level or at the �ned-grained com-
ponent interfaces level. Our approach is an intermediate proposal, as it takes
into account the software components but at the architecture level. Thus, the
conditions on QoS properties that we can address can be measured from system
context components, and the corrective actions in response to their violation are
also at the component-architecture recon�guration. Nonetheless, from a general
point of view, it is possible to formalize in our proposal the global behaviour of
the recon�guration system, de�ning more precisely the meaning of the contract-
unful�lled states of un-stability and exception, for instance using ideas from
process algebras. As future work our plan is (i) to continue the development of

in
ria

-0
05

25
43

8,
 v

er
si

on
 1

 - 
11

 O
ct

 2
01

0



our formal framework to form a comprehensive theory for the treatment of QoS
contracts in component-based software systems; and (ii) implement it and apply
it in representative cases of study to have a better understanding of the di�erent
kind of properties that the engineering of self-adaptive software systems must
address.

Acknowledgments. This work was funded in part by the Icesi University (Cali,
Colombia), the Ministry of Higher Education and Research of Nord-Pas de Calais
Regional Council and FEDER under Contrat de Projets Etat Region (CPER)
2007-2013, and during the tenure of an ERCIM �Alain Bensoussan� Fellowship
by the third author.

References

1. Bachmann, F., Bass, L., Buhman, C., Comella-Dorda, S., Long, F., Robert, J.,
Seacord, R., Wallnau, K.: Technical Concepts of Component-Based Software En-
gineering. Volume 2. Technical Report CMU/SEI-2000-TR-008, CMU/SEI (2000)

2. Barbacci, M., Klein, M.H., Longsta�, T.A., Weinstock, C.B.: Quality attributes.
Technical Report CMU/SEI-95-TR-021, CMU/SEI (1995)

3. Beugnard, A., Jézéquel, J.M., Plouzeau, N., Watkins, D.: Making components con-
tract aware. IEEE Computer 32(7), 38�45 (1999)

4. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: The fractal
component model and its support in java: Experiences with auto-adaptive and
recon�gurable systems. Softw. Pract. & Exper. 36(11-12), 1257�1284 (2006)

5. Cansado, A., Canal, C., Salaün, G., Cubo, J.: A formal framework for structural
recon�guration of components under behavioural adaptation. Procs. of the 6th
Intl. Workshop FACS 2009. ENTCS 263(1), 95 � 110 (2010)

6. Chang, H., Collet, P.: Compositional patterns of non-functional properties for con-
tract negotiation. JSW 2(2), 52�63 (2007)

7. Chang, H., Collet, P.: Patterns for integrating and exploiting some non-functional
properties in hierarchical software components. In: Procs. of the 14th IEEE Intl.
Conference and Workshops on the ECBS'07. pp. 83�92. IEEE CS (2007)

8. Cheng, B.H., Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J., Becker,
B., Bencomo, N., Brun, Y., Cukic, B., Marzo Serugendo, G., Dustdar, S., Finkel-
stein, A., Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M., Kramer, J.,
Litoiu, M., Malek, S., Mirandola, R., Müller, H.A., Park, S., Shaw, M., Tichy, M.,
Tivoli, M., Weyns, D., Whittle, J.: Software engineering for self-adaptive systems:
A research roadmap pp. 1�26 (2009)

9. Conan, D., Rouvoy, R., Seinturier, L.: Scalable processing of context information
with COSMOS. Lecture Notes in Computer Science 4531, 210�224 (2007)

10. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer-Verlag New York, Inc. (2009)

11. Ehrig, H., Ermel, C., Runge, O., Bucchiarone, A., Pelliccione, P.: Formal analysis
and veri�cation of self-healing systems. In: FASE'10. LNCS, vol. 6013, pp. 139�153.
Springer (2010)

12. Hn¥tynka, P., Plá²il, F.: Dynamic recon�guration and access to services in hierar-
chical component models. In: Proceedings of CBSE 2006, Vasteras, Sweden, LNCS
4063. pp. 352�359. Springer-Verlag (2006)

in
ria

-0
05

25
43

8,
 v

er
si

on
 1

 - 
11

 O
ct

 2
01

0



13. Keller, A., Ludwig, H.: The wsla framework: Specifying and monitoring service
level agreements for web services. J. Netw. Syst. Manage. 11(1), 57�81 (2003)

14. Krakowiak, S.: Middleware architecture with patterns and frameworks (2009),
http://sardes.inrialpes.fr/~krakowia/MW-Book/

15. Ludwig, H., Keller, A., Dan, A., King, R.P., Franck, R.: Web Service Level Agree-
ment (WSLA) Language Speci�cation (2003), IBM Available Speci�cation

16. Meyer, B.: Applying "Design by Contract". Computer 25(10), 40�51 (1992)
17. Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D., Johnson, G., Medvidovic,

N., Quilici, A., Rosenblum, D.S., Wolf, A.L.: An architecture-based approach to
self-adaptive software. IEEE Intelligent Systems 14(3), 54�62 (1999)

18. Paspallis, N., Rouvoy, R., Barone, P., Papadopoulos, G.A., Eliassen, F., Mamelli,
A.: A pluggable and recon�gurable architecture for a context-aware enabling mid-
dleware system. Lecture Notes in Computer Science 5331, 553�570 (2008)

19. Ramachandran, J.: Designing Security Architecture Solutions. John Wiley & Sons,
Inc., New York, NY, USA (2002)

20. Taylor, R.N., Medvidovic, N., Oreizy, P.: Architectural styles for runtime software
adaptation. In: WICSA/ECSA'09. pp. 171�180. IEEE (2009)

21. The OSGi Alliance: OSGi Service Platform Core Speci�cation Release 4. Tech.
rep. (June 2009), http://www.osgi.org/Download/Release4V42, oSGi Available
Speci�cation

22. Tran, V.X., Tsuji, H.: A survey and analysis on semantics in qos for web services.
Intl. Conf. on Advanced Information Networking and Apps. pp. 379�385 (2009)

23. Zeng, W., Zhuang, X., Lan, J.: Network friendly media security: Rationales, so-
lutions, and open issues. In: Procs. of the 2004 Intl. Conf. on Image Processing
(ICIP). pp. 565�568. IEEE (2004)

in
ria

-0
05

25
43

8,
 v

er
si

on
 1

 - 
11

 O
ct

 2
01

0


