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Abstract. In this paper, sequences of camera motions that lead toeinhambiguities in uncalibrated Euclidean
reconstruction or self-calibration are studied. Our maintdbution is a complete, detailed classification of these
critical motion sequences (CMSJhe practically important classes are identified and tdegrees of ambigu-
ity are derived. We also discuss some practical issuesciadlyeconcerning the reduction of the ambiguity of a
reconstruction.

1 Introduction

Uncalibrated Vision and Self-CalibratiorOne of the major goals of computer vision is the recovery afigpinfor-
mation about the environment. Classical approaches asthahthe cameras alibratedbeforehand, but a great
interest inuncalibratedvision and on-line calibration has arisen during the lastpde of years. A key result is that
even with completely uncalibrated cameras, spatial inédiom —projective structure- can be obtained: the scene can
be reconstructed up to an unknown projective transformdiip9]. Furthermore, a moving camera cs#if-calibrate

i.e. the calibration parameters can be estimated solety femture correspondences between several images [16]
This allows the projective ambiguity in the reconstructiorbe reduced to a Euclidean one (up to a similarity trans-
formation), and we speak afionocular uncalibrated Euclidean reconstruction

Critical Motion Sequencesilt is known that several types of camera motion prevent cadibration, i.e. the cali-
bration parameters can not be determined uniquely. AceghgiEuclidean structure can not be obtained, although
reconstruction at some level between projective and Eetids generally possible. For example, from pure transla-
tions, even in different directions, affine structure carobtained [17], while general planar motions of the camera
allow a Euclidean reconstruction up to a scale ambiguitynie direction [2, 25].

These ambiguities are inherent, i.e. they can not be reddlyeany algorithm without additional knowledge. Se-
guences of camera motions that imply such ambiguities wilidferred to asritical motion sequences (CMSBy
“sequences” we mean that not only the motion between twodsailbut that over the complete sequence of frames, is
critical. Another type of inherent ambiguity in structuezovery is caused hyritical surfaces if all observed points

lie on a special surface (certain ruled quadrics) and theecasrhave a special position with respect to that surface,
then the structure can not be recovered uniquely [13, 14jti@py to critical surfaces, critical motion sequenceslimp
ambiguities forany scene!

Beside these fundamental ambiguities, others arising framerical instability due to noisy measurements have been
studied, especially for two calibrated cameras and affimeca models [1, 22]. Numerical instability can also be
caused by near-critical motion sequences, but an andlgtiody of these effects is beyond the scope of this paper.

Critical motion sequences have already become establish@dctical works on self-calibration through the devel-
opment of algorithms specially designed for certain tyde8MS [2, 11, 17, 25]. However, if applied to other motion
sequences, they will fail. Conversely, algorithms devetbfor general camera motion [10, 12, 15, 18, 23] will, if

* This work has been done in the context of thew project which belongs to €RS, INPG, INRIA and WF.

% Approaches that assume special camera motions, are samsdticiuded in self-calibration (e.g. [2, 3, 5, 6, 11]). Hoee
we prefer to call thiscalibration from motion constraintsWe also distinguistbundle adjustment with self-calibratid0],
which accurately calibrates the cameras while simultasigaeconstructing the scene. However, an initial apprexércamera
calibration and/or known control points are needed.



applied to critical sequences, hopefully find one of the @mbus solutions, but this will generally not be the correct
one.

The problem of critical motion sequences is important, sin@ny image sequences used for object modeling are
indeed critical, as will become clear in sections 4 and 5pltesof their importance, we are not aware of any complete
investigation of CMS in literature. A study in this direatids reported in [26], but the problem is only considered for
3 frames and is linked to a particular self-calibration aitinon.

In this paper, we derive a complete characterization oicatimotion sequences, which is independent of the number
of frames and of the algorithm used. We also show which of gggiences permit at least affine scene reconstruction
or camera self-calibration.

Basic Idea.Now we sketch the basic idea behind the derivation of thecatitnotion sequences. Euclidean reconstruc-
tion is equivalent to the determination of the absolute cdh[8]. This can only be based upon the special properties
which distinguish it from all other conics in 3-space. Theim@roperty, and usually the only one used in existing
algorithms, is that the projection d@? is invariant under camera motions provided the intrinsicapeeters do not
change. Its image can thus be determined as the “fixed conic of a sequence” (2fh&rmore? is a proper virtual
conic, and for perfect perspective projection, its imagestalso be proper virtual conics. Besides these properties
(or equivalent ones) there is no means to determirisom monocular uncalibrated image sequences.

Hence, the problem of monocular uncalibrated Euclideaarrsituction fails to have a unique solution exactly when
there is at least one other conic besidkwith the same properties, i.e. a proper virtual cafiichat is projected onto
some proper virtual conie’ in all frames of the sequence.

Structure of the Paperln section 2 we provide the theoretical background of oureggh. Basic definitions are
settled in section 3 and used in section 4 to derive the afitiotion sequences. A taxonomy of the CMS and some of
their properties are presented in section 5. Practicabssape discussed and conclusions are drawn in sections 6 and
7.

2 Background

The definitions in this section are mainly taken from [4] ab@][ Some of the results for general quadrics are presented
only for central conics.

Notation. We refer to theplane at infinityas theideal planeand denote it byZ,,. P™ is then-dimensional projective
space andv means equality up to a scalar factor. We use the abbrevigtit@@for proper virtual conics (see below).

Pinhole Camera Modelln this paper, we use the projective pinhole camera model prbjection can be represented
by a3 x 4 projection matrixP. We consider only the case of perfect perspective projectie. the projection center
does not lie onll,,. With regard to physical cameras, the projection matrix lsardecomposed into ealibration
matrix A and apose matrixI'. The pose matrix represents the position and orientatitimeofamera in some absolute
coordinate frame. The calibration matrix describes theiitible affine transformation from treanonical projectiorio
pixel coordinates. For the pinhole model, the calibraticatn® is determined by trinsic parametersfocal length,
measured in horizontal and vertical pixels, two coordigatithe principal point, and skew angle between the pixel
axes.

Relative Rotation.Therelative rotationbetween two frames whose orientation is given by rotatiotrices R, and
Ra, is represented by the rotation matBx= RT Ra.

Quadrics and ConicsA quadricin P™ is a set of points satisfying a homogeneous quadratic exquadtiach quadric
can be represented by a symmefric+ 1) x (n + 1) matrix. A virtual quadricis a quadric with no real point
and aproper quadricis a quadric whose matrix has a non-zero determin@ahicsare planar quadrics; we will
not distinguish between a conic and its matrix. A conidh, or 3D conig is defined by itssupporting planeand

the conic’s equation in that plane. All proper virtual can{PVCQ) are central [4] and hence can be transformed to
Euclidean normal fornby a Euclidean transformation (principal axis transfoior@t The Euclidean normal form

is a diagonal matrix of the conic’s eigenvalues. If all theégenvalues are distinct, then the conic has exactly two
symmetry lines and is agllipse The symmetry lines pass through the conic’s center and ateatty orthogonal. If
the eigenvalues are not all distinct, the conic @rale and all lines through the center are symmetry lines.

Symmetry Planes of 3D Conicé/e define thesymmetry planes of a proper 3D codi@s the planes reflectingonto
itself. The symmetry planes df are exactly its supporting plarfé and the planes perpendicularfbthat contain a
symmetry line ofp.



Cones. By coneswe mean rank-3 quadrics iR* with vertex not onlI.. A cone is uniquely defined by its vertex
and any (conic) section by a plane not containing the ve@exes are used in this paper through the notion of the
projection coneof a 3D conic, i.e. the cone traced out by the projection rdykseperspective projection of the conic.
The Euclidean normal form of a cone is a diagonal matrix @agh», A3, 0), with non-zero\;. If the \; are all distinct
then the cone is aalliptic coneand has 3 mutually orthogonakes If exactly two of the); are equal, the cone is
circular. For anabsolute congall three); are equal.

Absolute Quadric and Absolute Coni@he absolute quadriof P is defined by the equationg + --- + 22 =
z,4+1 = 0. Theabsolute conia? is the absolute quadric 6?3. (2 is a proper virtual conic in the ideal plane whose
position uniquely defines the Euclidean structure of 3-ep&be calibration of a camera is equivalent to determining
the imagew of (2, respectively its duab* [16, 8]. From the relation* ~ AAT, the calibration matrix4 can be
uniquely recovered by Cholesky decomposition.

3 Basic Definitions

We define amotion sequencé of m camera positions a8 = (R, t;)*,, where(R;, t;) are the rotational and
translational components of tlih camera pose.

3.1 Critical Motion Sequences

We first note that the question of whether a given motion secgiés critical is independent of the cameras intrinsic
parameters: a conic has the same image in a set of views tgktba bame camera, exactly if it has the same image in
the corresponding canonical projectiénk is thus sufficient to consider only the pose of the camera.

Definition 1. Let S be a motion sequence ailj the canonical projection for thih frame. LetP;(&) be the image
of the 3D conicd.

The motion sequenceg is critical if there exists a proper virtual cong, distinct from{?2, that projects to the same

proper virtual coniep in all frames ofS: ¢ ~ P;(®) fori=1,... ,m.
Such PVC# will be referred to apotential absolute conicsand we say that the motion sequerites critical with
respect tod. n

It follows that Euclidean reconstruction from an uncaltechmonocular image sequence is ambiguous exactly when
the underlying camera motion is a critical motion sequentelfe basic idea described in section 1).

3.2 Affine Reconstruction

In view of the stratification of reconstruction [8] the quiestnaturally arises, which motion sequences allow at least
an affine reconstruction of the scene. Affine reconstruddaquivalent to the determination of the ideal pldig

in a projective reconstructiotl,, is uniquely characterized as the supporting plane of thelatesconié¢. Hence, if

for a given motion sequence there exist potential absohnes with different supporting planes, then the ideal plan
can not be uniquely identified and affine reconstruction tgeasible;

Definition 2. A motion sequence isritical for affine reconstruction if it is critical with respect to a proper virtual
conic®, which isnot on the ideal plane [

3.3 Self-Calibration

While Euclidean reconstruction implies the (self-) cadition of the camera, the inverse is not always true: a camera
which rotates about its projection center can in generélcsdibrate [11], but because of the missing base-line, no
reconstructionis possible. The fact that (self-) calilorats equivalent to the determination of tineageof the absolute
conic, leads to the following definition:

% There is an invertible affine transformation between thenamal projection and the image plane (see section 2).
% In [18] the constraint that the infinite homography has eigéres of the same modulus is used for affine reconstruciitn.
show in [21] that this is a necessary but insufficient coirstra



Definition 3. A motion sequenc§ is critical for self-calibration if it is critical with respect to a PVC, whose image
¢ is differentfrom that of the absolute conic. [

In the case of a rotating camera, there indeed exist an infifipotential absolute conics, but they all lie on the
projection cone of the absolute conic. This is why the imaxfesl potential absolute conics are identical aglial
to the image of the absolute conic, which means that seilbedion is possible!

4 Derivation of the CMS

In this section, the critical motion sequences are derigaded on the previous definitions. We divide the derivations
into two parts, for potential absolute conics which lie / @ ke onI1,. The results are summarized in section 5. For
more details and formal proofs refer to [21].

4.1 Potential Absolute Conics onll o,

4.1.1 Constraint on Relative Rotations

Let ® be a PVC on the ideal plane. Its (canonical) perspectiveeptiong by a projection matrixP = (R|t) is given

by ¢ ~ RSRT. Note that the projection ab depends only on the orientation of the camera, not on itdipasi
Consider two frames with orientatiod®; andR.. The projection off is the same in both frames B; #RT ~
R,®R7 . Since the determinants of rotation matrices are 1, we ottaiconditiorR, #RT = R,#RT. Introducing
the relative rotatiomR between the two frames, the condition tlbahas the same projection in both frames becomes

R® = 3R . 1)

Let x be an eigenvector @b with eigenvalue\. From Equation (1) it follows thaPRx = R$x = ARx, i.e.Rx is
also an eigenvector @ with eigenvalue\. This is valid for all eigenvectors of ¢ and it follows thatR. conserves
the eigenspaces df. Hence, for a PV on the ideal plane to have the same image in all frames of aesequall
relative rotations between pairs of frames must conserveitlenspaces @f. This is also a sufficient condition [21].

4.1.2 Developing the Constraint

We develop the condition on the relative rotations with eg$po the various possible forms &f The criticality of

a motion sequence does not depend on the absolute coortfizmaie in which the poses are expressed, so we can
take @ to have Euclidean normal form. Sindeis proper virtual, there are exactly 3 different casesgdiiffg in the
multiplicity of the eigenvalues ob:

Case 1. One Triple Eigenvalu€he only conic or/],, with a triple eigenvalue is the absolute conic, so the secgien
is not critical. ]

Case 2. One Double and One Single Eigenvaline eigenspace of the double eigenvalue is a plarmad that of the
single eigenvalue a lineperpendicular td7°. Since the rotatioR conservedI andl, it must be either the identity
transformation, a rotation aboliby an arbitrary angle, or a rotation B0° about a line o7, incident withl. [

Case 3. Three Single Eigenvalugbe eigenspaces are three mutually orthogonal liReis thus the identity trans-
formation or a rotation by¥80° about any of the 3 lines. L]

Note that the relative rotatiorR that arise from Case 3 are also covered by Case 2. The folipglass covers all
motion sequences that are critical with respect to a PV@gn

CMS-Class 1: Motion sequences for which all relative rotations are eitte¢ations by an arbitrary amount about
some linel or by 180° about lines perpendicular 1o [

If a conic® on IT, has the same image in all frames of a sequence, this is akséotrall conics in the linear family
spanned by and{2. Hence, there exists a familiy of ambiguous Euclidean rettantions. Class 1 is rather large but
we can identify more specific sub-classes:

% Eigenvectors of symmetric matrices corresponding to difieeigenvalues are orthogonal.



CMS-Class 1.1:All relative rotations are arbitrary rotations about soime 1.

CMS-Class 1.2:All relative rotations are rotations B80° about 3 mutually orthogonal lines.

CMS-Class 1.3:All relative rotations are rotations B80° about some liné.

CMS-Class 1.4:There is no relative rotation at all, i.e. the motions aresduainslations in arbitrary directions.
A further discussion is given in section 5.

4.2 Potential Absolute Conics not o7 o

Conics not onll,, are rather more difficult to deal with, since their projentidepends on both the position and
orientation of the camera. An algebraic description of thdéSahrough constraints on the position and orientation of
the frames in a sequence is very tedious to derive [26] arschidi at all clear if it is tractable for more than 3 frames.
We thus preferred a more intuitive geometrical approacks @bes not provide an exact algebraic description but it
does yield a geometric description of all types of criticaltimn sequences, for any number of frames.

4.2.1 Problem Formulation

We construct the critical motion sequences genericallydbyirsg the following problem:

Problem 4. Let ¢ be a PVC that does not lie dif,. Let ¢ be its projection for an initial camera pose. Determine all
poses, for which the projection d@f equalsp. Any subset of these forms a CMS. Equivalently, we may ddtezrall
rigid transformations mapping the initial pose to posesnwaltlee projection off equalse. [

We transform this into an equivalent, more tractable form:

Problem 5. Let # and¢ be given as in Problem 4. L& be the projection cone df for the initial pose. Determine all
rigid transformations mappinK to cones containing. [

4.2.2 Solving Problem 5

In order to cover the whole range of possible critical mots@quences, we must treat all different forms of proper
virtual conics and also the different possibilities whigisa when choosing the initial camera pose. The fact¢hat
is a PVC greatly reduces the range of conics we have to delal Rurthermore, we can immediately exclude camera
positions on the supporting plane &f one of the properties of potential absolute conics beiagtteir images are
proper.

We solve Problem 5 through two key observations: (i) Plagfiections, although not orientation preserving, induce
transformations on a cone that are setwise equivalent td niptions. (ii) The rigid transformations required in
Problem 5 are exactly those induced by certain planar raftesof the projection conK. In concrete terms (see [21]
for proofs):

Lemma 6. The reflection of a quadriK in a hyperplane is a quadri&’ which is equal tdK up to a rigid transfor-
mation.

Lemma?7. Let® be a PVC that does not lie afi,. LetK; be a cone containing and K, another that equal¥,
up to a rigid transformation. ThelK5 contains® exactly wheriKo can be obtained fronk; by a combination of
reflections in symmetry planes®f

Hence, the combinations of rigid transformations inducgglanar reflections oK in symmetry planes of, are
exactly the rigid transformations solving Problem 5 andstRuwoblem 4. An explicit description of these motions [21]
is omitted, due to lack of space. Instead we concentrate ®eshential features of the description: the number and
locus of the camera positions and corresponding oriemtstio



4.2.3 Camera Positions

Since® is a proper virtual conic it must be a circle or an ellipse. Siimmetry planes of a circle are its supporting
planell and all planes orthogonal td containing the circle’s center. An ellipse has 3 symmetanpk:II and the

2 planes orthogonal t&/ containing an axis of the ellipse. Consider a pdhand apply all combinations of planar
reflections in symmetry planes @ For anellipse &, the locii of reflected points are the 8 corners of a rectaargul
parallelepiped. These may even collaps&)ifies on one or more symmetry planes. Fari@le &, the locii are two
equally sized circles, whose supporting planes are pheaitkequidistant td7. We immediately draw the important
conclusion that the projection centers in motion sequetie@sare critical with respect to a PVC not éh,,, lie at
moston two parallel and equally sized circles (the corners ottargyular parallelepiped lie always on such circles)!

4.2.4 Camera Orientations

For any cone, rotations about its vertex exist that leavedhe globally invariant. We refer to thesd@sal orientation
changesThe number of local orientation changes depends on théscBoelidean normal form: arbitrary rotation of
an absolutecone about its vertex leave the cone globally unchangedtalar cone may be rotated by any degree
about its main axis or b¥80° by any line perpendicular and incident to the main agibptic cones are left globally
invariant by rotations by80° about their axes. We count the local orientation changesliasvk: co® for an absolute
cone,2 x oo for a circular cone and for an elliptic cone (including the identity transformat)o Consider a frame
in a motion sequence that is critical with respect to a R¥@ot lying onIl,,. Let K be the projection cone ab

in the considered frame. Any rigid transformation that sl globally invariant, i.e. any local orientation change,
possibly changeg, but not its image, because the transfornpestill lies on the projection conK. Dually, changing
the orientation of the camera by any local orientation cleasfd has no effect on the image &f

4.2.5 Synthesis

We synthesize the derivations of the previous subsectipasisidering camera position and orientation together. Al
combinations of the following possibilities must be comsit:K is an elliptic, a circular or an absolute cone ahd
is an elliptic or a circular virtual conic. Let in the follomg I7 be the supporting plane d@f.

Case 4.K: Absolute cone®: Ellipse. All planar sections of absolute cones are circles, so thie tsanot realizabla

Case 5.K: Absolute coneg: Circle. The orthogonal projection of the vertex Kf on I1 is the center of the circlé.
Hence,II is the only symmetry plane @ that does not contain the vertexKf. Thus, only two camera positions are
possible: the vertex dK and its reflection byI. At both positions the camera may be oriented arbitrarily. [
Case 6.K: Circular cone,®: Ellipse. The vertex ofK must lie on the planél;, which is perpendicular tél and
contains the major axis @. Combining reflections in symmetry planesdleads to the total of 4 possible camera
positions, forming a rectangle ifi;. At each position, the camera can be oriented as discussedtion 4.2.4. =
Case 7.K: Circular cone,®: Circle. As in Case 5, the orthogonal projection of the verteXobn I is the center of
&, and there are only 2 possible camera positions. At eachigmsihe camera may rotate arbitrarily about the line

joining the projection centers or BB0° about perpendicular lines. This is a sub-case of Case 5. n
Case 8.K: Elliptic cone, &: Ellipse. There are 8 possible camera positions which are the corfiersextangular
parallelepiped. At each position, 4 orientations are fbssiThis case is illustrated in Figure 1 (d). [

Case 9.K: Elliptic cone, ®: Circle. The only case where infinitely many camera positions areilplesshe camera
may move on two circles (see section 4.2.3). At each posifiaifferent orientations of the camera are possibla.

Note that al80° rotation does not necessarily mean that the gaze diredtiefiose and after the rotation are opposite,
e.g. if the rotation is about the optical axis, they even cigie.

5 A Taxonomy of the CMS

We now summarize the results of sections 4.1 and 4.2. Tablenfainsall classes of critical motion sequences,
ordered by decreasing number of possible camera posifidvessnumbers of camera positionst(#and orientations

(# R) shown in the table, represamaximum configurations. #2, the number of potential absolute conics, indicates
the lowest achievable degree of ambiguity in the Euclideaomstruction.

From Definition 2 it follows that the motion sequences in G&s2-5 are those critical for affine reconstruction.
The sequences of Class 5, which are not contained in any sé€ial—4, are the only CMS, that au critical for
self-calibration.



|ClasgDescriptio} #t | #R [# (]
1 See 4.1.2 | oo® [2 x oo o0
2 |Cf.Case9[]2x o] 4 [o0®
3 Cf.Case 8| 8 4 4
4 Cf.Case6| 4 |2xo00| 3
5 |Cf.Case5| 2 o0o® | 2
Table 1. A taxonomy of the critical motion sequences# t” is the number of possible camera positions andR# the number
of possible orientations of the camera at each positionf2#means the minimum number of potential absolute conicd(ting
12 itself).

5.1 Practically Important Cases

The taxonomy can be further refined. This is mainly intengsto obtain a specific description of the CMS that might
have practical significance. In Table 2, we show the clasE€3S likely to be met in applications. Orbital motion
(see also Figure 1 (a)), planar motion (Figure 1 (c)) and pareslation are particularly common imaging conditions
for object modeling or navigation. Pure rotations are a goaeéns of calibrating a camera, because of the simple
algebra and easier feature matching due to the absencelo$iorss [11].

|ClasgDescription | #t [#R[# ]
1.1 [See4.1.2 and Figure 1 (b) co® [ oo | o0
1.1.1|Planar motion, Figure 1 (d) co® | oo | oo
1.4 |Pure translations o0o® | 1 [o0®
2.1 |Orbital motion, Figure 1 (82 x co| 1 |[oo”
5.2 |Pure rotations 1 [oo®|o0®

Table 2. Practically important classes of critical motion £quencesThe numbering of classes does not reflect completely the
hierarchy, since for example Class 1.1.1 is also a sub-at@€dass 2.

4/
RS
D
™
&y

Figure 1. lllustration of critical motion sequences.The cameras are represented by the local coordinate axes, iadicate
optical axes(a) Orbital motion.(b) Rotation about parallel axes and arbitrary translatidie) Planar motion.(d) A hypothetical
critical sequence of Class 3. At each position, only one eftipossible orientations is shown.

5.2 Degree of Ambiguity

For the practically important CMS in Table 2, we indicate @hievel of reconstruction can be recovered. Sequences
of Classes 1.1 and 1.1.1 permit Euclidean reconstructidn apscale ambiguity in one direction [2, 25]. Pure camera
translations (Class 1.4) enable an affine reconstructidghefcene [17]. Of course, from pure rotations, no recon-
struction at all is possible. From orbital motion (Class)2thie Euclidean structure of the planes parallel to the omoti
plane can be recovered, but there remains a two degree@ddm projective ambiguity perpendicular to it.



6 Practical Issues

The problem of CMS, in contrast to critical surfaces ("Matiitelds are hardly ever ambiguous” [14§)important in
practice, since many image sequences are actually critical

Reducing Ambiguitieslt is possible to reduce the degree of ambiguity in recoesvos, when prior knowledge of
the scene structure or the camera motion is available. A krmwpartially known calibration of the camera should
also be used if available: for applications in roboticseatt the stable camera parameters (aspect ratio and skew) ar
normally known. No fault is usually committed if the anglelween the pixel axes is set 89°. In [2], this constraint

is used to reduce the ambiguity of Euclidean reconstrudtiom planar motion to a two-fold one. However, the
constraint is addedfter having obtained a 1-degree ambiguous reconstruction jvghiows that it is not always clear
how to integrate constraints on the intrinsic parametdrsanbatch solution. Another way of discarding ambiguous
solutions is to analyze reconstructions with respect tosygay contradictions, e.g. to see whether a reconstructed
point lies behind a camera by which it is actually seen. Tt Wway to counter CMS is clearly to avoid them by using
motion sequences that are “far” from critical: turning ardwan object while fixating it is adequate for modeling, but
critical if the camera is not calibrated; however, inclugimotations about the camera’s optical axis turns the sexuen
into a non-critical one (photogrammetric experience hasvshthat rotations ob0° produce good conditions for
reconstruction).

Detecting and Identifying CMSA general-purpose system for Euclidean reconstructiomnlshat least be able to
detect the presence of ambiguous solutions, e.g. by anglgovariance matrices. Better would be the identification
of the type of the underlying motion sequence. This wouldbémthe ambiguity in the reconstruction to be labeled
correctly, e.g. as an affine reconstruction. Furthermétbei CMS is identified, a special algorithm might be applied
to achieve a more stable and accurate reconstruction. Aelfarce” approach would be to execute all available
algorithms, designed for general or critical sequences. ddequate solution could then be determined by a model
selection phase: the “smallest” model (reconstructioh Watvest geometric level) which fits the data acceptably well
(e.g. with a reprojection error below a threshold). An aition that identifies singular motions in order to obtain less
complex constraint equations for self-calibration thanpfra’s equations is described in [24]. However, only frame-
to-frame motions are considered, and thus critical magEgquenceare not identified and may cause the algorithm to
fail.

7 Conclusion

We have derived all types of motion sequences for which malaocancalibrated Euclidean reconstruction is ambigu-
ous. By identifying several typical imaging conditions aisical we have shown that critical sequences are important
in practice so that they should be taken into account whealdping systems for Euclidean reconstruction. It is clear,
that ambiguities can often be reduced right from the staudigg an available partial calibration or just by avoiding
critical motions.

Work in progress is concerned with the investigation of apphes for the implementation of a stratified reconstractio
system. We are also working on an extension of our formalisthe affine camera model and to the case of a zooming
camera. A study similar to that of the “Gefahrliche Raurfie3] would also be interesting, i.e. investigating how near
a motion sequence must be to critical in order to cause imharemerical instabilities.

Acknowledgementd.would like to thank Long Quan and Bill Triggs for fruitful s€ussions.

References

1. G. Adiv, “Inherent Ambiguities in Recovering 3-D Motiomé Structure from a Noisy Flow FieldRAMI, (11)
5, 477-489, 1989.

. M. Armstrong, A. Zisserman and R. Hartley, “Self-Calitiwa from Image Triplets” ECCV, Cambridge, UK
3-16, 1996.

. A. Basu, “Active Calibration: Alternative Strategy andalysis”,CVPR, New York495-500, 1993.

. W. Boehm and H. Prautzsch, “Geometric Concepts for Getaigesign”, A K Peters, 1994.

. L. Dron, “Dynamic Camera Self-Calibration from Conteull Motion SequencesCVPR, New York501-506,
1993.

N

g b~ w



11.
12.

13.

14.
15.

16.
17.
18.
19.
20.
21.
22.

23.
24,

25.
26.

F. Du and M. Brady, “Self-Calibration of the Intrinsic Rareters of Cameras for Active Vision SystenBY/PR,
New York 477-482, 1993.

. O. Faugeras, “What Can Be Seen in Three Dimensions withigalibrated Stereo Rig ?ECCV, Italy, 563-578,

1992.

. O. Faugeras, “Stratification of Three-Dimensional \fisiBrojective, Affine and Metric Representationi3urnal

Opt. Soc. Am. A(12), 465-484, 1995.

. R. Hartley, R. Gupta and T. Chang, “Stereo from Uncaldma&ameras=CCYV, ltaly, 761-764, 1992.
. R.I. Hartley, “Euclidean Reconstruction from Uncaditad Views” Darpa—Esprit Worksh. Applications of Invari-

ants in Computer Vision, Azores, Portuga87-202, 1993.

R.1. Hartley, “Self-Calibration from Multiple Views Wi a Rotating CameraECCYV, Stockholpn¥71-478, 1994.

A. Heyden and KAstrom, “Euclidean Reconstruction from Constant IntitrRarameters’lCPR, Vienna339-
343, 1996.

W. Hofmann, “Das Problem der Gefahrlichen Flachenhedrie und Praxis - Ein Beitrag zur Hauptaufgabe der
Photogrammetrie”, PhD Thesis, TU Munchen, Germany, 1953.

B.K.P. Horn, “Motion Fields are Hardly Ever AmbiguoukICV, (1) 3, 259-274, 1987.

Q.-T. Luong, “Matrice fondamentale et autocalibragarvision par ordinateur”, PhD Thesis, Paris-Orsay, France
1992.

S.J. Maybank and O.D. Faugeras, “A Theory of Self Cdiibnaof a Moving Camera”|JCV, (8) 2, 123-151,
1992.

T. Moons, L. Van Gool, M. Van Diest and E. Pauwels, “Affined@nstruction from Perspective Image Pairs”,
Darpa—Esprit Worksh. Applications of Invariants in Comgu¥ision, Azores, Portugak49-266, 1993.

M. Pollefeys and L. Van Gool, “A Stratified Approach to MetSelf-Calibration”,CVPR, Puerto Ricol997.

J.G. Semple and G.T. Kneebone, “Algebraic Projectivertry”, Oxford Science Publication, 1952.

C.C. Slama (Ed.), “Manual of Photogrammetry”, 4th EuxfitiAmerican Soc. of Photogrammetry and Remote
Sensing, 1980.

P. Sturm, “Vision 3D non calibrée : contributions adaonstruction projective et étude des mouvements cesiqu
pour I'auto-calibrage”, PhD Thesis, INPG, France, 1997.

R. Szeliski and S.B. Kang, “Shape Ambiguities in Streetiiom Motion”, ECCV, Cambridge, UK709-721,
1996.

B. Triggs, “Autocalibration and the Absolute QuadriCVPR, Puerto Rical997.

T. Viéville and D. Lingrand, “Using Singular Displacents for Uncalibrated Monocular Visual SystentsGCV,
Cambridge, UK207-216, 1996.

C. Wiles and M. Brady, “Ground Plane Motion Camera Mojet<CCV, Cambridge, UK238-247, 1996.

C. Zeller and O. Faugeras, “Camera Self-Calibratiomfkddeo Sequences: the Kruppa Equations Revisited”,
Research Report 2793y kIA, France, 1996.



