Improper colouring of weighted grid and hexagonal graphs

Abstract : We study a weighted improper colouring problem motivated by a frequency allocation problem. It consists of associating to each vertex a set of p(v) (weight) distinct colours (frequencies), such that the set of vertices having a given colour induces a graph of degree at most k (the case k = 0 corresponds to a proper coloring). The objective is to minimize the number of colors. We propose approximation algorithms to compute such colouring for general graphs. We apply these to obtain good approximation ratio for grid and hexagonal graphs. Furthermore we give exact results for the 2-dimensional grid and the triangular lattice when the weights are all the same.
Type de document :
Article dans une revue
Discrete Mathematics, Algorithms and Applications, World Scientific Publishing, 2010, 2 (3), pp.395-411. <10.1142/S1793830910000747>
Liste complète des métadonnées


https://hal.inria.fr/inria-00526530
Contributeur : Jean-Claude Bermond <>
Soumis le : jeudi 14 octobre 2010 - 22:00:00
Dernière modification le : vendredi 3 décembre 2010 - 00:25:25
Document(s) archivé(s) le : jeudi 25 octobre 2012 - 17:16:08

Fichier

weight-finalrev2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Jean-Claude Bermond, Frédéric Havet, Florian Huc, Claudia Linhares Sales. Improper colouring of weighted grid and hexagonal graphs. Discrete Mathematics, Algorithms and Applications, World Scientific Publishing, 2010, 2 (3), pp.395-411. <10.1142/S1793830910000747>. <inria-00526530>

Partager

Métriques

Consultations de
la notice

211

Téléchargements du document

98