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Abstract

We introduce a novel outlook on the self-calibration task,
by considering images taken by a camera in motion, allow-
ing for zooming and focusing. Apart from the complex rela-
tionship between the lens control settings and the intrinsic
camera parameters, a prior off-line calibration allows to
neglect the setting of focus, and to fix the principal point and
aspect ratio throughout distinct views. Thus, the calibra-
tion matrix is dependent only on the zoom position. Given
a fully calibrated reference view, one has only one param-
eter to estimate for any other view of the same scene, in
order to calibrate it and to be able to perform metric recon-
structions. We provide a close-form solution, and validate
the reliability of the algorithm with experiments on real im-
ages. An important advantage of our method is a reduced
- to one - number of critical camera configurations, associ-
ated with it. Moreover, we propose a method for computing
the epipolar geometry of two views, taken from different po-
sitions and with different (spatial) resolutions; the idea is to
take an appropriate third view, that is "easy" to match with
the other two.

1. Introduction

The problem of recovering the Euclidean structure of a
scene is strongly associated with the estimation of the cam-
era internal parameters, i.e. calibration. When no calibra-
tion knowledge provided, one can reconstruct only a pro-
jective model of the scene [6, 10].

1.1. Previous work

The most basic solution to compute the internal param-
eters employs a calibration grid or planes, and performs
an off-line calibration. However the restriction of keeping
an identical camera state (including zooming and focusing)
while shooting subsequent images can hardly be fulfilled in
practice.

Another idea is to self-calibrate an entire sequence. Ex-
isting approaches follow several directions. One is to as-
sume invariance of unknown intrinsic parameters through-
out distinct views [12, 15, 1, 8], thus not to allow for zoom-
ing/focusing, which is quite a strong constraint. Given a
stereo pair of an arbitrary scene, one cannot vary but the
magnification parameter (we use that term, to avoid confu-
sion of associating different meanings to the focal length, in
vision and optics), while having the other ones known [7].
Other methods [3, 13] allow the retrieval of varying magni-
fication parameter and fixed principal point. Furthermore,
if provided with at least 9 views, it is possible to fix only
one camera internal parameter and let the other ones vary
[13, 11].

In reality, such a general calibration problem cannot be
solved reliably. On the other hand, one can quite easily pro-
vide some prior information, which simplifies the task. Our
approach belongs to such a group of techniques.

1.2. Motivation

All considered cases of self-calibration, which al-
low magnification parameter variation throughout distinct
views, suffer from a significant number of critical cam-
era configurations [14]. It is therefore much "safer" not to
change the camera settings.

Let us combine one fully calibrated image (the refer-
ence image) with an uncalibrated one, taken from a different
viewpoint. Then, one has only one magnification parameter
to estimate. What about the other intrinsic parameters? The
complex relationship between calibration and camera lens
control settings [16] does not allow straight-forward sim-
plifications.

To summarize, we are interested in the following issues:

e Are there any conditions that enable the use of a priori
knowledge of the intrinsic parameters?

e Can one allow for zooming/focusing, while still main-
tain a small family of critical situations?

e What can be done with stereo pairs, if one camera/view
is fully calibrated?



1.3. Contribution

We combine off-line and on-line methods in order to cal-
ibrate a digital camera with a zoom lens and auto-focus.

We introduce a novel outlook on the self-calibration
problem, by reducing to one the number of intrinsic param-
eters to be estimated. We provide a close-form solution for
the method. Also, one has to account for only a single fam-
ily of critical camera configurations [14].

By studying the behaviour of the camera intrinsic param-
eters as a function of variable zoom and focus, we derive
approximate values for the aspect ratio and the principal
point. We identify a small influence of focus upon cali-
bration, which becomes negligible for settings larger than
2.5m. We conclude, that once a camera is calibrated for a
known zoom setting, one can re-use those values any time
that zoom is set. Therefore, we recommend employing
minimally or maximally zoomed-in images as the reference
ones, since those zoom settings can be reliably reproduced.

Furthermore, we simplify the computation of the epipo-
lar geometry for stereo images of different resolutions,
omitting a direct matching between them. The problem
of matching two images of different zoom and viewpoint
is therefore decomposed into two simpler matching prob-
lems: a wide baseline matching with the same zoom [2],
and matching images with different zoom, shot from the
same viewpoint [5].

The proposed method of "combined calibration" esti-
mates the intrinsic parameters with even 2%-accuracy, from
real images, leading to a reliable Euclidean reconstruction.

2. Camera modeling
2.1. The model

We assume the perspective camera model with the pro-
jection matrix of the form:

P=K(R t) (1)

where R and t represent the orientation and the position of
the camera with respect to the world coordinate system, and
K is the calibration matrix:

ka 0 wug
K=10 a v
0 0 1

with the principal point (ug, vg), the magnification parame-
ter o and the aspect ratio k. We assume a zero-skew.

A scene point M is projected onto the image onto a point
m viam = PM.

2.2. Off-the-shelf digital camera

Most often one is provided with digital cameras, which
allow mechanical setting of both zoom and focus. One can
specify the area of interest (and thus, its depth on the image)
and focus on chosen features within the area.

We have worked with the Olympus Camedia C-2500L
digital camera. It provides both auto-focus and manual-
focus with discretized values from 0.3m until 15m and oo
to be set. The zoom, on the contrary, has a continuous range
and a manual drive, which makes the reproducibility of dif-
ferent settings difficult (with notable exceptions for the min-
imal and the maximal zooms).

Each (zoom, focus) setting corresponds to a physical
configuration of lenses, inside the camera. Since their func-
tional dependencies are complex, we cannot specify the ex-
act camera state, which makes the estimation of camera
internal parameters difficult. When using auto-focus, the
only camera settings that we are able to reproduce (and
to expect the same calibration results, for an arbitrary im-
age, taken with the same settings) are: (zoom, focus) =
(z00Mpin, 00) and (zoom, focus) = (200Myaz, 00).

The question is how do the entries of the calibration ma-
trix K change with variations of zoom and focus. Experi-
ments described in the following section suggest conditions,
under which the internal camera calibration can be assumed
invariant, for different (zoom, focus) settings.

3. Off-line stability study of calibration

We study the stability of the camera internal parameters,
under change in the camera mechanical settings, zoom and
focus. We point out the parameters that do not vary much,
and can be assumed invariant. We find a small influence
of focus on calibration, if the camera is far enough from
the scene. Finally, we provide calibration knowledge for
particular zoom settings, which is to be used a priori, in
self-calibration.

3.1. A way to calibrate

We extract the calibration matrix K from the projection
matrix P, estimated from correspondences between non-
coplanar 3D points and their 2D images.

The formof P = (P p) and(1)imply: P =KR.
Since PPT = KRRTKT = KKT, we can simply obtain
K from the Cholesky decomposition of PPT.

In order to estimate P, we run a non-linear algorithm,
which minimizes the reprojection error

C = (s = umi)” + (Vi — vms)’ 2
i=1

of n image points (u;,v;) and reprojections (wmg, Vmi) of
the corresponding 3D points M.



3.2. Optical distortion

Since imperfect camera lenses give rise to non-
perspective image distortion, it is often necessary to op-
timize (2) using additional distortion parameters. In
some cases, this extended projection model causes over-
parameterization, resulting in instabilities in the estimation
of all intrinsic parameters.

Based on the observation, that the bigger the zoom used,
the less distortion is present in the image, we can point out
experimentally a "critical” zoom, for which the estimated
distortion coefficient does not decrease with the increase of
zoom. Therefore, we omit the distortion parameters in the
optimization, if a zoom is bigger than the "critical" one.

We only estimate the first term D, of the radial dis-
tortion, which proved sufficient to provide reliable results.
Overall, the employed calibration method is described in
[4].

3.3. Experiments

We stepped the lens through the full range of focus,
while the zoom was examined in two positions: the mini-
mal and the maximal ones. At each step, we performed a
full camera calibration (images of a calibration grid were
considered). To ensure the stability of calibration, we con-
sidered only images with a sufficiently large number of con-
trol points clearly visible.

We used manual focusing. For each (zoom, focus) set-
ting, we took several images with slightly different orienta-
tions of the calibration grid. The distance camera-grid was
kept identical to the value of the set focus.

We considered focus values between 1m and Sm. The
images were of size 640 x 512 pixels. The obtained es-
timates of the internal camera parameters are listed sepa-
rately: for the minimal zoom (Table 1), for the maximal
zoom (Table 2).

3.4. Dependencies

What information can be extracted from Tables 1 and 2?

Aspect ratio (k). It is close to unity. The equality & = 1
is valid for any (zoom, focus) setting, with a relative error
smaller than 0.2%.

Magnification parameter («). For the minimal zoom,
a stays constant relative to focusing. For the maximal
zoom, the same is observed as soon as the distance camera-
object is bigger than 2.5m (see Figure 1). Hence, for a
chosen zoom, it is possible to represent the relevant o
with a single value (e.g. the median of the estimates):
Qmin = 706 (with 2%-relative error) for (zoom, focus) =

| Focus[m] || k[1] [ alpix] | uolpix] | wolpix] | D,[1] |
09993 | 700 321 268 | -0.2393
1 09991 | 698 321 267 | -0.2423
09999 | 700 317 267 | -0.2363
09992 | 695 314 277 | -0.2598
12 09996 | 702 320 269 | -0.2405
09997 | 728 294 238 | -0.1468
09998 | 731 316 232 | 0.1574
15 1.0007 | 710 325 269 | -0.2469
09998 | 723 318 234 | -0.1601
1.0007 | 736 205 269 | 0.1523
2 1.0002 | 699 319 274 | 102970
25 10001 | 722 318 263 | 102207

Table 1. Calibration results: the minimal

zoom and varying focus.

| Focus[m] [[  k[1] | elpix] | uolpix] | wolpix] [ D,[1] |
00996 | 921 316 263 | -0.0976
| 09994 | 920 318 268 | -0.0945
09992 | 918 319 269 | -0.1037
1.0010 | 1133 320 266 | 0.0445
12 1.0009 | 1122 317 274 | 0.0075
1.0008 | 1128 318 271 | 0.0218
10015 | 1384 310 207 0
15 1.0005 | 1386 291 206 | 0.0294
1.0013 | 1391 320 292 0
1.0020 | 1749 312 313 0
2 1.0020 | 1740 311 310 0
1.0013 | 1745 289 303 0
1.0030 | 1969 301 324 | 0.1470
25 1.0008 | 1944 255 316 | 0.0306
1.0024 | 1959 314 356 | 0.0295
3.5 1.0012 | 1965 290 336 0
5 1.0016 | 1999 301 344 | 00182

Table 2. Calibration results: the mazimal

zoom and varying focus.

(200Mmin, focus > 0.3m), and Qe = 1965 (with 1%-
relative error) for (zoom, focus) = (200Mmaz, focus >
2.5m).

Principal point (ug,vo). Overall, it concentrates near the
image centre (see Figure 2). Since in general, the exact
position of the principal point does not have a big impact
upon the quality of reconstruction, it is possible to employ
approximate statistical values, obtained from the Student’s
reliability test: ug = 311 £ 21, vy = 280 % 42, with a fac-
tor of risk 0.1 . Further on, we will use the approximation:
(uo,v0) = (311,280).
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Figure 2. Principal point concentrates near
the image centre.

Auto-focusing. For a fixed zoom, the setting of focus does
not influence calibration significantly. We can use auto-
focusing, and still be capable to employ calibration results
for the examined zooms. We only have to keep in mind

the requirement concerning the maximal zoom: the distance
camera-scene has to be larger than 2.5m.

3.5. Final results to be used in self-calibration

A view taken with the minimal/maximal zooming. We
are provided with calibration matrices of reference: K,,;n
for the minimal zoom case (for any focus value), and K, 45
for the maximal zoom case (for focus > 2.5m).

A view taken with an arbitrary (unknown) zooming.
One is provided with the values of k and (ug,vp ). Hence, «
remains the only calibration parameter to determine.

A summary is given in Table 3.

| Zoom | Focus[m] || k[1] | alpix] | uo[pix] | vo[pix] |

min >03 1 706 311 280
mar | > 2.5 1 1965 311 280
? ? 1 ? 311 280

Table 3. Results of off-line calibration (the
Olympus Camedia C-2500L digital camera).

4. Self-calibration

We consider a stereo pair: a calibrated reference image
and an image taken with an unknown zoom. (In practice,
we obtain the calibration for the reference image simply
by taking it using the minimal or the maximal zoom, and
adopting the according intrinsic parameters, obtained by the
off-line calibration.) We are thus provided with calibration
matrices: K;c¢, fully known, for the reference image, and
K, defined up to unknown «, for the other image. Due to
Kruppa’s equations [9], we derive a close form solution for
a. Also, we reveal stereo configurations, for which our self-
calibration algorithm fails.

4.1. Kruppa’s equations

Finding the matrix K associated with a camera is equiv-
alent to finding the image w of the absolute conic, taken by
that camera. Since w™! ~ KKT, let us denote C = KKT for
the camera to be calibrated, and C,.c; = KpeKe fT for the
camera, that took the reference image.

The link between images of the absolute conic and the
epipolar geometry can be expressed as follows ([17]; F is
the fundamental matrix of the stereo; e is the epipole on the
image, taken by the uncalibrated camera):

FCrefFT ~ [e]xCle]x ' 3)



Having separated the known entries of matrix K
(k,wup,vo) from the unknown one (a):

k0 u a 0 0
K=10 1 0 a 0] =KoK,
0 0 1 0 01

and multiplying (3) from the left by Ko, and from the right
by Ky, we obtain:

Ko FKperKres TFTKo ~ Ko T[e] x KoKaKa Ko [€]x ' Ko
——

Ca
(€]
with C,, of the following form:

o2 0 0
Co=(0 a2 0 5

0 0 1

Let us denote:

E =Ko FKpes (6)

which moves F to a "semi-calibrated" space. From a prop-
erty (valid for any matrix A and vector v)

A T[v]x ~ [AV]xA (7)
we have:
KOT[e] « Ko ~ [KU_le] X K0_1K0 3
——

I

Thus, (6) and (8) enable us to write (4) as:

EE" ~ [Ko 'e]xCa[Ko te]x ©)

Let us use the Singular Value Decomposition of E:
E = U diag(r,s,0) VT (10)

Introducing (10) into (9), and moving U and UT to the op-
posite side of the formula, result in:

diag(r, s,0)VTVdiag(r, s,0) ~ UT[Kofle] % Ca [Kofle] < U
I

(1D

(remind a property: [v]yx' = —[v]x, for any vector v).
Using (7), we can write (11) in the form:

diag(r?, 5%,0) ~ [UTKo ™ e]x UTCLU[UTKy te]lx (12)

Let us notice, that

UTKo te]x =

X

If we denote with (u; us ug) columns of matrix U,
(12) writes as follows:

r2 0 uz'Chus
0 32 —ulTCa L D)
Equalities between ratios of coefficients of the matrices

in (13) form Kruppa’s equations. However, only the follow-
ing equality can contribute positively to the solution:

_ulTCau2) (13)

111TCa111

é _ u2:Ca112 (14)
S u; Calll
The other possible equation (u; 'C,us = 0) leads always
to a solution C, = I, and thus o = 1.

Remembering the form of C,, (5), one can retrieve from
(14) the unknown a, by solving a quadratic equation (since
the numerator and denominator of (14) are linear expres-
sions in entries of matrix Cg):

o= 32“32 - 7"2“§1
V2w +udy) — 52 (udy + udy)

where u;; are entries of matrix U, and r, s - the singular
values, given in (10).

5)

4.2. Outline of the algorithm

Step 0:  Perform off-line calibration of the camera, obtain-
INg Qmin, @maz, ks, (4o, Vo) - thus full calibration matrices:
Kmin and K4, for reference images, and a calibration ma-
trix K (associated with any other image) defined up to a.

Then, for a stereo pair (a reference image and an image
of an unknown zooming), given the matching:
Step 1:
Step 2:  Move F to a "semi-calibrated" space, obtaining a
new matrix E - see (6).
Step 3:  Apply the SVD on E - see (10).
Step 4:  Use entries of the matrices obtained in Step 3 to

compute the unknown internal parameter o of matrix K -
see (15).

Compute the fundamental matrix F.

4.3. Critical motions

As it has been fully studied in [14], a solution for the
unknown magnification parameter is not always uniquely
defined. In our case, since we consider to know all intrinsic
parameters of one camera, there exist only one family of
camera configurations that is critical, which is significantly
less than with more general cases of self-calibration.

Let us consider a stereo pair of cameras: C,.y (fully
calibrated) and C (with an unknown «). The algorithm is
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Figure 3. Critical configuration of cameras

singular if the centre of camera C,..¢ lies on the optical axis
of camera C (Figure 3). This kind of configuration is con-
nected with a camera movement (starting from the refer-
ence position), that consists of any rotation, followed by a
translation along the optical axis of the camera. There is no
constraint on the orientation of camera C.y.

The case has been analyzed along the lines of [14]. Here,
we omit its explanation, due to the lack of space.

In practice, any camera configuration that is close to the
critical one, can cause problems in self-calibration, giving
rise to inaccurate results.

5. Matching

We are interested in running our self-calibration algo-
rithm on pairs of images of different spatial resolutions (dif-
ferent magnifications). Being aware of problems concern-
ing matching such views, we propose a way to avoid it, by
introducing an additional view, that allows to match the two
original ones.

5.1. Difficulties

Existing direct techniques for automatic matching of two
images taken from different viewpoints and with different
resolutions do not give satisfactory results. Since a big area
on the zoomed-in image is to be correlated with a small area
on the zoomed-out image, accuracy of computed epipolar
lines is weak.

Even when dealing with images very similarly zoomed-
in, very few algorithms cope with matching them, if the
camera movement between the two views is not small. On
the other hand, once one decreases the baseline between
cameras (so that it would be appropriate for correlation
techniques), the scene reconstruction becomes less reliable.

Figure 4. Connections between images: fun-
damental matrix F, between I,.; and I,, affine
transformation A between I, and I,,,,,, fun-
damental matrix F between L.y and Loom

5.2. Our method

To avoid a manual specification of corresponding points,
we combine two techniques:

e matching two images of the same resolution, taken
from different viewpoints

e matching two images of different resolutions, taken
from the same viewpoint

Hence, we assume being provided with an additional
view I, of the same resolution as the reference image I,
but taken from the same camera position as the zoomed-in
one I, (see Figure 4).

Having performed an automatic matching [2] between
I¢; and 1,, we compute the fundamental matrix F, of that
stereo pair. Thus for any image points m,. ¢, m, (related to
I.f and I, respectively):

m, F,m,.; =0 (16)

On employing method [5], we match I, with I,,,,,, and
estimate an affine transformation A between them (due to
the lack of space, we omit a derivation of this property) -
for any image points mg,, m, .y, (related to I, and I, om
respectively):

m, = Amzoom (17)

Now, (16) and (17) let us find out the fundamental matrix
F of the stereo pair of interest - Iref and Loom:

(Amzoom)T Fa Myef = 0

mzoomTAT Famref =0
——

F



. Self-calibration for o
"l:rue Calibration grid Arbitrary object
@ min ref. max ref. min ref. max ref.
708 701+1% 763+8% 731+3% 691+2%
847 814+4% 887+5% 881+4% 829+2%
1018 960+6% | 1044+3% | 1040+2% | 1012+1%
1250 | 1171+£6% | 1273+2% | 1298+4% | 1242+1%
1486 | 1387+7% | 1508+1% | 1592+7% | 1442+3%
1729 | 1621+6% | 1751+1% | 1886+9% | 1779+£3%
1905 | 1772+7% | 1933+1% | 2072+9% | 1862+2%

Table 4. Self-calibration results. The same
a (in a row, related to a zoom setting) is
estimated from stereo pairs of two different
objects, with both kind of reference images
each. "True o' comes from calibration.

Thus
F=ATF, (18)

Equation (18) enables us to compute the epipolar geome-
try between images of different resolutions (Ire¢ and Ioor,),
without being given matches between them. It is sufficient
to specify correspondences between each of those images
and a special additional one (I,), and result in connections
written as functions of F, and A.

6. Experiments

Input data. We took images of an arbitrary object (a toy
house), with the minimal and the maximal zoom settings,
from a reference viewpoint. Then, from another camera
position, we shot a number of images, of variable zoom-
ing. We also took images of a calibration grid, every time
a view of the house was registered. Hence, we had two
sets with corresponding images (of different features), taken
with identical camera settings (Figure 5).

Separately for each photographed object, we combined
our images in stereo pairs of a reference image and an image
taken with an unknown zoom. Each image of an unknown
zoom was put into 2 stereo pairs: with a minimal and with
a maximal zoom reference image. Having employed results
from off-line calibration (the constraint: distance camera-
scene > 2.5m had been fulfilled), we ran the self-calibration
algorithm for each stereo pair, obtaining estimations for a,
related to every considered zooming (see Table 4).

Discussion. The algorithm recovers the unknown magni-
fication parameter with a high accuracy. However, there are
some cases, where the relative error grows up to 9%. They
show up for stereo pairs, which combine images of signifi-
cantly different resolutions (e.g. a minimal zoom reference
view with a strongly zoomed-in one; and vice-versa).

Figure 5. Images of different features, taken
with identical camera settings.

The reason could be related to the fact, that the consid-
ered self-calibration step does not take into account any dis-
tortion model, and thus, its results are not always consistent
with the off-line calibration (see Section 3.2). In particu-
lar: a distortion model, considered for the minimal zoom
reference image, is "forwarded" by self-calibration to ¢, es-
timated for the other image of the stereo pair. If that im-
age has been taken with a relatively big zoom setting, the
no-distortion model has to be considered then, in order to
avoid over-parameterization. For the opposite case: not tak-
ing distortion into account for the maximal zoom reference
case, implies the no-distortion model for the other image, as
well, which is not always correct (zoomed-out images).

A way to cope with the described inconsistence would
be to employ a non-linear optimization. The self-calibration
step, along with a linear structure from motion method, pro-
vides an initial guess for camera parameters (internal and
external ones). Then, it would be sufficient to use an ex-
tended projection model (including distortion) in a bundle-
adjustment setting.

Overall, the experiments validate that our self-calibration
method is reliable, for any stereo pair. The unknown magni-
fication parameter can be recovered with even 2%-accuracy,
provided that the stereo pair is composed of images of sim-
ilar resolutions. Therefore, it is more convenient to use
a minimal zoom reference view to self-calibrate zoomed-
out images, and a maximal zoom reference one, for more
zoomed-in images.

7. 3D reconstruction

We applied the described technique on a stereo pair of
images of a chimney (Figure 6). The only knowledge we
had, was that both images were taken with our camera, and
that one of them was taken with the minimal possible zoom.
Self-calibration provided us with an estimation for the un-
known magnification parameter for the second setting of the
camera: o = 980.

Reliability of the obtained reconstruction of the chim-



Figure 6. Stereo pair of a chimney (the refer-
ence image on the left).

Figure 7. Reconstructed chimney.

ney (Figure 7), with correctly retrieved depth and angles
between specified planes (Table 5), certifies a high quality
of the performed calibration, and thus, capability to recover
the Euclidean structure.

8. Conclusion

We have presented a method to simplify the self-
calibration process of a zooming camera, based only on in-
formation of a boundary (minimal or maximal) zoom, used
for taking one of the images. Due to the off-line calibration
preprocessing, the on-line self-calibration step has only one
parameter to estimate, and thus, only one family of critical
motion sequences for cameras to deal with (a situation that
is not valid for more complex cases of self-calibration). We
provide a close-form solution for the problem and present
experiments on real images that validate the stability and
reliability of our method.

The proposed combined calibration technique can be
easily used in various applications, as quite often one is
provided with at least one reference image. The complex
problem of dealing with wide, differently zoomed views of
a scene, is decomposed into several simpler tasks, which is
an important advantage of the presented approach.

Acknowledgements. We would like to thank Frederik
Schaffalitzky from the Visual Geometry Group in Oxford,
for making accessible a matching software.

| Plane || 3] 5 | 6 | 7 ] 8 |

1 88 (90) | 88(90) 2(0) | 89 (90) 89 (90)
3 - 2(0) | 91(90) | 71(70) | 114 (115)
5 - -1 90(90) | 70 (70) | 113 (115)
6 - - - | 88(90) 90 (90)
7 - - - - 43 (45)

Table 5. Angles (in [deg]) between chosen
planes of the chimney: retrieved values, and
the real ones (in parentheses).
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