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AbstractThis paper deals with the ego-motion estimation (motion of the camera) from two views.When we want to estimate the ego-motion correctly we have to �nd correspondences andwe need a calibrated camera. We solve the problem how we can incorporate such knowledgeabout camera calibration errors. We present the linear estimate of the uncertainty of themotion parameters based on the uncertainty in the calibration parameters. We did manytests with synthetic data. We �nd the relations between noise in the camera parametersand the acceptability of the translation vector. We show that the linear estimate of thetranslation vector uncertainty is very stable and useful even with a rough calibration. Theestimate of the noise in the rotation seems to be less stable and the estimation of therotation is very sensitive to the accuracy in calibration parameters.
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1 IntroductionWe have two images captured by one camera from two di�erent viewpoints. When we �nd atleast eight corresponding points and when we know the calibration parameters of the camera,the Euclidean camera motion can be estimated up to scale. The Euclidean reconstruction ofthe scene can be done too. This problem has been solved over years ([11, 17]). When thecamera parameters are not known other algorithms have to be used. Since we have only twoimages we can only establish the epipolar geometry, Luong et al. in [12], and we can do onlythe projective reconstruction. If we want to calibrate the camera we can use some of the manymethods developed for the o�-line camera calibration. Tsai did it in [16].Having more images, at least three, we can employ the algorithms for the camera self-calibration which theory was presented by Maybank and Faugeras in [13] or, when the cameraundergoes planar motion we can use the algorithm developed by Armstrong et al. in [1]. Hart-ley has presented an iterative algorithm for Euclidean reconstruction from many uncalibratedviews in [5].In this paper we deal with two views and a roughly calibrated camera. We use linearmethod intended for a calibrated camera to estimate the ego-motion (motion of the camera).Because of noise in the estimation process, an error analysis is needed. There are two sources ofnoise: (1) noise in correspondences (2) noise in the calibration parameters. Weng [17] studiedthe inuence of the noise on the motion parameters. Florou and Mohr [4] used the statisticapproach to study reconstruction errors with the calibration parameters. In this paper wepresent a linear algorithm for the estimate of the validity of the motion parameters based onthe uncertainty in the calibration parameters.2 Fundamentals2.1 NotationVectors will be denoted by bold characters. There will be two types of vector: (a) normal,in conventional sense, this type of vectors will be denoted by small bold characters u =[u1; u2; : : : ; un]T , (b) column vectors which arise from the elements of the matrices, for instancethe 3� 3 matrix E, rearranged 9� 1 vector, will be denoted by the capital bold character E.The matrices are indicated by capital italics such as E. This notation will stand also in thesubscripts. The sign .= we use to de�ne new variables when the variable to be de�ned isobvious.2.2 The camera model and the camera calibrationWe use the pinhole camera model. There are three coordinate systems as it is illustratedin Figure 1. The world coordinate system (W;xw; yw; zw), the camera standard coordinatesystem (C; x; y; z) and the coordinate system for the retinal plane (c; u; v). Let us introducethe transformations among them:264 xyz 375 = [R j �Rt]26664 xwywzw1 37775 .= PM: (1)
3
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Figure 1: The pinhole camera, retinal (R) and focal (F) plane and three coordinate systemsThe rotation matrix R and the translation vector t characterize the orientation and the positionof the camera with respect to the world coordinate system. From Figure 1 it is clear that therelationship between image coordinates and 3{D coordinates isfz = ux = vy : (2)We introduce the normalized image coordinates asu = 264 uv1 375 = 264 f xzf yz1 375 ; (3)where f is the focal length of the camera. However, when we localize points in the image, weget the coordinates in pixels, [qu; qv]. What is the relationship between those pixel coordinatesand the normalized coordinates u? Introducing the calibration matrix K, we can write264 uv1 375 = 264 fku fku cos(�) u00 fkvsin(�) v00 0 1 375�1 264 quqv1 375 .= K�1q: (4)The meaning of the elements of the calibrating matrix is the following.f : The focal length of the camera, respectively, the distance between the retinal and the focalplane (see Figure 1). 4



ku resp. kv: These values characterize the horizontal resp. vertical size of the pixels. Moreprecisely 1=ku resp. 1=kv is the horizontal resp. vertical size of the pixels in millimeters.u0 and v0: Pixel coordinates of the principal point. The principal point is the intersection ofthe optical axis with the retinal plane, in Figure 1 is denoted by \c".�: Angle in the retinal coordinate system (\skew"). See Figure 1.The ku; kv parameters have to be considered together with f . The skew angle � is usuallysupposed to be very close �=2, which is a valid approximation in practise. Thus the matrix Kcan be rewritten in a simpler form asK = 264 �u 0 u00 �v v00 0 1 375 : (5)We can describe the introduced calibration parameters �u resp. �v as the focal length expressedin the horizontal resp. vertical pixel size. In this paper we assume that the matrix K is inits simpler form (5). The above parameters are sometimes called intrinsic parameters of thecamera, whereas R and t are often titled extrinsic parameters of the camera. The knowledgeof the intrinsic parameters enables the estimation of the Euclidean reconstruction of the sceneand the Euclidean motion of the camera from two views. A number of methods for the cameracalibration are known, for instance, from earlier o�-line method presented by Tsai in [16] overnowadays method for the self-calibration of the camera, which undergoes a planar motion, byArmstrong et al. in [1], till the most general one, the theory of the camera self-calibration,presented by Maybank and Faugeras in [13]. However the approach, how to calibrate thecamera, is not the main subject in this paper.2.3 Two views, fundamental and essential matrixLet us suppose that the camera moves without changing its intrinsic parameters. The geom-etry of this motion is shown in Figure 2. What can be estimated from two views, depends
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whether the camera is calibrated or not ([3, 5]). Both situations, with a calibrated and withan uncalibrated camera, were studied over years. Starting with the article by Longuet-Higgins([11]), over an article by Weng et al. ([17]), for calibrated cameras, till nowadays either [15] or[12] for the uncalibrated camera.If the motion between two positions of the camera is given by the rotation matrix R andthe translation vector t, and if u and u0 are normalized image coordinates (3) of correspondingpoints, then the coplanarity constraint is written as:u0(t�Ru) = 0: (6)Introducing the skew-symmetric matrix SS = 264 0 �tz tytz 0 �tx�ty tx 0 375 ; (7)we can rewrite the above coplanarity constraint asu0TSRu .= u0TEu = 0; (8)where E is the essential matrix. Since the E matrix is the product of a skew-symmetric matrixand the orthonormal matrix R, it has a number of important properties. Its rank is two. Moreimportant is that E can be decomposed into the skew-symmetric matrix S post multiplied bythe orthonormal rotation matrix R if and only if one singular value is zero (rank 2) and theother two are equal and non zero. The necessity and the su�ciency of this condition is provedby Huang in [8]. The equality of the nonzero singular values is a very strong attribute of theessential matrix. Svoboda and Pajdla presented an e�cient algorithm utilizing this equality[14].What changes when we do not know the calibration parameters? We suppose that the pixelcoordinates of corresponding points q resp. q0 are given. Having at least eight correspondenceswe can estimate the fundamental matrix by solving the set of linear equationsq0Ti Fqi = 0: (9)This equations arise from the epipolar geometry, this basic constraint which exists for two view-points. An exhaustive study of the epipolar geometry and the estimation of the fundamentalmatrix can be found in [12]. The uncertainty of the fundamental matrix in the case of noisydata was studied by Csurka et al. in [2]. By replacing u through the relationship (4) in theequation (8), it can be veri�ed that the relation between the essential and the fundamentalmatrix is E = KTFK: (10)3 The uncertainty in the estimation processWe want to estimate the motion of the camera from two views. We suppose that the camerais calibrated. There are several sources of uncertainty in the estimation process. Firstly, thecorrespondences can only be located with �nite precision and some correspondences can becompletely mismatched. Secondly, the camera intrinsic parameters are determined with someuncertainty too. The inuence of the errors in the correspondences was studied by Weng et6



al. [17], for the calibrated camera and partly by Csurka et al. [2] for the uncalibrated case.Florou and Mohr in [4] did statistical tests for the importance of the camera parameters for the3{D reconstruction error. In the following sections we present how to estimate the uncertaintyof the essential matrix and consequently the motion parameters due to the inaccuracy in thecalibration parameters.3.1 Properties of Gaussian random vectorsFirstly, we recall several facts about random variables. The attributes of Gaussian randomvariables are well known from the probability theory thus we give only several remarks. Let xbe an n dimensional Gaussian random vector and let Cx be its n� n covariance matrix. Thecovariance matrix is de�ned as Cx = Ef(xi � �x)(xi � �x)T g; (11)where �x denotes the mean of the random vector and Efxg = x denotes the expectation (themean). We suppose linear character of errors so we de�ne a random vector y = Ax+b, whereA is a constant matrix and b is a constant vector. Then y is a Gaussian vector with the mean�y and with the covariance Cy given by �y = A�x+ b;Cy = ACxAT : (12)To better illustrate what information the covariance matrix can o�er, consider two randomvariables x; y. Thus the covariance matrix is:Cxy = " var2(x) rxyvar(x)var(y)rxyvar(x)var(y) var2(y) # ; (13)where rxy is the so called correlation coe�cient. �1 � rxy � 1. What we call the variance, issomewhere else called standard deviation. Actually, in this paper for a simple random variablevar2(x) = Cx holds. In Figure 3 the situation for correlated variables (rxy = 0:95 and forrxy = �0:95) and for uncorrelated variables (rxy = 0:00) is demonstrated.Now we reformulate the above equations for the general case. Let the transformation bey = fxy(x): (14)When the transformation is linear, the equations (12) are directly applicable. When fxy isnon-linear we use the �rst order linear approximation. The Jacobian matrix isJxy = @fxy@x at x = �x: (15)Two or more characters as indexes denote the step from one random variable to another. Thenwe can rewrite (12) as �y = fxy(�x)Cy = JxyCxJTxy (16)The proof of the above equations is easy. Expand y into Taylor series at x = �x:y = fxy(�x) + @fxy@x (x� �x) +O((x� �x)2): (17)Now ignore the second order terms and put the rest of equation (17) into equation (11). Theresult presented in equations (16) is then obvious.7
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r_xy=0.00Figure 3: Correlation between two random variables.3.2 Statistic and analytic approachWe describe two basic ways how to assess the uncertainty. At �rst, we can do many tests withnoisy data and repeat them for many types of motion, for many di�erent scenes, and so forth.Then several statistic methods can be used for the analysis of the statistical data [9]. However,this approach is very time expensive and we can not estimate the uncertainty in the concretesituation in a reasonable time. At second, we would derive the analytic relationship [E;R; t] =f(K;F ) and then compute the Jacobian matrices and �nally the covariances employing theprocedures described in the previous section. The Maple symbolic computational software wasused to derive more complex relationships.3.3 Covariance of the essential matrixLet us suppose we know the fundamental matrix, which we estimated by the set of equations(9). The essential relationship between the essential and the fundamental matrix isE = KTFK; (18)where K is the calibration matrix. We would like to investigate the inuence of the uncertaintyof the calibration parameters on the essential matrix. Thus we suppose that F is exact. TheK matrix contains four calibration parameters, equation (5). We consider them as Gaussianrandom variables with mean covered by K and with covariance matrix CK . Having in mindthe equations (16), the su�cient characteristics of the Gaussian essential matrix, the meanand the covariance matrix, can be estimated asE = KTFK;CE = JKECKJTKE; (19)where JKE is the Jacobian matrix computed using equation (15).8



3.4 Covariance of the motion parametersThe motion parameters are the translation vector t and the Euler angles E = ['; #;  ]. Therelationship between E and the rotation matrix R [10] isR = 264 cos(') cos( ) cos(#)� sin(') sin( ) � cos( ) sin(')� cos(') cos(#) sin( ) cos(') sin(#)cos( ) cos(#) sin(') + cos(') sin( ) cos(') cos( )� cos(#) sin(') sin( ) sin(') sin(#)� cos( ) sin(#) sin( ) sin(#) cos(#) 375 : (20)The rotation described by Euler angles is: (i) rotate by ' around the z-axis, (ii) rotate by# around the y-axis, (iii) rotate by  around the z-axis again. To obtain R and t from theessential matrix E we use the method proposed by Hartley in [6]. This method is also used in[14]. Just the essence of it is given here. Using the singular value decomposition we factorizeE as E = UDV T : (21)We already know that E = RS. Hartley in [6] proposed the following equations:S = V ZV T ; (22)R = UY V T or UYTVT; (23)where Z = 264 0 �1 01 0 00 0 0 375 and Y = 264 0 1 0�1 0 00 0 1 375 : (24)Recall that S is the skew symmetric matrix containing the translation vector t, equation, (7),we rewrite the equation (22) as t = fV t(V ): (25)We will describe how to estimate the covariance matrices CU ; CV ; CUV when the matrix Eis perturbed in section 3.5. Let suppose CU ; CV ; CUV be known, for this moment. Then thecovariance matrix of the translation vector isCt = JV tCV JTV t; (26)where the Jacobian matrix JV t is JV t = @fV t@Vii at Vii = Vii: (27)The computation of the covariance matrix of the Euler angles is somewhat complicated. Therotation matrix R is the product of both U and V . This transformation is linear. Howeverwe must also �nd the Jacobian matrix of the inverse relationship of the equation (20). Thecovariance matrix of R is CR = JUV RCUV JTUV R; (28)where JUV R is a Jacobian matrix computed like JV t. When we �nd the transformation E =fRE(Rii), we can �nally estimate the covariance matrix of Euler angles.CE = JRECRJTRE : (29)9



3.5 Eigenvalues and eigenvectors of a noisy matrixLet us suppose we have estimated the rank 2 essential matrix, whose two nonzero singularvalues would be equal in the ideal case. The E matrix can be decomposed by the singularvalue decomposition as E = UDV T : (30)Let us also suppose we have estimated the 9 � 9 covariance matrix CE using equation (19).The question is, how we can propagate the uncertainty in the essential matrix expressed bythe covariance matrix CE into U resp. V matrix. We describe this approach employing theessential matrix, still this approach can be used for any general matrix as Weng showed in [17]using theory by Wilkinson [18].Let suppose additive noise. We denote the noise corrupted E as E(�). We haveE(�) = E +�E: (31)Similarly for vectors: x(�) = x+ �x; (32)where �x is the error vector. For the next we suppose a Gaussian error distribution with thezero mean. Thus the covariance matrix of the noise vector isCx = Ef�x�Tx g; (33)where E denotes mathematical expectation. Assuming two variables x and y with small errors,we have x(�)y(�) = xy + �xy + x�y + �x�y: (34)As �x; �y is supposed to be much smaller than other terms in equation (34) we can approximatethe the error �xy in x(�)y(�) as�xy = �xy + x�y + �x�y �= �xy + x�y: (35)We keep the linear terms of the error and ignore the higher order terms. Later we use the sign�= for the equations that are equal in the linear terms and � for the approximate equality inthe usual sense.Using equation (21) it can be easily veri�ed thatEET = UD2UT ; (36)ETE = V D2V T : (37)U and V are orthonormal matrices. Thus the columns of U are eigenvectors of EET resp.the columns of V are eigenvectors of ETE ([7]). Both EET and ETE are 3 � 3 symmetricmatrices. For the derivation of the error propagation we use the equation (36). Similarly itholds for equation (37).Equation (36) can be rewritten asU�1EETU = diagf�1; �2; �3g: (38)The �i are the eigenvalues of the EET matrix. Recall that p�i are the singular values of E.Let them be ordered in non increasing order �1 � �2 � �3. Let express eigenvectors in onematrix U = [u1;u2;u3]; (39)10



where u1 is an eigenvector associated with �1. Invoking equations (34) and (35) we write theperturbed EET matrix asEET (�) = (E +�E)(ET +�TE) .= EET +�EET ; (40)where �EET �= �EET +E�TE: (41)Let u1(�) be the eigenvector of the perturbed matrix EET (�) associated with the perturbedeigenvalue �1(�). The u1(�) can be written asu1(�) = u1 + �u1 (42)with �u1 � span offu2;u3g. Letting � be the maximum absolute value of the elements �EET ,we have �EET = �B (43)with bij = �EETi;j=�. For a su�ciently small � the perturbation of �1 can be expressed bya convergent series �1(�)� �1 .= ��1 = p1�+ p2�2 + p3�3 + � � � (44)and similarly the perturbation vector �u1 can be expressed by a convergent vector series in thespan of U2 = [u2;u3]. For su�ciently small � there exist 2-dimensional vectors g1;g2; : : : suchthat �u1 = �U2g1 + �2U2g2 + � � � (45)If we consider just the linear term in equations (44) and (45) we have for the eigenvalue��1 �= u1T�EETu1: (46)For the eigenvector holds �u1 �= U�1UT�EETu1; (47)where �1 is �1 = diagf0; (�1 � �2)�1; (�1 � �3)�1g: (48)The proof can be found in the appendix of [17] or better with the more theoretical backgroundin [18]. The equation (47) for the assessment of the error in the eigenvector is correct, butremember the properties of the exact essential matrix E, especially the equality of the nonzerosingular values. Consequently the matrixEET orETE has also two equal eigenvalues, �1��2 =0, in the ideal, noise free case. This equality produces an extremely high estimation of theerror in the �rst and the second eigenvector. There is no good reason for such an extremelyhigh assessment. The EET either ETE is a real symmetric matrix if, and only if the equations(36) and (37) hold ([7]). And both matrices are always symmetric. So, we rewrite equation(47) as �u1 �= U2�01UT2 �EETu1; (49)where �01 = " � 00 1�1��3 # : (50)11



The variable � is de�ned as if ( �1��2mean[�1;�2]) > Tol) � = 1�1��2otherwise � = 0; (51)where Tol is a user de�ned tolerance. The �02 resp. �03 are de�ned alike.Let us suppose that we know the CE, the 9� 9 covariance matrix of the essential matrix.How can we estimate the covariance matrix of the eigenvalues of EET , C�, and the covariancematrix of eigenvectors, CU? Recall that �EET is a vector containing the elements of the matrix�EET . We can rewrite equation (46) as��1 = u1T [u11I3; u13I3; u13I3]�EET .= Gu1�EET : (52)Where I3 is the 3� 3 identity matrix. Now we need to �nd the matrix GEET such that�EET = GEET �E: (53)Using equation (41) we can deduce that
GEET =

2666666666666664
2E11 2E12 2E13 0 0 0 0 0 0E21 E22 E23 E11 E12 E13 0 0 0E31 E32 E33 0 0 0 E11 E12 E13E21 E22 E23 E11 E12 E13 0 0 00 0 0 2E21 2E22 2E23 0 0 00 0 0 E31 E32 E33 E21 E22 E23E31 E32 E33 0 0 0 E11 E12 E130 0 0 E31 E32 E33 E21 E22 E230 0 0 0 0 0 2E31 2E32 2E33

3777777777777775 : (54)
Having GEET we can replace equation (52) by the��1 = Gu1GEET �E .= D�1�E: (55)Thus the square of the eigenvalue variance isvar2(�1) = Ef�T�1��1g = D�1CEDT�1 : (56)In a similar manner we deduce the variances of the other eigenvalues. For the eigenvectors wededuce by the same way �u1 = U2�01UT2 [u11I3; u13I3; u13I3]�EET ;.= GU1�EET ;= GU1GEET �E;.= Du1�E: (57)Therefore the 3� 3 covariance matrix of the �rst eigenvector isCu1 = Du1CEDTu1 : (58)12



We need the following to compute the covariance matrix CV of V . The meanings of thesymbols with V or v are the same as with U resp. u.�v1 �= V2�01V T2 �ETEv1; (59)
GETE =

2666666666666664
2E11 0 0 2E21 0 0 2E31 0 0E12 E11 0 E22 E21 0 E32 E31 0E13 0 E11 E23 0 E21 E33 0 E31E12 E11 0 E22 E21 0 E23 E31 00 2E12 0 0 2E22 0 0 2E23 00 E13 E12 0 E23 E22 0 E33 E23E13 0 E11 E23 0 E21 E33 0 E310 E13 E12 0 E23 E22 0 E33 E230 0 2E13 0 0 2E23 0 0 2E33

3777777777777775 : (60)
The rest of the equations remains the same.Now we want to compute the covariance matrices of U resp. V and the covariance matrixof the singular values, C� of E instead of the variances of the eigenvalues of EET . From (36),the equation for singular values follows directly:�E = q�EET : (61)Generally we can write �E = f��(�EET ). The covariance matrix isC� = J�� diagfvar2(�i)gJT�� ; (62)where J�� is the Jacobian matrix computed using equation (15). It is known that J��ii =@p�=@� is 1=2p�. A problem occurs when �3 = 0 holds exactly. Recall that the equality�3 = 0 demonstrates a good quality of the essential matrix. Thus there is no good reason toexpect the variance estimation ! 1. We put J��ii = 0 instead of 1, in this case. For thevariance of the (�1 � �2) the holds:var2(�1 � �2) = [1� 1]C[1:2;1:2]� [1� 1]T; (63)where C [1:2;1:2]� is the �rst 2�2 submatrix of the C�. The U = [u1;u2;u3]. The 9�9 covariancematrix CU is CU = DUCEDTU ; (64)where DU is the 9� 9 matrix composed from the rows of Dui matrices.

DU =
2666666666666664
Du11Du21Du31Du12Du22Du32Du13Du23Du33

3777777777777775 : (65)
The same computation is done for CV . Then the joint covariance matrix of U and V is:CUV = " DUDV #CE h DTU DTV i : (66)13



3.6 Ego-motion algorithm taking into account uncertaintyWe suppose the 4 � 4 covariance matrix of the calibration parameters CK to be given. Theestimate of the calibration parameters, the 3� 3 calibration matrix K, is also supposed to beknown. And we also assume we have at least eight correspondences in two images capturedby the same camera from the di�erent viewpoints. We want to estimate the variance of thedi�erence between non-zero singular values of the essential matrix, var�1��2 and the covariancesof the motion parameters, the translation vector, Ct, and the Euler angles, CE . We use thesign ! for the denotation of something like \data ow".1. Uncalibrated coordinates (in pixels) of at least eight correspondences are in the N � 3matrices Q1; Q2, where N is the number of correspondences.2. Compute the fundamental matrix: Q1; Q2 ! F using equation (9).3. Compute the essential matrix: K;F ! E using equation (10).4. Estimate the covariance matrix of the essential matrix. CK ;K; F ! CE using equation(19).5. Decompose the essential matrix using the singular value decomposition: E ! U; V; �,(21).6. Calculate the covariance of singular values of the essential matrix: CE ; E ! C� usingequation (62).7. Get variance of the di�erence between the nonzero singular values: C�; � ! var�1��2using equation (63)8. Compute the auxiliary covariance matrices: E;CE ! CU ; CV using equations (64).9. Create the covariance matrix of the rotation matrix and the covariance matrix of thetranslation vector: U; V;CU ; CV ! CR; Ct using equations (28) resp. (26).10. Calculate the covariance matrix of Euler angles: CR; R! CE using equation (29).4 ExperimentsIn the previous section we described how to estimate the uncertainty of the essential matrix,and consequently of the motion parameters. Several questions have arisen:� How accurate is the analytic approach? Remember we use a �rst order approximationof the error.� Which calibration parameters are more important in which type of motion or in whichtype of a scene?� What happens when the F matrix is not exact, i.e. when there are some errors in thecorrespondences? 14



Kq, q0CK -(9) F ?6r - CE(19) KFCEr -(10) E?-r -(62) C�-(21) U; V; �-r (63) var(�1 � �2)
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Figure 4: The schematic diagram of the algorithm.It seems obvious that di�erent types of camera motion altogether with the arrangementof the scene a�ect the inuence of the precision of the calibration parameters on the motionparameters estimation. The magnitude of the motion could also a�ect that relationship. Ac-tually the inuence of the inaccuracy in the calibration parameters depends on the motion ofcorrespondences.We consider two types of an elementary motion. The lateral motion and the motion towardthe scene. We use the synthetic scene \house with a tree", 15 points were selected as pointsof interest, consequently their correspondences. The scene and two types of a motion are inFigure 5. How the correspondences move (disparity) due to these types of motion is shown in

Figure 5: The house with points of interest (correspondences), the approaching, the lateralmotionFigure 6 resp. 7. 15
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Figure 6: Disparity of the lateral motion. Figure 7: Disparity of the \toward" motion.4.1 What do we measure?Remember that the equality of the nonzero singular value is a necessary and the su�cientcondition for factorization E into the rotation matrix R and the skew-symmetric matrix S.Thus we investigate how the increasing uncertainty in the calibration parameters a�ects thisquality parameter. In the same manner, we search the variances of the translation vector andthe Euler angles. By the mathematic expression, we want to �nd such a quality function F :var(�1 � �2); var(tx); var(ty); var(tz); var('); var(#); var( ) = F(K(�);R; t;q); (67)where K(�) is the perturbed calibration matrix, R and t characterize a motion of the camera,and q indicates the arrangement of the points. We compare the analytic assessment computedby equations described in the previous sections with the statistic approach. We characterizethe uncertainty in the calibration parameters by the [%]. Thus for the analytic approach:CK = 26664 ( 100�u)2 C�u;�v C�u;u0 C�u;v0C�u;�v ( 100�v)2 C�v;u0 C�v ;v0C�u;u0 C�v;u0 ( 100u0)2 Cu0;v0C�u;v0 C�v ;v0 Cu0;v0 ( 100v0)2 37775 (68)The elements exclusive of the diagonal express the dependency among the calibration param-eters, see equation (13). In the statistic procedure we perturbed many times the calibrationparameters by a Gaussian noise N(0; �2), where �2 is�2 = 100�u; for �u;�2 = 100�v; for �v;�2 = 100u0; for u0;�2 = 100v0; for v0; (69)Since we want to simulate the situation when the calibration parameters are correlated weneed to solve the problem how to generate the correlated random variables. The solution isdescribed in appendix A. The relevant variances were computed using the standard equation(11). For instance for tx we computevar2(tx) = Ef(tx � tx)(tx � tx)Tg; (70)where tx is not the mean of all statistic data but then the value computed with  = 0.16



We suppose that corresponding points are located with pixel precision in the tests withthe exact correspondences. The coordinates of the projected points are rounded to the nearestinteger number. No mismatched points are supposed. In the graphs, lines with crosses indicatethe statistical data and the pure lines indicate the linear estimation of the variances.4.2 Approaching motionThe approaching or toward motion is very common in mobile robot applications. Thus mainlythe estimation of the translation is very important. Firstly we test the e�ect of each calibrationparameter separately. One hundred statistical tests were applied. Variances of the parts of thetranslation vector are showed in graphs 8, 9, 10, and 11. Three values in brackets in the upperleft part of each graph are the normalized translation vector resp. Euler angles in the case ofthe rotation.

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3 − var(Tx), −− var(Ty), −. var(Tz)

Noise in calibration parameters in percent

[0.00,0.02,1.00]

0 2 4 6 8 10 12 14 16 18 20
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
− var(Tx), −− var(Ty), −. var(Tz)

Noise in calibration parameters in percent

[0.00,0.02,1.00]

Figure 8: Approaching motion, variances inthe translation. Noise in �u. Figure 9: Approaching motion, variances inthe translation. Noise in �v.
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Figure 10: Approaching motion, variances inthe translation. Noise in u0. Figure 11: Approaching motion, variances inthe translation. Noise in v0.We can observe the relation between \horizontal" resp. \vertical" parameters. The hor-17



izontal calibration parameters �u and u0 mainly a�ect the horizontal part of the translationvector tx. A similar dependency can be found for �v and v0 with ty. We can see the highcredibility of the linear estimate.The results for the Euler angles are in Figures 12, 13, 14, and 15.
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Figure 12: Approaching motion, variances inthe rotation. Noise in �u. Figure 13: Approaching motion, variances inthe rotation. Noise in �v.
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Figure 14: Approaching motion, variances inthe rotation. Noise in u0. Figure 15: Approaching motion, variances inthe rotation. Noise in v0.We can see the relatively high variances of the angles ' and  . Hovewer this situationcould be expected. When the angle # is very close to zero, a rotation can be expressed by anarbitrary ' = � . Problems with the linear estimate can be observed in Figure 14. Problemscan be caused by the ambiguity mentioned above. We can not �nd the unique relation betweenthe calibration parameters and the rotation angles as in the case of the translation vector.Since we would like to simulate realistically the real camera we also did the tests withthe correlated noise in the calibration parameters. Florou and Mohr said in [4] that themost signi�cant correlation is between �u and �v and it is close to �1. We did tests withr�u;�v = �0:95. The motion and the correspondences are the same as in the case of particulartests. The results are in Figures 16 and 17. 18
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Figure 16: Approaching motion, variances inthe translation. Noise in �u and in �v, corre-lation r�u;�v = �0:95. Figure 17: Approaching motion, variances inthe rotation. Noise in �u and in �v, correla-tion r�u;�v = �0:95.
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Figure 18: Approaching motion, variances inthe translation. Noise in all calibration param-eters, correlation r�u;�v = �0:95. Figure 19: Approaching motion, variances inthe rotation. Noise in all calibration parame-ters, correlation r�u;�v = �0:95.No essential di�erences can be observed with the comparison to the tests with the particulare�ect. The results are very close to the superposition of the graphs relating to �u and �v.Finally, we tested the case when all calibration parameters are noisy with the correlationbetween �u and �v as in the previous test. This situation corresponds to the observation in[4]. The results are in Figures 18 and 19. We can see similar problems with the linear estimateof variances of the Euler angles as in Figure 14.Anyway, the problem is the credibility of the linear estimate. We increase the noise magni-tude up to 100% for all noisy calibration parameters. The correlation r�u;�v = �0:95. Recall tobrutal noise. If the noise magnitude is more than 20% the camera parameters can completelychange. One thousand cycles for the statistic approach were used. The results are in Figure20. The breakdown point can be observed around 20% noise in the case of the translationvector and the di�erence of the nonzero singular values and around 10% in the case of Eulerangles. The linear estimate of the variances t and of the variance (�1 � �2) (the non zero19
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Noise in calibration parameters in percentFigure 20: The linear estimate versus statistics in the case of a large noise. From left toright: Variances in translation vectors, in Euler angles, and variance of the di�erence betweennonzero singular values of the essential matrix.singular values of E) is more stable than the estimation of the uncertainty in the rotation.4.3 Lateral motionThe lateral motion and the rotation around y-axis a�ects nearly the same motion of correspon-dences or motion �eld. Thus it is very di�cult to distinguish between these two possibilities.We did the same tests for the lateral motion as for the approaching motion. The results arein Figures 21, 22, 23, 24, 25, 26, 27 and 28.
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Figure 21: Lateral motion, variances in thetranslation. Noise in �u. Figure 22: Lateral motion, variances in thetranslation. Noise in �v.Observing the graphs with variances in the translation vector, we can �nd a similar relation-ship between \horizontal" parameters and between \vertical" parameters as in the approachingmotion. Hovewer the linear estimate of the variances in the Euler angles spoils. More in detail,we can observe that noise in �u and u0 causes the bad estimate in the angle # which charac-terizes the rotation around the y-axis. The \vertical" calibration parameters mostly inuenceangles which characterize rotation around z-axis. Remember if ' = � holds the values canbe arbitrary in the case # = 0. We say more about this problem in the section 4.4.20
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Figure 23: Lateral motion, variances in thetranslation. Noise in u0. Figure 24: Lateral motion, variances in thetranslation. Noise in v0.
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Figure 25: Lateral motion, variances in therotation. Noise in �u. Figure 26: Lateral motion, variances in therotation. Noise in �v.4.4 General motionWe were faced to the problem of the low credibility of the linear estimate in the Euler anglesvariances In the previous section. The question is, when can we consider this linear estimate astrustworthy? We did many tests and we observed that the problem appears when the motionalong the z-axis direction is small. The estimate of the rotation is unstable in the case of themotion which is close to the lateral one. The successful estimate both for translation and forrotation when all calibration parameters are noisy is illustrated in Figure 29 and 30. morethan 5% the variances of the Euler angles are too high. Therefore we can say that parametersof the rotation are much more sensitive to uncertainty in the calibration parameters than thetranslation vector.4.5 Which estimate for noisy data?Remember that we assume exact coordinates of correspondences with only pixel accuracy. Nowwe want to investigate how the reliability of the linear estimate changes with noisy correspon-21



0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
− var(fi), −− var(th), −. var(ps)

Noise in calibration parameters in percent

[0.00,0.00,0.00]

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
− var(fi), −− var(th), −. var(ps)

Noise in calibration parameters in percent

[0.00,0.00,0.00]

Figure 27: Lateral motion, variances in therotation. Noise in u0. Figure 28: Lateral motion, variances in therotation. Noise in v0.
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Figure 29: General motion, variances in thetranslation. Noise in all calibration parame-ters, correlation r�u;�v = �0:95. Figure 30: General motion, variances in therotation. Noise in all calibration parameters,correlation r�u;�v = �0:95.dences. We have the general motion also with rotation. Since we suppose more problems wetest the calibration uncertainty up to 10%. The most general noise in all calibration param-eters with correlation r�u;�v = �0:95 is applied. We add a Gaussian noise N(0; �2) to thecoordinates of the correspondences then the coordinates are quantized to the nearest pixel.Fifty statistic tests were applied to generate noisy calibration matrix and �fty tests were usedto generate noisy correspondences. Results for the data perturbed by quantization noise onlyis in Figure 31. Figure (32) shows the results for data perturbed by Gaussian noise with�2 = 1 pixel and by a quantization noise. We can observe high credibility of the estimate forthe translation and high statistical variance of ' angle. Hovewer the high linear estimate forthis angle signalizes a low credibility of the estimated rotation.
22
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Figure 31: General motion, noise in all calibration parameters, correspondences perturbed byquantization noise (exact data).
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Figure 32: General motion, noise in all calibration parameters, correspondences perturbed byGaussian noise N(0; 1pixel) and by quantization noise.5 ConclusionWe have presented an algorithm for the estimate of the variances of the camera motion param-eters of the camera when we can characterize the uncertainty in the calibration parameters bytheir covariance matrix. We used the �rst order approximation to linearize the nonlinear rela-tionship between the calibration parameters and the motion parameters. We have done testswith synthetic scenes, correspondences were located with only pixel accuracy, i.e. no subpixeltechnique for the localization of the correspondences was supposed. We found that the esti-mate of the translation uncertainty is very stable and useful. We have found that the accuracyin the \horizontal" calibration parameters, �u and u0, a�ects mainly the \horizontal" part ofthe translation, tx. We have observed the similar relationship for the \vertical" parameters,�v; v0; ty. The estimate of the variance of the non-zero singular values di�erence was observedas very stable and credible and we hope that it can be used to increase the e�ciency of thealgorithm [14]. Hovewer, the estimate of the rotation uncertainty fails when the motion is closeto the lateral one. To solve this problem it is necessary either to improve the algorithm or toemploy an other representation of the rotation. We have not found such a de�nite relationship23



for the rotation parameters as in the translation ones. In addition we have observed that therotation parameters are more sensitive to the accuracy in the calibration.Several questions remain for the future work. We need to improve the algorithm for theestimate rotation. We plan to associate the presented algorithm with the algorithm [17] toinclude the uncertainty in the correspondences. We would like to derive an algorithm for theestimate of the error in the 3{D reconstruction. Is it possible to include the rough informationabout the camera into the algorithms utilizing more images?AcknowledgementsThis work was partly done during Tom�a�s Svoboda's four month visit in MOVI group in spring1996. T. Svoboda acknowledges Prof. Roger Mohr who enabled this stay. Thanks to Radim�S�ara giving us the advice with the problem of the generating correlated arti�cial noise.A How to create correlated random variablesImagine that we want to generate N times four random variables x; y; w; z with the mutualcovariance matrix Cxywz. In a matrix form, we needNxywz = 266664 x1 y1 w1 z1x2 y2 w2 z2... ... ... ...xN yN wN zN 377775 : (71)Firstly generate the random matrix X (the same size as Nxywz) using a standard randomgenerator for Gaussian noise. Compute the covariance matrix CX . ThusNxywz = XA; (72)where A = (pCx)�1qCxywz: (73)Proof: Using equation (12), the covariance matrix of the generated random data isCxywz = ATCXA: (74)The above equation can be rewritten as:Cxywz =qCxywzqCxywz = (pCXA)T (pCXA): (75)Now it is easy to derive equation (73).References[1] Martin Armstrong, Andrew Zisserman, and Richard Hartley. Self-calibration from imagetriplets. In Bernard Buxton and Roberto Cippola, editors, 4th European Conference onComputer Vision 1996, pages 1{16. Springer-Verlag, LNCS 1064, April 1996.24



[2] Gabriella Csurka, Cyril Zeller, Zhengyou Zhang, and Olivier Faugeras. Characterizing theuncertainty of the fundamental matrix. Research report 2560, INRIA, June 1995.[3] D. Olivier Faugeras. What can be seen in three dimensions with an uncalibrated stereo rig?In 2nd European Conference on Computer Vision 1992, pages 563{578. Springer-Verlag,LNCS 588, 1994.[4] Giannoula Florou and Roger Mohr. What accuracy for 3D measurement with cameras?In International Conference on Pattern Recognition 1996, pages 354{358, Los Alamitos,California, August 1996. IEEE Computer Society Press.[5] R.I. Hartley. Euclidean reconstruction from uncalibrated views. In DARPA-ESPIRITworkshop on Applications of Invariance in Computer Vision, pages 187{202, October1993.[6] Richard I. Hartley. Estimation of relative camera positions for uncalibrated cameras. In2nd European Conference on Computer Vision, pages 579{587. Springer - Verlag,, May1992.[7] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press,1985. 1987 reprinted with corrections, 1988,1990,1991,1992,1993.[8] T.S. Huang and O.D. Faugeras. Some properties of the e matrix in two-view motion es-timation. IEEE Transactions on Pattern Analysis and Machine Inteligence, 11(12):1310{1312, December 1989.[9] Peter J. Huber. Robust Statistics. Willey series in probability and mathematical statistics.John Willey and Sons, 1981.[10] Kenichi Kanatani. Group-Theoretic Methods in Image Understanding. Springer-Verlag,1990.[11] H.C. Longuett-Higgins. A computer algorithm for reconstruction a scene from two pro-jections. Nature, pages 133{135, 1981.[12] Quang-Tuan Luong, Rachid Deriche, Olivier Faugeras, and Theo Papadopoulo. On deter-mining the fundamental matrix: Analysis of di�erent methods and experimental results.Research report 1894, INRIA, Avril 1993.[13] Stephen J. Maybank and Olivier D. Faugeras. A theory of self-calibration of a movingcamera. IEEE Journal Computer Vision, 8(2):123 { 151, april 1992.[14] T. Svoboda and T. Pajdla. E�cient motion analysis. Research report K335/95/95, CTUFEE, October 1995. 29 pages.[15] P.H.S. Torr and D.V. Murray. A review of robust methods to estimate the fundamentalmatrix. submitted to IJCV, 1995.[16] Roger Y. Tsai. A versatile camera calibration technique for high-accurancy 3D machinevision metrology using o�-the-shelf cameras and lenses. IEEE Journal of Robotics andAutomation, RA-3(4):323 { 344, August 1987.25



[17] Juyang Weng, Thomas S. Huang, and Ahuja Narendra. Motion and structure from twoperspective views: Algorithms, error analysis, and error estimation. IEEE Transactionson Pattern Analysis and Machine Inteligence, 11(5):451{476, May 1989.[18] J.H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, 1965.

26


